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Preface

This thesis was written during my time at the Institute for Theoretical Information
Technology of RWTH Aachen University. I would like to thank Prof. Dr. Rudolf
Mathar for giving me the opportunity to pursue my doctorate at his institute and for
supporting my research. Prof. Dr. Thomä deserves many thanks for acting as the
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1 Introduction

1.1 Motivation

The recent years have seen a dramatic increase in the demand for wireless communi-
cation, largely driven by the wide adoption of the smartphone in consumer markets.
Despite technological advancements aimed at boosting spectral efficiency such as new
waveforms and algorithms as well as hardware enhancements, radio spectrum has be-
come a tremendously scarce resource. One of the reasons for this can be found in the
legacy of spectrum licensing policies from the past decades, where licenses have been
issued for most of the frequency range suitable for radio communication (for the US, see
Figure 1.1 [1]; for Germany, see [2]).

As a consequence of this licensing scheme, large parts of the radio spectrum are severely
underutilized, i. e., their licensees only access them at certain geographic locations or
certain points in time [3, 4]. This results in an inefficient use of the available assets.
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Figure 1.1: United States Frequency Allocations, 2011 [1]. White denotes unallocated spectrum.
As can be seen, most of the spectrum has been allocated.

In addition to easing the cellular network operators’ growing demand for spectrum,
making a change in policy is a necessary step that needs to be taken in order not to stifle
innovation in the wireless sector. Examples of this are the widespread deployment of the
Internet of Things (IoT) [5, 6, 7] based on machine to machine (M2M) communications
and the progressive proliferation of sensor networks [8] in a broad set of scenarios.
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1 Introduction

One approach towards more efficient spectrum use (given adequate policy changes) is
opportunistic spectrum access (OSA) [9], originally called spectrum pooling (SP) [10].
Emanating from the field of cognitive radio (CR) [11, 12], it aims at making better use
of the given resources by allowing unlicensed transceivers (secondary users (SUs)) to
access spectral bands while their licensees (primary users (PUs)) do not occupy them.
To facilitate safe spectrum reuse such that the unlicensed transmission does not cause
interference in the primary system, the secondary system has to sense the spectral band
of interest for primary user activity reliably and only access it if no ongoing transmission
is detected. Determining the occupancy status of a spectral band is known as spectrum
sensing. The focus of this work lies on the development and analysis of spectrum sensing
algorithms.

1.2 Outline

The thesis is organized as follows. In Chapter 2, the notations used throughout this
dissertation are introduced.

Chapter 3 provides an overview of the different fields of study this thesis is based on. The
fundamental spectrum sensing problem is introduced together with a short treatment
of binary hypothesis testing as well as a review of the most important test statistics
used in spectrum sensing. Some methods proposed in this thesis are based on core ideas
and algorithms from the field of compressed sensing. Thus, the background chapter
contains a synopsis of the field’s most important concepts and algorithms. Finally, it is
discussed, which problems in the area of spectrum sensing can gain from the application
of compressed sensing.

One of the core problems of cyclostationarity-based spectrum sensing is the requirement
of knowing the cyclic frequency to test at beforehand. This rules out blind opera-
tion. The problem can be fixed by the application of compressed sensing, which is
demonstrated in Chapter 4. To tackle the problem, two greedy algorithms based on the
orthogonal matching pursuit [13, 14] are proposed. In order to be able to assess the
estimation performance of the aforementioned algorithms, a closed-form expression for
the discrete-time cyclic autocorrelation of linearly modulated signals with a rectangular
pulse shape is derived. Essential information necessary for the estimation of the test
statistic used in the time-domain test [15] is lost in the sparse recovery process. This
problem is overcome by an alternative way of obtaining the test statistic.

When Eigenvalue-based spectrum sensing was first introduced in [16], one of its ad-
vertised advantages was the independence from the exact knowledge of the receiver’s
noise power, the lack of which leads to a so-called SNR-wall in the energy detector. An
SNR-wall is an SNR value below which a detector cannot robustly detect anymore. In
Chapter 5, it is shown that while the (eigenvalue-based) maximum-minimum-eigenvalue
(MME) detector may not suffer from a noise-power-uncertainty induced SNR-wall, it
does experience an SNR-wall when faced with uncertainty in the amount of coloring
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1.2 Outline

of the receiver noise. A lower bound for the SNR-wall based on uncertainty about the
amount of noise-coloring is derived and is used to show that low amounts of man-made
impulsive noise lead to SNR-walls in the MME detector that are above the desired regime
of operation. Furthermore, two new eigenvalue-based test statistics for spectrum sensing
are proposed and compared to the most popular ones from the literature.

In Chapter 6, the problem of distributed spectrum sensing using energy detection is
studied. A scenario with multiple sensors and a fusion center, which receives raw samples
from the sensors, is considered. The fusion center estimates the frequency spectrum from
the received measurements, such that at a later stage, it can be decided which parts of
the spectrum are occupied and which ones are free to be used opportunistically. An
approach for spectral estimation that makes use of samples from all sensors in a single
`1-minimization operation is proposed to minimize the amount of data that has to be
transmitted to the fusion center by exploiting spatial diversity.

The numerical evaluation parts of this thesis are based on results of Monte Carlo sim-
ulations. Most of these simulations exhibit the same workflow. Blocks of samples are
generated, detection algorithms are run on these blocks, and the results are analyzed
statistically. In Chapter 7, the software framework that was developed to make the
simulation code more reusable and stable is presented.

Finally, Chapter 8 concludes this dissertation with a summary of the presented work
and an outlook.

Parts of the present thesis and related topics have been published in [17, 18, 19, 20, 21,
22]. Works containing other parts of the thesis are currently under review, i. e., [23, 24].
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2 Notation

This chapter introduces the notation used throughout the thesis.

Scalars Scalars are denoted by lowercase symbols with normal font-weight, e. g.,

x. (2.1)

The complex conjugate of the scalar x is given by

x∗, (2.2)

while its absolute value is given by
|x|. (2.3)

Vectors Vectors are denoted by lowercase bold-faced type , e. g.,

x. (2.4)

To denote the i-th element of the vector x, the following notations are used interchange-
ably:

xi and [x]i . (2.5)

The transpose, element-wise complex conjugate and conjugate transpose of the vector x
are given by

xT,x∗, and xH, (2.6)

respectively. The support of the vector x and its element-wise absolute value are denoted
by

supp (x) and |x| , (2.7)

respectively.

Special Vectors The N -dimensional zero vector, i. e., the vector of size N containing
zeros for all elements is denoted by 0N .
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2 Notation

Matrices Matrices are denoted by uppercase bold-faced type, e. g.,

X. (2.8)

To denote the element of the matrix X that is located in the i-th row and the j-th
column, the following notations are used interchangeably:

xij and [X]ij . (2.9)

The i-th column of X is denoted by
xi, (2.10)

while the i-th row of X is denoted by

[X]i:. (2.11)

The transpose, element-wise complex conjugate and conjugate transpose of the matrix
X are given by

XT,X∗, and XH, (2.12)

respectively. The element-wise absolute value of the matrix X and its kernel (nullspace)
are denoted by

|X| and ker (X) , (2.13)

respectively, while the inverse of the matrix X is given by

X−1. (2.14)

The vectorization of a matrix X, i. e., the concatenation of its columns to a single vector
is denoted by

vec {X} , (2.15)

while the trace of the matrix X is denoted by

Tr(X). (2.16)

Special Matrices The symbol IN denotes the identity matrix of size N ×N , while the
symbol FN stands for the N ×N discrete Fourier transform matrix.

Expected Value The expected value of a scalar random variable x is denoted by

E [x] . (2.17)

The element-wise expected values of the vector x and the matrix X are accordingly
denoted by

E [x] and E [X] , (2.18)

respectively.
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Components of Complex-Valued Expressions The real and imaginary part of a com-
plex scalar x is denoted by

Re {x} and Im {x} , (2.19)

respectively. The element-wise real and imaginary part of the vector x and the matrix
X are accordingly denoted by

Re {x} and Im {x} , (2.20)

and
Re {X} and Im {X} , (2.21)

respectively.

Norms The `p-norm of a vector x of size n is denoted by

‖x‖p . (2.22)

Its definition is given by

‖x‖p = (|x1|p + |x2|p + · · ·+ |xn|p)
1
p . (2.23)

In the area of compressed sensing the `0-“norm”, which is denoted by ‖·‖0, is used. It is
defined as the number of nonzero entries in a vector, i. e., given the definition in (2.23)
the `0-“norm” of a vector x can be expressed as [25, Ch. 2.1]

lim
p→0
‖x‖pp = lim

p→0

n∑
i=1

|xi|p = |x1|0 + |x2|0 + · · ·+ |xn|0 , (2.24)

where expressions with exponent zero are treated as follows:

x0 =

{
0 for x = 0
1 otherwise.

(2.25)

However, the `0-“norm” does not satisfy the definition of a norm and is usually referred
to as `0-“norm” or `0-pseudonorm.

The Frobenius norm of a matrix X is denoted by

‖X‖F. (2.26)
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2 Notation

Sets and Cardinality Sets are denoted by calligraphic uppercase symbols with normal
font-weight, e. g.,

X , (2.27)

with the exception of the set of real numbers (of dimension n), the set of complex
numbers (of dimension n), and the set of integers (of dimension n), which are denoted
by

Rn,Cn and Zn, (2.28)

respectively. In the case of one-dimensional sets, the corresponding superscript may be
omitted. The complement of a discrete set X is denoted by

XC, (2.29)

while its cardinality is denoted by
|X | . (2.30)

The cardinality uses the same notation as the absolute value of a scalar, i. e., the meaning
of | · | depends on the context. The definition of a set is denoted by curly brackets, e. g.,

X = {x ∈ R | x > 0}. (2.31)

The set comprises all elements of the set given before the vertical bar for which all
conditions given after the vertical bar are fulfilled.

Probability Distributions The univariate uniform distribution on the interval [a, b] is
denoted by

U(a, b). (2.32)

The univariate Gaussian distribution with mean µ and variance σ2 is denoted by

N (µ, σ2), (2.33)

while the multivariate Gaussian distribution with mean vector µ and covariance matrix
Σ is denoted by

N (µ,Σ). (2.34)

The circularly-symmetric complex Gaussian distribution with mean vector µ and covari-
ance matrix Σ is denoted by

CN (µ,Σ). (2.35)

The central chi-squared distribution with n degrees of freedom is denoted by

χ2
n, (2.36)

while the non-central chi-squared distribution with n degrees of freedom and non-cen-
trality parameter λ is denoted by

χ2
n(λ). (2.37)
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The symbol ∼ denotes that a random variable is distributed according to a given prob-
ability distribution, i. e.,

x ∼ N (0, 1) (2.38)

expresses that x is distributed according to a standard normal distribution. Convergence

in distribution is denoted by the symbol
D
=, i. e.,

lim
n→∞

x(n)
D
= N (0, 1) (2.39)

expresses that the distribution of x(n) asymptotically converges to the standard normal
distribution.
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3 Background

This chapter serves as a brief introduction to the fundamental concepts the present work
is based on. First, the spectrum sensing problem is introduced together with a selection
of notable algorithms and their underlying ideas. Subsequently, the main building blocks
of compressed sensing are reviewed. In the final part of this chapter, the application of
compressed sensing to the spectrum sensing problem is discussed.

3.1 Spectrum Sensing

The basic spectrum sensing problem can be cast as a hypothesis test as follows. Consider
a secondary system receiver sampling some frequency band, resulting in the baseband
signal x(t). To make a statement about the band’s occupancy, it has to be decided which
of the following two hypotheses is true:

H0 : x(t) = η(t),
H1 : x(t) = s′(t) + η(t),

(3.1)

where η(t) denotes receiver noise and s′(t) stands for a primary user signal after propa-
gation effects.

The discrete-time measurements used as the input of spectrum occupancy detectors are
sampled from one of two different probability distributions (PDs) depending on whether
H0 or H1 is true. Realizations of the detectors can be classified as either state detectors
or change detectors. State detectors determine the current occupancy state and thus
assume the samples to be distributed according to a homogeneous distribution, i. e., the
PD the samples are drawn from does not change throughout the process of detection.

The category of state detectors can again be divided into two types: block detectors,
also called fixed sample size (FSS) detectors and sequential detectors [26]. FSS detectors
take a predefined number of samples and make their best effort to determine the band’s
occupancy from these. Since the sample size is fixed and independent of how easily the
signal might be detected, this type of detector typically takes more samples than nec-
essary as to become robust against, e. g., low signal-to-noise ratios (SNRs). Sequential
detectors on the other hand aim at making a decision from as few samples as possible,
such that the observation time necessary is minimized. To accomplish this, they contin-
uously try to decide about the presence of a primary user signal. If one decision attempt
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3 Background

time

...

decision attempt no. 3

decision attempt no. 2

decision attempt no. 1 decision

FSS detection

Sequential detection

Figure 3.1: State detection. The blocks represent the samples considered in a decision.

time

H0

H1

detection delay

change detected

Figure 3.2: Change detection.

is inconclusive, another attempt is made after taking more samples. Figure 3.1 visualizes
the difference between the two types of state detectors.

Change detectors work on a different premise. They expect the spectral band’s occu-
pancy state to change during the observation time. At the time of the disruption, the
samples stop being drawn from the PD of one of the hypotheses and start being drawn
from the PD of the other hypothesis, as depicted in Figure 3.2. The detector tries to
notice when the PU either begins using its spectrum or stops using its spectrum. Mini-
mizing the time between an event happening and its detection, i. e., the detection delay,
is the objective of quickest detection (QD) [27, 28].

This work focuses on FSS detectors.

3.1.1 Binary Hypothesis Testing

In the following, the fundamental properties of FSS detectors and the accompanying
hypothesis test is discussed. Consider a secondary system receiver that needs to decide
whether a certain spectral band is occupied or free. It samples the baseband signal x(t)
uniformly with a sampling period Te. This results in the vector of discrete-time samples
x ∈ CN , where

x = [x(0), x(Te), . . . , x((N − 1)Te)]
T. (3.2)

Equation (3.1) can be rewritten in terms of x as

H0 : x = η,
H1 : x = s′ + η,

(3.3)
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3.1 Spectrum Sensing
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Figure 3.3: Threshold design in FSS detection.

where
η = [η(0), η(Te), . . . , η((N − 1)Te)]

T (3.4)

denotes the sampled receiver noise and

s′ = [s′(0), s′(Te), . . . , s
′((N − 1)Te)]

T (3.5)

stands for the sampled primary user signal after propagation effects. In order to arrive
at a decision, the sensor computes a test statistic T (x) : CN → R and compares it to a
threshold γ, i. e.,

T (x)
H0

≶
H1

γ. (3.6)

If the value of T (x) is below the threshold, the sensor decides that H0 is true, i. e., that
the observed band is free and can be used by the secondary system. If it is above the
threshold, it decides that H1 is true, which means that the secondary system has to
refrain from accessing the band.

The threshold γ is a design parameter of the system. To gain an intuition about how
the choice of the threshold impacts the system behavior, consider Figure 3.3. The figure
shows two probability density functions (PDFs). The black line represents the PDF of
the test statistic in theH0 case, while the blue line represents the PDF of the test statistic
in the H1 case. Clearly, it is impossible never to make wrong decisions in this situation
since the PDFs overlap. There are two quantities, corresponding to the two possible
types of decision errors, resulting from the choice of the threshold. The probability of
false alarm (Pfa), or false alarm rate, which is indicated by the black-shaded area and
the probability of missed detection (Pmd), or missed detection rate, which is indicated
by the blue-shaded area. These two quantities are formally defined as

Pmd = P (H0 | H1) = prob(decide H0 when H1 is true),
Pfa = P (H1 | H0) = prob(decide H1 when H0 is true).

(3.7)

In a situation where the two PDFs do not overlap, we could choose a threshold that
would result in a probability of zero for both types of wrong decisions. However, in the
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3 Background

case that the PDFs do overlap, one can only trade off between the two types of errors
by the choice of the threshold value.

In order to guarantee the PU a certain level of safeness against interruptions, and
interference-free operation in his licensed band, the threshold should be set such that it
results in a pre-specified missed detection rate (Pmd), e. g., {1, 3, 5} percent. However, in
most spectrum sensing scenarios, the sensors are regarded as being blind, meaning they
are not in possession of any prior information about the PU transmitter and the signal
it emits, i. e., they do not know about the signal type, the transmission power or the
channel gain / receive SNR. Thus, the H1 PDF is completely unknown to the sensor,
making it impossible to know which threshold to choose in order to achieve an intended
Pmd. The H0 PDF, however, is independent of the PU and is thus known (up to a
certain accuracy [29, 30, 31]). Knowing the H0 PDF, the secondary system sensor can
set a threshold that leads to a pre-specified Pfa. A detector featuring a H0 PDF that is
asymptotically independent of any unknown parameters is called a constant false alarm
rate (CFAR) detector [32, Ch. 6.5]. CFAR is a very attractive feature of a detector since
it allows to set a threshold leading to an exact Pfa without exactly knowing the system
parameters, e. g., the receiver noise power. However, as shown in [30] and [31], there is
little hope of any detector truly having the CFAR property.

The goal of designing a good test statistic T (x) for spectrum sensing is to achieve
maximum separateness of the two PDFs, i. e., minimum overlap, for all possible observed
signals x. A typical graphical plot illustrating the performance of a test statistic and
the associated binary classifier system is the receiver operating characteristic (ROC).
The ROC plots the detection rate (Pd) over the false alarm rate (Pfa). Each point on
the curve corresponds to a different value of the threshold γ. Note, that the detection
rate, or probability of detection, is given by Pd = 1−Pmd. An example of a ROC curve
(showing the situation from Figure 3.3) is given in Figure 3.4. The closer the curve gets
to the top left corner, the better the detector.

A number of test statistics for the problem of spectrum sensing have been proposed in
the literature [33, 34, 35]. Based on the amount of information about the primary user
signal incorporated, these solutions can be classified into the following three categories:
energy detection, feature detection and matched filter detection. While energy detectors
[36] do not make use of any prior knowledge in regard to the primary user’s signal,
matched filter detectors [32, Ch. 4.3] need to know the exact waveform of at least part
of the signal emitted by the PU, typically a pilot or preamble. Feature detectors are an
in-between, as they only make assumptions about structural or statistical properties of
the signal. A number of stochastic features which are present in communication signals
but are not present in pure noise have been identified. Spectrum sensing algorithms
based on these have to decide if some feature is present in the measurements or not.
If the feature can be found in the samples, a primary user signal is present and the
secondary system should refrain from accessing the channel. However, if the feature
cannot be found, the secondary system is free to make use of the spectral band it has
sensed. In the following, some state-of-the-art spectrum sensing detectors are reviewed.
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3.1.2 Detectors

Energy Detection One of the most basic detection techniques is the well-known energy
detector [36, 29], also known as radiometer. It determines the energy present in a block
of samples and compares it to a predetermined threshold in order to decide whether a
PU signal exists or whether what has been sensed is pure noise. For a known receiver
noise power σ2 this yields the Neyman-Pearson optimal binary hypothesis test [37]

Tenergy(x) =
‖x‖22
σ2

H0

≶
H1

γ. (3.8)

The energy detector does not assume or exploit any knowledge about the PU signal’s
structure. If both PDFs of the test statistic, under H0 and under H1 are known, it can
be shown that the performance of the energy detector comes close to that of the optimal
detector under certain conditions [38]. Also, the energy detector has a very low compu-
tational complexity, which makes it an attractive choice for constrained environments,
e. g., sensor networks built from low cost devices.

However, in the case of imperfect knowledge regarding the noise power σ2, the detection
performance degrades considerably, leading to so-called SNR-Walls [30]. This means that
for a given amount of noise-uncertainty, there exists a value for the SNR below which
robust detection is impossible. In this situation, the detector cannot decide between
H0 with an underestimated noise power and H1 with an overestimated noise power. In
order to facilitate reliable spectrum sensing, PU signals have to be detected in very low
SNR regimes [38, 39]. The energy detector may not be able to guarantee this depending
on the uncertainty in the receiver noise estimation. If the receiver noise power σ2 is
completely unknown, no appropriate threshold can be determined and thus the energy
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3 Background

detector cannot be used at all. Chapter 6 of this thesis is concerned with the topic of
energy detection.

Cyclostationarity Detection Another way of probing a spectral band’s occupancy sta-
tus is to test for the presence of cyclostationarity. This method exploits the fact that
most man-made signals vary periodically with time [40] and can thus be characterized as
cyclostationary. Although the data contained in a modulated signal may be the output
of a purely stationary random process, the coupling with sine wave carriers, pulse trains,
repeating, spreading, hopping sequences and cyclic prefixes going along with the signal
modulation causes a built-in periodicity [41]. Thus, virtually all waveforms used in wire-
less communications possess this feature. The underlying periodicity can be exploited
for detecting the presence of a signal despite contamination with noise [15, 42, 43].

One of the algorithms for detecting the presence of cyclostationarity in a signal is the
time-domain test (TDT) as detailed in [15]. The test can decide between the presence
and absence of cyclostationarity for a pre-specified cycle frequency α. It is based on the
cyclic autocorrelation (CA) which, given an observed signal x(t), is determined by [40]

Rαx(τ) = lim
T→∞

1

T

T/2∫
−T/2

x(t+ τ/2)x∗(t− τ/2)e−j2παt dt (3.9)

for a cycle frequency α and a delay τ . For purely stationary signals Rαx(τ) = 0 for all
α 6= 0, while for cyclostationary signals Rαx(τ) 6= 0 for some α 6= 0. The frequencies
α with nonzero CA coefficients are called cycle frequencies. The set of cycle frequen-
cies caused by one of potentially multiple incommensurate second-order periodicities in
a cyclostationary signal comprises the periodicity’s fundamental cycle frequency (the
reciprocal of the fundamental period) as well as its harmonics (integer multiples).

Given the above information, the hypotheses from (3.1) can be rewritten as

H0 : ∀{α ∈ R | α 6= 0} : Rαx(τ) = 0,
H1 : ∃{α ∈ R | α 6= 0} : Rαx(τ) 6= 0.

(3.10)

Testing for PU activity using the cyclostationarity feature comes down to evaluating (3.9)
and testing if Rαx(τ) 6= 0 for some α 6= 0. If there are α 6= 0 with nonzero coefficients,
the band is occupied. Otherwise, it is free and can be used by the secondary user. Note
that in a real scenario with a finite number of samples, only an estimation of Rαx(τ) is
available, requiring a more sophisticated detection algorithm, e. g., the TDT from [15].
The TDT as well as the accompanying discrete-time estimation of the CA are presented
in Chapter 4.

The omnipresence of cyclostationarity in wireless communication signals makes the
stochastic feature a good candidate for spectrum sensing. However, using the classi-
cal TDT, the sensor has to have prior knowledge about the cycle frequency α, which

16



3.1 Spectrum Sensing

makes the detector non-blind. A method for circumventing this shortcoming is proposed
in Chapter 4. Although cyclostationarity detectors cannot be considered to exhibit the
CFAR property [31], some of them, e. g., the TDT, are independent of the receiver noise
power in contrast to the energy detector. Due to the required evaluation of the CA,
however, the TDT exhibits a considerably higher computational complexity than the
energy detector.

Covariance- / Eigenvalue-Based Detection Another class of feature detectors used in
spectrum sensing are covariance-based detectors, several of which have been proposed
in the literature, e. g., [44, 16, 45, 46, 47, 48]. These algorithms exploit the properties of
a signal’s covariance matrix in order to detect primary user activity.

The statistical covariance matrix of the received signal vector x taken at a secondary
system receiver is defined by

Σx = E
[
xxH

]
= HΣsH

H + Ση

= HΣsH
H + σ2IN ,

(3.11)

where Σs = E
[
ssH
]

and Ση = E
[
ηηH

]
denote the statistical covariance matrices of the

PU signal and the additive noise respectively. The noise variance is denoted by σ2, while
H stands for the channel gain matrix. Finally, the symbol s denotes the primary user
signal before the effects of the communication channel.

Here we make the standard assumption that both the signal and the noise are zero-mean.
Note that the last step in (3.11) is due to the noise being i.i.d. and the fact that the
noise is not correlated with the signal.

Equation (3.11) provides the definition of the statistical received signal covariance matrix
for the H1 case, i. e., when a PU signal is present. In the case of an unoccupied channel
(H0), the PU signal vector s = 0 such that only the noise part remains, i. e., Σx = σ2IN .
This relationship can be exploited for determining a band’s occupancy status. More
specifically, the hypotheses from (3.1) can be rewritten in terms of Σx as

H0 : Σx = HΣsH
H + σ2IN ,

H1 : Σx = σ2IN .
(3.12)

The above distinction gives rise to a multitude of possible approaches. A very basic
spectrum sensing algorithm based on the above properties would be a detector checking
if there are nonzero entries outside of the diagonal of the covariance matrix Σx. If there
are, the band is occupied, otherwise it is idle. However, due to the finite amount of
samples available to the detection algorithms, they have to work on the sample covariance
matrix Σ̂x, which is the estimation of the statistical covariance matrix from the N
available samples contained in the vector x. Depending on N , this can be a very rough
estimation. Of course no entry of Σ̂x is exactly zero, which renders the above naive
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approach for signal detection impractical. Usable approaches have to employ a more
sophisticated method of discerning between H0 and H1.

Different directions are taken in the family of covariance-based detectors. Some directly
work on Σ̂x, e. g., [44, 47]. Others base their tests on the eigenvalues of Σ̂x, e. g.,
[16, 45, 46, 48]. The latter group of detectors are called eigenvalue-based detectors.

While covariance-based detectors and eigenvalue-based detectors can be called blind
and are independent of the receiver noise power, they have a considerably higher com-
putational complexity than the energy detector. Chapter 5 deals with eigenvalue-based
detectors.

3.2 Compressed Sensing

Compressed sensing (CS) [49, 50] represents a paradigm change in the field of signal
acquisition. The core aim of CS is to measure as little as necessarily required in order
to obtain a signal. Conventional knowledge in the field of sampling dictates that in
order to fully capture all information contained in a signal, one has to gather a full set
of equidistant time-domain samples taken at a rate that is at least twice the highest
frequency contained in the signal. This result is commonly called the Nyquist–Shannon
sampling theorem [51, 52, 53].

The CS theory asserts that for certain kinds of signals and given certain sampling modal-
ities, a signal can be recovered from far fewer samples than demanded by the Nyquist-
Shannon sampling rate. The basic compressed sensing problem is defined as follows.
Consider the under-determined system of linear equations

y = Ax, (3.13)

where y ∈ Cm, x ∈ CN and A ∈ Cm×N with m � N . The goal is to recover x from
y with A known. Since the system of equations is under-determined, this problem is of
course impossible to solve in general. However, if the two fundamental prerequisites of
CS are fulfilled, the original signal x can be recovered.

Splitting up the matrix A into the measurement matrix Φ ∈ Cm×N and the full-rank
representation matrix Ψ ∈ CN×N such that A = ΦΨ, the fundamental requirements for
CS to work can be stated as follows.

• The signal to be sampled needs to exhibit a low complexity, i. e., it needs to be
either sparse or compressible when expressed in some representation basis Ψ. The
sparsity and compressibility properties are properly introduced in Section 3.2.1.

• The sampling basis Φ and the representation basis Ψ need to be incoherent. The
incoherence property is properly introduced in Section 3.2.3.
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3.2 Compressed Sensing

Given these two conditions and a sufficient number of samples m � N , x can be re-
covered from y. In the following subsections, the conditions as well as efficient recovery
algorithms are discussed.

3.2.1 Sparsity and Compressibility

Sparsity is a property which indicates that most of a signal’s components are zero.
Many real-world signals are well approximated by their sparse counterparts, i. e., when
expressed in a suitable basis, removing all but the largest signal components does not
lead to the loss of much of the signal’s information content. These kinds of signals
are called compressible. The fact that many real-world signals are of this type is the
basis for some of the most widely used lossy compression algorithms like, e. g., the Joint
Photographic Experts Group (JPEG) and the Moving Picture Experts Group (MPEG)
standards for images and videos, respectively.

A vector x ∈ CN is called s-sparse if

‖x‖0 = |{j|xj 6= 0}| ≤ s, (3.14)

i. e., if it has at most s nonzero entries [25, Ch. 2.1]. If it is not exactly sparse, it may
still exhibit a weaker albeit useful property termed compressibility. The vector x can
informally be called compressible if its best s-term approximation error, which is defined
by

σs(x)p = inf
{
‖x− z‖p , z ∈ CN is s-sparse

}
(3.15)

for p > 0 decays quickly in s. The infimum is achieved by an s-sparse vector z that
equals the vector x at its s largest entries [25, Ch. 2.1].

To gain an intuition of why the notion of compressibility is interesting consider a picture
taken with a camera. These kinds of pictures typically have the property that most of
their energy is concentrated in a few discrete cosine - or wavelet coefficients, which means
that they are compressible. File formats like JPEG exploit this fact and compress these
signals by only storing the largest few of said coefficients. This kind of compression is
lossy but as we know from everyday consumer systems, it does not noticeably degrade
the image quality.

3.2.2 Algorithms for Sparse Recovery

Consider the problem of sparse recovery given the underdetermined system of linear
equations (3.13) again. We assume the signal x is s-sparse and s < m � N . If the
support of x (i. e., the set of the locations of the nonzero entries of x) was known prior
to the sensing procedure, the matrix A could be reduced to the columns corresponding
to the support of x, which would render the system of linear equations overdetermined.
The signal x could then be obtained by conducting the standard least-squares approach.
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Figure 3.5: Two-dimensional unit norm balls of the `0-”norm” (red), the `1-norm (blue)
and the `2-norm (green) respectively. While the `0-”norm” ball is not convex,
both, the `1-norm ball and the `2-norm ball are. The `1-norm is the tightest
convex relaxation of the `0-”norm”.

The same approach is viable if the signal x is not s-sparse but compressible with most
of the energy allocated to a known set of s entries of x. The above sensing procedure
would be an efficient, resource friendly way of obtaining x compared to the traditional
approach of taking the full set of N samples to obtain the N entries of x only to then
throw away all but the s nonzero / high-energy entries in the compression step.

As described above, sparse recovery with known support is trivial. The problem consid-
ered in CS is a more involved one. In CS, the support of x is considered to be unknown
prior to the sensing procedure. Since in this case the underdetermined system of linear
equations cannot be reduced to an overdetermined one, a method has to be devised
to select the actual signal vector x out of the infinite set of possible solutions that are
consistent with the system of equations. A wealth of algorithms that tackle this problem
have been proposed in the literature. Some of these are introduced in the following.

Basis Pursuit (BP) The first approach that comes to mind is to exploit the signal’s
sparsity by choosing the vector x which has the smallest number of nonzero entries
among all solutions to (3.13), i. e., the sparsest one. This is equivalent to choosing the
vector with the lowest `0-”norm”. The optimization problem representing the above
approach is given by

min
x∈CN

‖x‖0
s.t. y = Ax.

(3.16)

Unfortunately, this approach is a poor fit for signal acquisition, especially for large
signals, i. e., for large N , since in general `0-minimization is NP-hard.

Replacing the `0-”norm” in the objective by its tightest convex relaxation (cf. Fig-
ure 3.5), the `1-norm, renders the problem convex and thus tractable. One of the most
important results in the field of CS is that for most large underdetermined systems of
linear equations the minimal `1-norm solution is also the sparsest solution [54]. The
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3.2 Compressed Sensing

corresponding optimization problem, which goes by the name basis pursuit (BP) [55] or
simply `1-minimization is given by

min
x∈CN

‖x‖1
s.t. y = Ax.

(3.17)

Since in many engineering disciplines one cannot hope for perfect noise-free measure-
ments, the linear samples taken by a sensor are better described by

y′ = Ax + e, (3.18)

where e contains random noise. To recover the original signal vector x from the noisy
measurements y′, a noise-aware version of BP called quadratically constrained basis pur-
suit (QCBP) can be employed. It is given by

min
x∈CN

‖x‖1
s.t. ‖Ax− y′‖2 ≤ ε,

(3.19)

where ε limits the amount of noise the optimization problem solver expects the samples
to contain. It is very similar to (but not to be confused with) basis pursuit denoising
(BPDN) [25, Ch. 3.1].

Orthogonal Matching Pursuit (OMP) As an alternative to convex optimization, dif-
ferent greedy algorithms for recovering the original signal vector have been proposed in
the literature. One of them is called orthogonal matching pursuit (OMP) [13, 14]. It is
formally defined in Algorithm 1.

Algorithm 1: Orthogonal matching pursuit (OMP)

Input: y ∈ Cm, A ∈ Cm×N , niter

1 x0 = 0, S0 = ∅;
2 for i = 1, . . . , niter do

3 ci = AH (y −Axi−1);

4 ji = argmax
j∈{1,...,N}

{∣∣∣[ci]j∣∣∣};

5 Si = Si−1 ∪ {ji};
6 xi = argmin

z∈CN
{‖y −Az‖2 , supp (z) ⊂ Si};

Output: xniter ∈ CN

The algorithm iteratively determines the support of the signal vector that is to be ac-
quired. Given the obtained support with a cardinality lower than the number of samples
m (the signal is assumed to be sparse), the underdetermined system of linear equations
(3.13) can be reduced to an overdetermined system, which can be solved using a standard
least-squares approach.
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In line 1, the signal vector x is initialized to the all-zero vector and the support set
S is initialized to the empty set. The loop that starts in line 2 iterates over the signal
support. Each iteration, one index is added to the support set S. The stopping condition
used in Algorithm 1 is the number of iterations niter that the algorithm is supposed to
execute. Obviously, this number should be at least as high as the expected signal sparsity,
i. e., the expected number of nonzero entries in x. Since this number is not necessarily
known before signal recovery, the stopping criterion can alternatively be replaced by a
maximum residual energy εmax. In that case, the for-loop is replaced by a while-loop
given by [while ‖y −Axi−1‖22 ≥ εmax do].

In line 3 the residual of the previous iteration (y − Axi−1) is correlated with the so-
called atoms contained in the matrix A. The index of the atom with the strongest
correlation is chosen in line 4. It is added to the support set in line 5. In line 6 the
signal x is expressed as accurately as possible in a squared-error sense given the part of
the support set determined so far (Si). In the subsequent iteration, the algorithm tries
to determine which atom can best explain the residuum of the i-th iteration, i. e., the
part of the samples that could not be expressed with the atoms corresponding to the
indices contained in Si. Since the cardinality of S always stays well below the number of
samples m, the optimization problem in line 6 always solves an overdetermined system
of equations.

Other Recovery Algorithms Due to the high popularity of CS, many sparse recovery
algorithms spanning a number of categories have been developed. A non-comprehensive
list of notable algorithms is given in the following. Besides OMP, one of the most
popular greedy methods is the compressive sampling matching pursuit (CoSaMP) [56].
In addition to optimization methods and greedy methods, an important category of
sparse recovery algorithms are thresholding-based methods. Notable contenders in this
category are basic thresholding, iterative hard thresholding (IHT), hard thresholding
pursuit (HTP), and subspace pursuit [25, Ch. 3.3].

3.2.3 Recovery Conditions

As discussed above, the unknown support of x assumed in CS renders the recovery
problem underdetermined. This means that even for sparse x, one cannot hope for
successful recovery by any means using an arbitrary matrix A. In the following, we
present desirable properties for A and their implications for signal recovery as well as
their consequences for the design of CS matrices.

Null Space Property (NSP) The null space property [57], [25, Ch. 4.1] is defined as
follows. A matrix A satisfies the null space property relative to a set S ⊂ {1, 2, . . . , N}
if

‖vS‖1 < ‖vSC‖1 for all v ∈ ker (A) \{0}. (3.20)
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Furthermore, A satisfies the null space property (NSP) of order s if it satisfies the NSP
relative to any set S ⊂ {1, 2, . . . , N} with |S| ≤ s. Roughly speaking, the NSP states
that the nullspace of A should contain neither sparse nor highly compressible vectors.
The NSP constitutes a necessary and sufficient condition for the exact recovery of all
s-sparse vectors via BP.

Restricted Isometry Property (RIP) The NSP provides guarantees for the exact recov-
ery of sparse signals. However, since the signals in most engineering applications contain
noise and can thus be classified as compressible rather than sparse, it is desirable to have
matrix properties guaranteeing the successful recovery of compressible signals. The re-
stricted isometry property [58] provides exactly this. It is defined as follows [59, Ch.
1.4.2]. A matrix A satisfies the restricted isometry property (RIP) of order s if there
exists a δs ∈ (0, 1) such that

(1− δs) ‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs) ‖x‖22 (3.21)

holds for all s-sparse x. Roughly speaking, the RIP guarantees that the distance between
sparse vectors is preserved under the transformation through A. If a matrix satisfies the
RIP, this implies that it also satisfies the NSP. The smaller δs, the better a matrix is
suited for sparse recovery. Given a sufficiently small constant δs, the RIP has been shown
to guarantee successful recovery of compressible signals with a multitude of algorithms,
i. e., BP, IHT, HTP, OMP and CoSaMP [25, Ch. 6].

Coherence Although the NSP and the RIP provide strong recovery guarantees, they
are impractical when it comes to assessing the suitability of a matrix for CS. The reason
for this is that verifying that a matrix satisfies any of these properties is generally NP-
hard [60]. Thus it is often desirable to evaluate the so-called coherence of a matrix,
which is a quicker to compute albeit weaker indicator of fitness for sparse recovery. The
coherence of a matrix A is given by [59, Ch. 1.4.3]

µ(A) = max
1≤i<j≤N

∣∣aT
i aj
∣∣

‖ai‖2 ‖aj‖2
, (3.22)

i. e., it is the largest absolute inner product between any two columns of A. As with the
RIP constant δs, a smaller coherence generally leads to a better recovery performance.

Matrix Construction and Required Number of Samples Constructing explicit matri-
ces that fulfill the RIP and are free of major shortcomings seems to be a hard problem.
Indeed, it remains an open problem to construct explicit matrices that are provably
optimal for CS (regarding s,m, and N) [25, Ch. 1.1]. Luckily, random matrices have
proven to be an effective workaround. The two most popular classes are Gaussian and
Bernoulli matrices. Gaussian matrices are constructed by independently drawing each
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entry from a standard normal distribution, while Bernoulli matrices are built by inde-
pendently drawing each entry from the set {−1, 1}, where either option is drawn with a
probability of 0.5. Matrices from both classes have been shown to satisfy the RIP with
high probability for a certain amount of samples, i. e., for a high enough m. A key result
derived from this fact is that using a Gaussian or Bernoulli matrix, all s-sparse vectors
can be reconstructed using a variety of algorithms if

m ≥ Cs ln(N/s), (3.23)

where C is a constant that is independent of s,m, and N . The above bound is optimal.

In engineering scenarios the structure of the problem often influences or even dictates
the choice of a matrix. An example that appears in many applications is the random
partial Fourier matrix. This matrix is constructed by uniformly selecting a set of m
rows of the N × N discrete Fourier transform (DFT) matrix at random. The random
partial Fourier matrix fits into the category of structured random matrices and while
it is not as well suited for sparse recovery as the fully random Gaussian and Bernoulli
matrices, it constitutes an effective option in situations where the choice of the matrix
is restricted. Given a certain number of rows, the random partial Fourier matrix can be
shown to satisfy the RIP with high probability [25, Ch. 12.6]. Thus, guarantees similar
to (3.23) can be given for this type of matrix.

3.3 Compressed Sensing in Spectrum Sensing

In spectrum sensing there are two instances where high amounts of redundant data
create technical problems. The first one arises when a secondary receiver tries to sense
a band with a very large bandwidth. Sampling a wide band is of great interest to the
secondary system, since the more bandwidth is sensed, the higher the chance of finding
a suitable spectrum hole, i. e., an unused portion of the spectrum. However, obeying
the minimum necessary sampling rate given by the Shannon-Nyquist sampling theorem,
sensing a wide band comes at a great cost to the secondary receiver. This is caused
by the fact that analog-to-digital converters (ADCs) with high sampling rates are both,
high in price and power hungry. Employing compressed sensing, a lot less samples have
to be taken, such that a slower ADC can be used.

The other instance is related to the hidden terminal problem [61, Ch. 14.3.3], which
is illustrated in Figure 3.6. The hidden terminal problem occurs when the PU signal
cannot be detected at the secondary system node which senses the spectrum, but a
secondary system signal would disturb a primary receiver.

To tackle this problem, the secondary system employs a number of geographically dis-
tributed sensors. The risk that none of the sensors is at a location where it can pick up
the PU signal decreases with the number of sensors deployed. The process of finding a
consensus about a channel’s occupancy within the secondary system makes it necessary
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Figure 3.6: Hidden Terminal Problem.

to exchange either measurements or local decisions. In a system sharing measurements,
the spectral resources used for the exchange can be minimized by getting rid of the
redundancy in the data being exchanged by means of compressed sensing.

Given the underutilization of the licensed radio spectrum, the frequency spectrum of a
received wideband signal can be assumed to be only sparsely occupied. This fact can
be exploited when applying compressed sensing to energy detection. Since the number
of periodicities in typical communication signals is small, the cyclic autocorrelation can
realistically be assumed to be sparse, which facilitates the use of compressed sensing
for cyclostationarity detection. In both of the above-mentioned methods, the random
partial Fourier matrix plays a crucial role.
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Although random signals are often modeled as being statistically stationary, more often
than not, this is an incorrect assumption and although many statistical signal pro-
cessing methods work well despite this fact, exploiting non-stationarity can result in
enhanced performance [62] or, as in the case of spectrum sensing, open up whole new
ways of approaching a problem. The underlying assumption of stationary signals is that
the parameters of the signal-generating physical phenomenon do not change over time.
However, in most man-made signals they do. This includes wireless communication
signals since even if the data contained in a modulated signal is a purely stationary
random process, the coupling with sine wave carriers, pulse trains, repeating, spreading,
hopping sequences and cyclic prefixes going along with its modulation causes a built-in
periodicity [41]. If the parameters of the physical phenomenon generating a signal, and
as a consequence also the signal’s statistical properties, vary cyclically with time, the
signal is called cyclostationary. Wireless communication signals fall into this category
and since cyclostationarity allows an SU receiver to discriminate between pure station-
ary noise (H0) and a communication signal contaminated with noise (H1), it is one of
the stochastic features used in spectrum sensing.

In this chapter we consider the problem of blind cyclostationary spectrum sensing. His-
torically, blind operation has not been a feature of cyclostationarity-based algorithms.
Indeed, in many application scenarios the information required for traditional cyclo-
stationarity detection might not be available, hindering its practical applicability. We
propose two new cyclostationary spectrum sensing algorithms that make use of the in-
herent sparsity of the cyclic autocorrelation to make blind operation possible. Along
with utilizing sparse recovery methods for estimating the cyclic autocorrelation, we take
further advantage of its structure by introducing joint sparsity as well as general struc-
ture dictionaries into the recovery process. Furthermore, we extend a statistical test for
cyclostationarity to accommodate sparse cyclic spectra. Our numerical results demon-
strate that the new methods achieve a near constant false alarm rate behavior in contrast
to earlier approaches from the literature.

Parts of the present chapter are contained in [23], which is currently under review.

4.1 Motivation and Prior Work

One of the algorithms exploiting cyclostationarity for the purpose of spectrum sensing is
the so called time-domain test (TDT) as introduced in [15]. The test can decide between
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the presence and absence of cyclostationarity for a pre-specified potential cycle frequency
α. It operates on the cyclic autocorrelation (CA), which, given an observed signal x(t),
is defined as [40]

Rαx(τ) = lim
T→∞

1

T

T/2∫
−T/2

x(t+ τ/2)x∗(t− τ/2)e−j2παt dt (4.1)

for a potential cycle frequency α and a delay τ . For purely stationary signals Rαx(τ) = 0
for all α 6= 0, while for cyclostationary signals Rαx(τ) 6= 0 for some α 6= 0. The α with
non-zero CA coefficients are called cycle frequencies. The set of cycle frequencies caused
by one of potentially multiple incommensurate second-order periodicities in a cyclosta-
tionary signal comprises the periodicity’s fundamental cycle frequency (the reciprocal of
the fundamental period) as well as its harmonics (integer multiples).

Given the above information, we can rewrite the hypothesis test (3.1) as

H0 : ∀{α ∈ R|α 6= 0} : Rαx(τ) = 0,
H1 : ∃{α ∈ R|α 6= 0} : Rαx(τ) 6= 0.

(4.2)

Since the CA is zero on its whole support except the set of cycle frequencies and α = 0,
it can be called sparse. This sparsity can be taken advantage of for the purpose of
estimating the CA employing compressed sensing methods.

Multiple contributions have been made in the field of compressive cyclostationary spec-
trum sensing. The authors of [63] formulate the estimation of the CA as a sparse recovery
problem, which they solve using the OMP algorithm [25, Ch. 3.2]. Based on the sparse
estimate of the CA, they propose two detection algorithms exploiting different CA prop-
erties. The first one, called slot comparison method (SCM), compares the biggest CA
components OMP finds in two consecutive blocks of samples. If for both blocks the
same discrete cycle frequencies are chosen, H1 is selected, otherwise H0 is selected. The
second detection algorithm is called symmetry method (SM). It exploits the fact, that
for certain types of signals, the CA is symmetric around the direct current (DC) compo-
nent. Instead of the CA, the authors of [64] use the spectral correlation (SC), which can
be obtained by Fourier-transforming the CA over τ , for detecting multiple transmitters
in a wideband signal using CS. In order to estimate the SC from compressed samples
via CS, they established a direct linear relation between the compressed samples and
the SC. Based on [64], the authors of [65] derive a method for recovering the SC from
sub-Nyquist samples using a reduced complexity approach, for which they provide a
closed form solution. In [66], the modulated wideband converter (MWC) [67] is used to
obtain the SC from sub-Nyquist samples to then apply cyclostationarity detection.

In this chapter we propose two novel CA estimation algorithms, both of which exploit
further prior information about the CA in addition to its sparsity: the simultaneous
OMP-based (SOber) and the dictionary assisted (Dice) compressive CA estimator. The
first one exploits the joint sparsity of the CA vectors with regard to the time delay in

28



4.2 System Model and Classical CA Estimation

order to recover the CA matrix for all delays simultaneously, while the second one takes
advantage of the signal induced structure of the CA by introducing structure dictionaries
into the recovery process. In order to evaluate the performance of the proposed CA
estimators we derive a closed-form expression of the CA of sampled linearly modulated
signals with rectangular pulse shape. Furthermore, we show how the expression can
be used as prior information in the dictionary assisted approach. Note, that the use of
sparse recovery in the novel CA estimation approaches results in the automatic detection
of a signal’s cycle frequencies. This in turn allows blind spectrum sensing by eliminating
the integral need of the classical TDT for the perfect knowledge of said cycle frequencies.
However, the resulting sparse structure of the compressive CA estimates does not allow
for the application of the traditional TDT since the noise statistics are missing. To
compensate for this phenomenon, we develop a modified TDT and thus enable blind
compressive cyclostationary spectrum sensing. Numerical tests show that the proposed
method achieves a near CFAR behavior.

4.2 System Model and Classical CA Estimation

Consider a secondary system receiver that needs to decide whether a certain spectral
band is occupied or free. It samples the baseband signal x(t) uniformly with a sampling
period Te. This results in the vector of discrete samples xt0 ∈ CN , where

xt0 = [x(t0), x(t0 + Te), . . . , x(t0 + (N − 1)Te)]
T. (4.3)

We assume the vector xt0 is discrete and zero-mean and due to the nature of man-made
signals it represents an (almost [68, Ch. 1.3]) cyclostationary process [15]. The presence
of stochastic periodicity in the samples and thus the presence of a man-made signal can
be revealed by applying a detection algorithm such as the TDT to the CA of the samples.
There are different ways of obtaining the CA from the baseband samples, one of which
is the following (classical) estimator

R̂ax,t0(ν) =
1

N

N−1−ν∑
n=0

x(t0 + nTe)x
∗(t0 + (n+ ν)Te)e

−j2π a
N
ne−jπ

a
N
ν . (4.4)

Evaluating this function results in the CA coefficient for the cycle frequency α = a
NTe

and
the time-delay τ = νTe, where a stands for the discrete cycle frequency and ν denotes
the discrete time delay. Note that the factor e−jπ

a
N
ν remains constant throughout the

sum. It is a phase shift necessary to maintain compatibility with the symmetric CA
(4.1). The estimator (4.4) is biased but exhibits a smaller estimation variance than an
unbiased one [15].

We define the CA vector as

r̂νx = [R̂0
x,t0(ν), . . . , R̂N−1

x,t0
(ν)]T. (4.5)
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Subsequently, we rewrite the estimation of the CA vector as a matrix-vector product.
To do so, we need the (N element) delay-product with time-delay τ = νTe, which is
given by

yνN = xt0 ◦ x∗t0+νTe , (4.6)

where ◦ denotes component-wise multiplication. Note that since the receiver only takes
N samples, x∗t0+νTe

is zero-padded at the end. The CA vector is now given by

r̂νx =
1

N
FNyνN , (4.7)

where FN denotes the (N × N) DFT matrix. Finally, the CA matrix for time-delays
ν1Te, . . . , νnνTe is given by

R̂x = [r̂ν1x , . . . , r̂
νnν
x ] =

1

N
FNYN , (4.8)

with YN = [yν1N , . . . ,y
νnν
N ].

4.3 The Time-Domain Test for Cyclostationarity

As mentioned in Section 4.1, the statistical CA of a cyclostationary signal is sparsely
occupied, containing spikes only at the DC component as well as the cycle frequencies
of inherent signal periodicities and their harmonics. Thus, given the statistical CA, one
could decide between H0 and H1 by testing it for being non-zero at the signal’s inherent
cycle frequencies. However, instead of the statistical CA, we only have access to its
estimation, the sample CA (which asymptotically converges to the statistical CA). The
coefficients of the sample CA are not constant but rather follow different probability
distributions, depending on whether H0 or H1 is true. In the seminal work [15], these
probability distributions have been identified and a test for cyclostationarity based on
this knowledge has been designed. The test is briefly described in the following.

Consider the 1× 2nν vector

r̂xx∗(a0)=
[
Re
{

R̂x[a0, ν1]
}
,. . .,Re

{
R̂x[a0, νnν ]

}
,

Im
{

R̂x[a0, ν1]
}
,. . .,Im

{
R̂x[a0, νnν ]

}]
,

(4.9)

which represents the concatenation of the real and the imaginary part of the row of R̂x

corresponding to the discrete cycle frequency a0. The frequency a0 is the cycle frequency
of interest, i. e., the one for the presence of which we want to test the signal. Given this
vector, we can formulate the following non-asymptotic hypotheses

H0 : r̂xx∗(a0) = εxx∗(a0),
H1 : r̂xx∗(a0) = rxx∗(a0) + εxx∗(a0),

(4.10)
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4.3 The Time-Domain Test for Cyclostationarity

where rxx∗(a0) is the deterministic but unknown asymptotic counterpart of r̂xx∗(a0) and
εxx∗(a0) is the estimation error. Note that in contrast to the hypotheses from equation
(4.2), this formulation considers the presence of cyclostationarity in the received signal
for one fixed cycle frequency a0.

Since rxx∗(a0) is nonrandom, the distribution of r̂xx∗(a0) under H0 and H1 only differs in
mean. As shown in [15], the estimation error εxx∗(a0) asymptotically follows a Gaussian
distribution, i. e.,

lim
N→∞

√
Nεxx∗(a0)

D
= N (02nν ,Σxx∗(a0)), (4.11)

where Σxx∗(a0) is the statistical covariance matrix of r̂xx∗(a0) and
D
= denotes convergence

in distribution. The covariance matrix can be computed as [15]

Σxx∗(a0) =

 Re
{

Q+Q∗

2

}
Im
{

Q−Q∗
2

}
Im
{

Q+Q∗

2

}
Re
{

Q∗−Q
2

}  , (4.12)

where the (m,n)-th entries of the matrices Q and Q∗ are given by

[Q]mn = SyνmN yνnN
(2a0, a0) (4.13)

and
[Q∗]mn = S∗yνmN yνnN

(0,−a0), (4.14)

respectively. The term SyνmN yνnN
(·, ·) denotes the unconjugated, while S∗

yνmN yνnN
(·, ·) de-

notes the conjugated cyclic spectrum of a signal. One way to estimate these is to
determine the following frequency-smoothed periodograms:

ŜyνmN yνnN
(2a0, a0) = 1

NL

L−1
2∑

s=−L−1
2

W (s)R̂x[a0 − s, νn]R̂x[a0 + s, νm] (4.15)

Ŝ∗
yνmN yνnN

(0,−a0) = 1
NL

L−1
2∑

s=−L−1
2

W (s)R̂∗x[a0 + s, νn]R̂x[a0 + s, νm], (4.16)

where W is a normalized spectral window of odd length L. Looking at the equations
(4.15) and (4.16), it becomes clear why the cyclic spectrum is often referred to as the
spectral correlation (SC). Note, that there are different ways of obtaining the SC, one
of which are the above expressions. It can also be determined by Fourier-transforming
the CA over the time-delay ν (or τ depending on whether the discrete-time or the
continuous-time CA is used).

Given the estimated quantities described above, the following generalized likelihood ratio
(GLR) test statistic can be derived [42]

Txx∗ = N r̂xx∗(a0)Σ̂−1
xx∗(a0)r̂T

xx∗(a0). (4.17)
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4 Cyclostationarity Detection

The test statistic can be interpreted as a normalized energy. The inverse of the co-
variance matrix scales r̂xx∗(a0) such that under H0 its entries follow a standard normal
distribution. Thus, under H0, the test statistic asymptotically follows a central chi-

squared distribution with 2nν degrees of freedom, i. e., lim
N→∞

Txx∗
D
= χ2

2nν , while under

H1, the test statistic asymptotically follows a non-central chi-squared distribution with

unknown non-centrality parameter λ, i. e., lim
N→∞

Txx∗
D
= χ2

2nν (λ). Based on the above test

statistic we can design a CFAR detector with some false alarm rate Pfa by finding the
corresponding decision threshold in the χ2

2nν tables. We cannot design a test based on
a desired detection rate Pd, since although rxx∗(a0) is deterministic, it depends on the
type of signal emitted by the transmitter as well as the SNR at the receiver, both of
which are assumed to be unknown.

The classical approach for cyclostationary spectrum sensing is to apply the TDT to the
CA estimate from (4.4). However, to do so one needs to know which cycle frequency to
test beforehand, which eliminates the possibility of true blind spectrum sensing. One
could sequentially test the received signal for all possible cycle frequencies. However,
with high probability the estimation noise at some cycle frequency would have a value
above the decision threshold, leading to a false alarm.

4.4 Simultaneous OMP CA Estimation

In this section we cast the CA estimation as a joint sparse recovery problem. Since this
method is able to detect the CA’s support, it removes the traditional approach’s require-
ment of knowing the cycle frequencies beforehand, thus making truly blind cyclostation-
arity-based spectrum sensing possible.

We begin by rewriting equation (4.8) as

YN = NF−1
N R̂x, (4.18)

where F−1
N is the (N × N) inverse discrete Fourier transform (IDFT) matrix. Now

consider an m × N matrix M, which consists of a selection of m rows of the N × N
identity matrix IN . It represents the undersampling operation. Applying M to (4.18),
we get

Ym = MYN = NMF−1
N R̂x, (4.19)

where Ym contains a selection of m coefficients of the delay-products for different delays.
We now want to recover R̂x from Ym by solving the underdetermined inverse problem
(4.19). To do so we exploit our knowledge about the CA’s sparsity.

The straightforward solution would be to solve the following optimization problem

min
∥∥∥vec

{
R̂x

}∥∥∥
0

s.t. Ym = NMF−1
N R̂x,

(4.20)
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4.4 Simultaneous OMP CA Estimation

where ‖·‖0 denotes the `0-“norm” [50], which is the number of non-zero entries in a vector,
and vec{·} stands for the vectorization of a matrix, i. e., the concatenation of its columns
to a single vector. Equation (4.20) is known to be a non-convex combinatorial problem
[50]. One way to solve it within a practically feasible amount of time is to substitute
the `0-“norm” by its tightest convex relaxation, the `1-norm. With high probability,
this produces the same result since for most large underdetermined systems of linear
equations the minimal `1-norm solution is also the sparsest solution [54]. Another way
of solving (4.20) efficiently is applying one of the many greedy sparse recovery algorithms
that have been developed in the field of CS, such as, e. g., orthogonal matching pursuit
(OMP).

OMP (cf. Algorithm 1 in Section 3.2.2) is a greedy algorithm that iteratively determines
a vector’s support from an underdetermined system of linear equations and subsequently
recovers the vector by solving a least-squares problem. Using it, we could solve (4.20)
for each column of R̂x individually (as in [63]), i. e., we could solve

min ‖r̂νx‖0
s.t. yνm = NMF−1

N r̂νx,
(4.21)

for each ν. In order to exploit the additional knowledge that the vectors r̂νx|
νnν
ν=ν1

have
the same support (they are jointly sparse with regard to the time delay), we propose
to use an extension of OMP called simultaneous orthogonal matching pursuit (SOMP)
[69]. The CA estimation based on SOMP is given in Algorithm 2.

Algorithm 2: SOMP-based CA estimator (SOBER)

Input: Ym, niter,A = NMF−1
N

Output: R̂x

1 R̂x = 0, S0 = ∅;
2 for i = 1, . . . , niter do

3 C = (Ym −AR̂x)HA;
4 Si = Si−1 ∪ argmax

j∈{1,...,N}

{
‖cj‖1

}
;

5 for k = 1, . . . , nν do
6 r̂νkx = argmin

z∈CN
{‖yνkm −Az‖2 , supp (z) ⊂ Si};

The number of iterations is denoted by niter, the nν ×N matrix C contains correlation
values and cj is its j-th column, yνkm denotes the k-th column of Ym and supp (·) stands
for the support of a vector, i. e., the indices of its non-zero entries. We refer to the
columns of the matrix A = NMF−1

N introduced in Algorithm 2 as atoms.

Since asymptotically, R̂x has only few rows with non-zero entries, up to a certain
residuum the columns of Ym should be representable by a weighted combination of
only few of the atoms contained in A. The goal of the algorithm is to find the indices

33



4 Cyclostationarity Detection

of the atoms contained in Ym, i. e., the support of the columns of R̂x, and subsequently
recover the identified non-zero rows of R̂x by solving least-squares problems. We start
with an empty support S0. Each iteration, one atom index is added to the support. The
index is selected according to the sum of the absolute correlation values between the
corresponding atoms and the delay products of different time delays (lines 3-4). Using
the new support set Si, a least-squares problem is solved for each column in R̂x (lines
5-6). In each iteration the atom index to be added to the index set is chosen according
to the correlation between the residuum of Ym and the atom set. Since every iteration
adds one index to the support set, one usually chooses niter greater than or equal to
the sparsity of the signal to be recovered. The difference between OMP (used in, e. g.,
[63]) and SOMP can be found in line 4, where SOMP jointly considers the amount of
correlation between atoms and the delay products of multiple delays, while OMP would
select the support of r̂νlx |

nν
l=1 for each l individually.

The support determined by the algorithm constitutes a set of cycle frequencies. To
determine the observed band’s occupancy status, we need to test for the presence of cy-
clostationarity at the support using the TDT. However, since only few of the coefficients
of R̂x are recovered and all other coefficients are set to zero, it is not possible to estimate
the covariance matrix Σ̂xx∗ as part of the TDT as presented in Section 4.3. To tackle
this problem, a modified TDT is presented in Section 4.7.

4.5 Dictionary Assisted CA Estimation

In Section 4.4 we have described a SOMP-based algorithm that estimates the cycle
frequencies and the CA from fewer samples than required using the classic approach by
taking into consideration the inherent sparsity of the CA. In this section we develop
an algorithm that makes use of additional prior knowledge about the signal’s structure
in the form of structure dictionaries to further enhance the cycle frequency and CA
estimation. Like SOBER, the new algorithm does not require the prior knowledge about
the cycle frequencies contained in the signal.

One fact about the CA that could be exploited is that using a rectangular pulse shape,
a linearly modulated signal’s CA exhibits spikes not only at the signal’s fundamental
cycle frequency but also at the harmonics thereof. Another one is the symmetry of the
CA around the DC component for certain types of signals. First steps in this direction
showing promising results have been taken in [19]. The drawback of the solution pro-
posed in [19] is that the convex optimization problem used to recover the CA becomes
huge for practical parameter choices, which results in a prohibitively large computational
complexity. To circumvent this we propose an OMP-based greedy algorithm that takes
advantage of the additional prior knowledge while featuring a much smaller complexity
than the optimization problem. In the following we introduce a structure dictionary
accounting for the symmetry of the CA and describe the proposed dictionary assisted
recovery algorithm. In the subsequent section we discuss a second structure dictionary
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4.5 Dictionary Assisted CA Estimation

that can be used with the proposed algorithm, i.e., the dictionary containing the har-
monic structure of the CA as well as its shape.

Let D
(N
2

)
sym ∈ {0, 1}

N
2
×N

2 denote the symmetry dictionary. Its columns represent possible
cycle frequencies contained in the set a ∈ {1, . . . , N2 }. For simplicity, this set is chosen
such that the frequencies contained in it lie at the center frequencies of the CA’s DFT
bins. An entry of the dictionary covers the elements 1 to N

2 of r̂νx which is indexed
from 0 to N − 1. The symmetry dictionary is simply given by the identity matrix, i. e.,

D
(N
2

)
sym = IN

2
. To model the whole vector r̂νx, the dictionary is extended to include the

DC component, which is set to zero, as well as the negative cycle frequencies. Note
that the DC component is set to zero because its value is independent of the presence
of cyclostationarity. The resulting full dictionary is exemplarily given by

D̊
(3)
sym =



0 0 0
1 0 0
0 1 0
0 0 1
0 1 0
1 0 0

 . (4.22)

The circle above the symbol indicates that it is the full version of the dictionary, i. e., the
one spanning the whole frequency range. The ones in the matrix specify the locations
of the non-zero coefficients in the CA fitting the format of (4.8).

Algorithm 3: Dictionary assisted CA estimator (DICE)

Input: Ym, niter,A = NMF−1
N , D̊

(N
2

)

l |nνl=1

Output: R̂x

1 R̂x = 0, S0 = {0};
2 for i = 1, . . . , niter do
3 for l = 1, . . . , nν do

4

[
C̊
]
l:

= abs
(
(yνlm −Ar̂νlx )HA

)
D̊

(N
2

)

l ;

5 Si = Si−1 ∪

h
∣∣∣∣∣∣[D̊(N

2
)
]hj 6= 0, j = argmax

j∈{1,...,N
2
}

{
‖̊cj‖1

};

6 for k = 1, . . . , nν do
7 r̂νkx = argmin

z∈CN
{‖yνkm −Az‖2 , supp (z) ⊂ Si};

The DICE algorithm (Algorithm 3) follows the same idea as the SOBER algorithm
(Algorithm 2) in that it iteratively determines the support of the sparse CA and sub-
sequently recovers it by solving an overdetermined least-squares problem. However, in
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4 Cyclostationarity Detection

contrast to SOBER, DICE facilitates the use of further prior knowledge in addition to
the CA’s sparsity in the recovery process.

Thus, in addition to the inputs received by SOBER, DICE needs a set of structure

dictionaries D̊
(N
2

)

l |nνl=1; one dictionary for each delay value νl that is to be considered in
the recovery process. In the case of the symmetry dictionary, all of these are identical,

i. e., D̊
(N
2

)

l |nνl=1 = D̊
(N
2

)
sym . Since the structure dictionaries do not necessarily model the

DC component of the CA, it is added to the support set in the initialization phase in
DICE (line 1). Instead of working with the amount of correlation between the residuum
and the atoms directly as in SOBER, the DICE algorithm computes combinations of
these as dictated by the structure dictionaries in use (lines 3, 4). This way, the decision
about the non-zero cycle frequencies (line 5) takes into account the structure of the
CA. Additionally, instead of adding a single element to the support set per iteration,
Algorithm 3 adds all indices to the support set that have a non-zero value in the selected
dictionary word. The recovery step (cf. lines 6, 7) remains unchanged. Note that in
Algorithm 3 the abs(·) operator stands for the element-wise absolute value of a matrix,
while the selection operator [·]l: denotes the l-th row of a matrix.

4.6 Asymptotic CA and Asymptotic Dictionary

The symmetry structure dictionary exploits one of the facts we know about the CA of
certain types of signals. In order to explore an extreme in terms of prior knowledge
we create a dictionary that contains the maximum possible amount of prior information
about the CA, i. e., the one containing the asymptotic CA itself. This requires knowledge
of the analytic expression for the discrete asymptotic CA vector, which we derive in the
following.

To assess the performance of different CA estimation algorithms we employ common
linearly modulated signals with symbol length Ts as described by the following equation
[40, Eq. 73]

s(t) =
∞∑

n=−∞
cnp (t− nTs + φ) . (4.23)

Here, p (t) is a deterministic finite-energy pulse, φ represents a fixed pulse-timing phase
parameter and cn stands for the n-th symbol to be transmitted. We are now interested
in an expression for the discrete asymptotic CA vector of the above signal type.

The fundamental cycle frequency of the built-in periodicity of the signal from (4.23) is
1
Ts

. Its continuous CA is given by [40, Eq. 81]

Rαs,Ts(τ) =


0 for α 6= k

Ts

1
Ts

∞∑
n=−∞

Rc(nTs)r
α
p (τ − nTs)ej2παφ otherwise,

(4.24)
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where k ∈ Z and rαp (τ) is defined as [40, Eq. 82]

rαp (τ) ,

∞∫
−∞

p (t+ τ/2) p∗ (t− τ/2) e−j2παt dt. (4.25)

The symbol Z denotes the set of integers, i. e., k ∈ {. . . , −2, −1, 0, 1, 2, . . . }.

We consider the case where cn is a purely stationary random sequence. Thus, its au-
tocorrelation Rc(nTs) = R0

c(nTs) is non-zero only at n = 0 (cf. (4.1)), reducing (4.24)
to

Rαs,Ts(τ) =

{
0 for αTs /∈ Z
σ2
c
Ts
rαp (τ)ej2παφ otherwise,

(4.26)

where σ2
c is the average power of cn. In the following we assume a rectangular pulse shape

of length Ts, i. e., p (t) = rect( t
Ts

), which leads to p
(
t+ τ

2

)
p∗
(
t− τ

2

)
= rect

(
t

Ts−|τ |

)
.

Thus, applying the Fourier transform to (4.25) yields

Rαs,Ts(τ) =

{
0 for αTs /∈ Z
σ2
c
Ts−|τ |
Ts

sinc(α(Ts − |τ |))ej2παφ otherwise,
(4.27)

for |τ | ≤ Ts. We use the normalized version of the sinc function, i. e.,

sinc(x) =
sin(πx)

πx
. (4.28)

Note that the use of the absolute value of the delay stems from the fact that for a real
symmetric pulse shape p (t), the expression p

(
t+ τ

2

)
p∗
(
t− τ

2

)
is symmetric with respect

to τ .

Equation (4.27) represents the CA of the continuous-time signal described by (4.23).
In the following we derive the CA of the sampled version of (4.23), i. e., the discrete
asymptotic CA.

The relation between the CA of the continuous time-domain signal s(t) and its sampled
counterpart {s(nTe)} is given by [70, Ch. 11, Sec. C, Eq. 111]

R′
α
s,Ts(νTe) =

∞∑
l=−∞

R
α+ l

Te
s,Ts

(νTe)e
jπlν . (4.29)

The sum over l reflects the infinite aliasing caused by the sampling. In the next step,
we insert (4.27) into (4.29). Also we express quantities in terms of the sampling period
Te, i. e., Ts → nsTe, α→ a

NTe
, φ→ dφTe, with ns, a,N ∈ Z. This leads to

R′
a
s,ns(ν) =


0 for a 6= kN

ns

σ2
c
ns−|ν|
ns

ej2π
a
N
dφ

∞∑
l=−∞

ejπlν

·ej2πldφ sinc(( aN + l)(ns − |ν|)) otherwise,

(4.30)
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for |ν| ≤ ns, where ns is the oversampling factor.

In this step we used the fact that for our assumptions all aliases of the fundamental
cycle frequency and its harmonics lie on top of the actual fundamental cycle frequency
and its harmonics, i. e.,

(α+
l

Te
)Ts ∈ Z iff αTs ∈ Z. (4.31)

Inserting the discrete quantities given above, we get

(
a

N
+ l)ns ∈ Z iff

a

N
ns ∈ Z. (4.32)

Since ns ∈ Z and l ∈ Z, this always holds.

To rule out any spectral leakage, we choose N as an integer multiple of ns, since then
a = k Nns is also an integer and thus the fundamental discrete cycle frequency and its
harmonics hit center frequencies of frequency bins.

For a = k Nns expression (4.30) can be shown to be

R′
a
s,ns(ν)

∣∣
a=k N

ns

= σ2
c

sin(π a
N (ns − |ν|))
πns

ej2π
a
N
dφ

∞∑
l=−∞

(−1)l

a
N + l

. (4.33)

To obtain (4.33) we used the definition of the sinc and exploited the fact that

ejπk = (−1)k for k ∈ Z (4.34)

as well as the fact that

sin(x+ kπ) = (−1)k sin(x) for k ∈ Z. (4.35)

The pulse timing phase parameter dφ was set to ns+1
2 . This has the following reason. In

order to simplify the numerical evaluation, we want to choose φ such that the beginning
of the observed receiver signal is aligned with the rectangular pulse shapes, i. e., we would
set φ = Ts

2 . However, doing so would lead to the need to sample at the discontinuities
caused by the instant change in amplitudes at the transition between symbols. To avoid
this we choose φ = Ts

2 + ε, where ε ∈ (0, Te). Note, that (4.33) is the same for any

ε ∈ (0, Te). In order to ease the derivation we can thus choose ε = Te
2 , i. e., dφ = ns+1

2 .
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The infinite series in (4.33) can be expressed as

∞∑
l=−∞

(−1)l

a
N + l

=
N

a
+
∞∑
l=1

(−1)l

a
N + l

+
(−1)l

a
N − l

=
N

a
+

1

2

∞∑
l=1

− 1

l + a
2N −

1
2

+
1

l − a
2N −

1
2

− 1

l − a
2N

+
1

l + a
2N

=
N

a
+

1

2

∞∑
l=1

−
l + a

2N −
1
2 −

a
2N + 1

2

l(l + a
2N −

1
2)

+
l − a

2N −
1
2 + a

2N + 1
2

l(l − a
2N −

1
2)

−
l − a

2N + a
2N

l(l − a
2N )

+
l + a

2N −
a

2N

l(l + a
2N )

=
N

a
+

1

2

∞∑
l=1

a
2N −

1
2

l(l + a
2N −

1
2)
−

− a
2N −

1
2

l(l − a
2N −

1
2)

+
− a

2N

l(l − a
2N )
−

a
2N

l(l + a
2N )

.

(4.36)

The digamma function, denoted by ψ(z), possesses a series expansion given by [71, Eq.
6.3.16]

ψ(1 + z) = −γ +
∞∑
n=1

z

n(n+ z)
for z /∈ {−1, −2, −3, . . . }, (4.37)

where γ denotes the Euler-Mascheroni constant. We can thus simplify (4.36) by express-
ing it in terms of the digamma function as

∞∑
l=−∞

(−1)l

a
N + l

=
N

a
+

1

2

(
ψ

(
1

2
+

a

2N

)
− ψ

(
1

2
− a

2N

)
+ψ

(
1− a

2N

)
− ψ

(
1 +

a

2N

))
.

(4.38)

The reflection formula of the digamma function is given by [71, Eq. 6.3.7]

ψ(1− z)− ψ(z) = π cot(πz). (4.39)

Applying it we can write

ψ

(
1

2
+

a

2N

)
− ψ

(
1

2
− a

2N

)
= ψ

(
1−

(
1

2
− a

2N

))
− ψ

(
1

2
− a

2N

)
= π cot

(
π

(
1

2
− a

2N

)) (4.40)

The recurrence formula of the digamma function is given by [71, Eq. 6.3.5]

ψ(1 + z) = ψ(z) +
1

z
. (4.41)
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Using the recurrence as well as the reflection formula we obtain

ψ
(

1− a

2N

)
− ψ

(
1 +

a

2N

)
= ψ

(
1− a

2N

)
− ψ

( a

2N

)
− 2

N

a

= π cot(π
a

2N
)− 2

N

a
.

(4.42)

Inserting (4.40) and (4.42) into (4.38) results in

∞∑
l=−∞

(−1)l

a
N + l

=
1

2
π

(
cot

(
π

(
1

2
− a

2N

))
+ cot

(
π
a

2N

))
=

1

2
π
(

tan
(
π
a

2N

)
+ cot

(
π
a

2N

))
=

π

sin
(
π a
N

) .
(4.43)

Finally, substituting (4.43) into (4.33) gives us the expression

R′
a
s,ns(ν)

∣∣
a=k N

ns

=
σ2
c

ns

sin(π a
N (ns − |ν|))

sin
(
π a
N

) ej2π
a
N
dφ , (4.44)

which constitutes the CA of the sampled signal at its fundamental cycle frequency and
the harmonics thereof.

The coefficients of the closed-form expression (4.44) together with the alternative case
R′as,ns(ν)

∣∣
a6=k N

ns

= 0 at different discrete cycle frequencies a are arranged in a vector

rνs,ns [a] matching the format of the DFT matrix, such that

rνs,ns [a] =

{
R′as,ns(ν) for a ∈ {0, . . . , N2 },
R′(a−N)

s,ns (ν) for a ∈ {N2 + 1, . . . , N − 1}.
(4.45)

Note, that adding purely stationary noise to the signal s(t) does not change its asymp-
totic CA (with the exception of (a, ν) = (0, 0), at which point the CA’s value is the
average power of signal and noise, cf. (4.1)) since the noise exhibits no inherent peri-
odic behavior. Due to this fact, (4.45) can also be used as a reference for the CA of
signals contaminated with additive white Gaussian noise (AWGN) with the exception
mentioned.

Given (4.45) we can now construct the asymptotic dictionary:

D̊
(N
2

)

asy,l =

abs

(
rνl
s,ns=

N
1

)
∥∥∥∥rνls,ns=N

1

∥∥∥∥
1

, . . . ,

abs

(
rνl
s,ns=

N
N/2

)
∥∥∥∥rνls,ns= N

N/2

∥∥∥∥
1

 . (4.46)

Note, that in contrast to the single symmetry dictionary, there is a whole set of asymp-
totic dictionaries, one for each delay value of interest. The columns of the dictionaries
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4.7 Cyclostationarity Detection from Sparse Cyclic Spectra

correspond to actual symbol lengths, i. e., actual cycle frequencies. Thus, each column
contains the absolute value of the normalized asymptotic CA of a cycle frequency can-

didate where the discrete symbol lengths ns ∈
{
N
1 , . . . ,

N
N/2

}
correspond to the discrete

cycle frequencies a ∈ {1, . . . ,N/2}. It is worth noting that in addition to its role as the
basis of the second structure dictionary for Algorithm 3, the expression (4.45) serves as
a reference for the direct comparison of different CA estimation methods in Section 4.8.

4.7 Cyclostationarity Detection from Sparse Cyclic Spectra

Both, the SOMP-based (Algorithm 2) and the dictionary assisted CA estimation (Al-
gorithm 3), are able to recover the CA without knowing which cycle frequencies are
contained in the signal beforehand. However, although this makes for a good CA esti-
mation, it is not directly compatible with the traditional TDT described in Section 4.3,
since it only recovers the CA coefficients at the cycle frequencies, not the ones in between.

The TDT is a CFAR detector, i. e., the PDF of its test statistic under H0 is asymp-
totically independent of any signal parameters like, e. g., the noise power. To achieve
this, the TDT first estimates the CA noise covariance and then rescales the original CA
by this estimate so that the scaled CA follows a standard Gaussian distribution. This
is where the problem occurs. Although, we are ultimately only interested in the CA
coefficients that are located at the signal’s cycle frequencies, for the estimation of the
noise covariance we need the coefficients lying between the cycle frequencies, which only
carry estimation noise. SOBER and DICE do not recover these. Thus, we propose an
extension to the TDT, the sparse TDT, to bridge this gap, in the following.

To obtain optimal CA recovery performance one would choose the sensing matrix A
with minimum structure, i. e., the selection of the m entries of the delay product would
be completely random. However, to tackle the aforementioned problem we choose a
combination of consecutive and random delay product elements. The consecutive part
comprises the first dβme rows of Ym, where β ∈ [0.01, 0.5] and d·e denotes the ceiling
operation. The remainder of the rows of Ym is a random selection of the remaining rows
of YN . The first step of the sparse TDT is to determine the classical CA estimation of
the consecutive block of delay product elements. In the next step the cycle frequency of
interest a0 is determined using either Algorithm 2 or Algorithm 3. Next, the covariance

matrix for the cycle frequency a0 corresponding to the N -size CA
(
Σ̂

(N)
xx∗ (a0)

)
needs to

be determined, where the superscript (N) indicates the corresponding CA size. It is
obtained as

Σ̂
(N)
xx∗ (a0) =

Σ̂
(dβme)
xx∗ (dβmN a0e)√

βmN
, (4.47)

where Σ̂
(dβme)
xx∗ is the covariance matrix corresponding to the dβme-size CA estimated

from the consecutive samples in the first step. The test statistic is subsequently evaluated
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4 Cyclostationarity Detection

Table 4.1: Parameters

Parameter Symbol Value(s)

Size of the CA vector - CS methods N 4000
# of known delay-product elements m 1000
Size of the CA vector - classic method m 1000
Discrete time delays ν {1, 2, 3, 4}
Modulation type BPSK
Discrete symbol length ns 8
Signal to noise ratio SNR {−4, . . . , 4} dB
# of Monte Carlo instances 10000
Consecutive sample ratio β {0.01, . . . , 0.5}
Covariance estimation window type W Kaiser
Kaiser window parameter αKaiser 10
Kaiser window length L 201

as (cf. (4.17))

T sparse
xx∗ =N r̂xx∗(a0)

(
Σ̂

(dβme)
xx∗ (dβmN a0e)√

βmN

)−1

r̂T
xx∗(a0). (4.48)

The consecutive sample ratio β is a trade-off parameter. The optimal sparse recovery
performance is to be expected for the case that A = NMF−1

N has the smallest possible
amount of structure, which here corresponds to the case where the set of known delay
product elements is chosen completely at random, i. e., for β = 0. Contrarily, the best
estimation quality for the CA covariance matrix Σ̂xx∗ is achieved when all known delay
product elements are consecutive, i. e., for β = 1.

4.8 Numerical Evaluation

In this section we compare the performance of the methods presented in the preceding
sections. The parameters used throughout this section are given in Table 4.1.

We begin by investigating the influence of the consecutive sample ratio β on the spectrum
sensing performance. Figure 4.1 shows how the detection rate changes with β for an SNR
of 0 dB and different false alarm rates. For all methods but the OMP, β = 0.15 is a
good choice according to our numerical results. For the OMP the detection rate increases
monotonically with β. However, as we can see below, even for the OMP, a high value for
β is no good choice regarding other performance categories. Figure 4.2 and Figure 4.3
reinforce the choice of β. The choice of β seems to be independent of the SNR.
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Figure 4.1: Detection rate over consecutive sample ratio for different false alarm rates at
0 dB SNR.
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Figure 4.2: Detection rate over consecutive sample ratio for different false alarm rates at
−3 dB SNR.
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Figure 4.3: Detection rate over consecutive sample ratio for different false alarm rates at
3 dB SNR.
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Figure 4.4: Maximum detection rate (optimal individual consecutive sample ratio selec-
tion) over SNR for different false alarm rates.
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Figure 4.5: False alarm rate that has to be selected according to the chi-squared distribu-
tion to obtain different actual false alarm rates over the consecutive sample
ratio.
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Figure 4.6: Left: Hitrate over SNR (in percent), right: absolute index error over SNR.
Both at consecutive sample ratio 0.15.
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sample ratio 0.15.
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In Figure 4.4 the best achievable detection rate, i. e., the detection rate for the individual
best choice of β, of the different detectors is plotted over the receiver SNR for different
false alarm rates. The term oracle expresses that a method has prior knowledge about
the exact cycle frequencies contained in the signal. The classic method depends on this
knowledge while for the sparse recovery, it reduces the CA recovery to solving the overde-
termined least squares problem for the given support (cf. lines 5 and 6 in Algorithm 2 or
lines 6 and 7 in Algorithm 3). As expected, the oracle methods outperform the methods
which have to determine the CA support themselves by a large margin. Regarding the
case of missing support knowledge, the DICE algorithm clearly outperforms the SOBER
algorithm as well as OMP. It is to be noted that both, Figure 4.1 as well as Figure 4.4
do not show a significant performance advantage of exploiting the full knowledge of the
asymptotic CA (DICE (asy)) over just exploiting its symmetry property (DICE (sym))
for a sensible choice of β.

The lines in Figure 4.5 show which false alarm rate according to the ideal chi-squared
distribution has to be set in order to achieve 1, 3, 5, and 10 percent false alarm rate in
the actual system. The dashed lines cross at the desired false alarm rate with β = 0.15.
While the two DICE methods roughly keep within a one percent offset, OMP and SOBER
show a decreasing degree of equivalence for an increasing false alarm rate. This indicates
that using the chi-squared distribution for setting the decision threshold of the DICE
algorithm is viable, which is an important observation. It means that in contrast to
many other spectrum sensing algorithms, DICE approximately possesses a desirable
feature called constant false alarm rate, i. e., its test statistic is independent of system
parameters like the receiver noise power.

Figure 4.6 shows how well the support of the CA is recovered by the different methods.
Since different types of communication signals feature different cycle frequencies, this
information can be used for system identification. The hitrate is the chance of exactly
recovering the correct support while the absolute index error is the mean recovery error
in terms of CA bins. Obviously, the DICE methods have superior support recovery
capabilities.

The final performance category we evaluate is the CA estimation quality achievable by
sparse recovery methods measured by the mean squared error (MSE). In the left graph
of Figure 4.7 the MSE over the whole CA is plotted while the right graph shows the MSE
at the spikes of the CA, i. e., the MSE at the actual cycle frequencies. To determine
the error, we use the analytic expression for the asymptotic CA vector as derived in
Section 4.6, i. e., the MSE is defined as

‖R̂x −
[
rν1s,ns , . . . , r

νnν
s,ns

]
‖2F

Nnν
, (4.49)

where ‖ · ‖F is the Frobenius norm. The sparse recovery method has a much lower
overall MSE. This is caused by the fact that it sets all CA coefficients but the detected
support to zero while the classical method results in a CA that features estimation noise
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4 Cyclostationarity Detection

between the spikes. Regarding the spike MSE, both methods seem to perform roughly
equivalently.

4.9 Conclusion

Blind operation and constant false alarm rate (CFAR) are desirable characteristics of
spectrum sensing algorithms. Unfortunately, cyclostationarity-based approaches typi-
cally only feature either one or the other. We showed that this can be changed by using
sparse recovery methods in the CA estimation. Subsequently, we developed a way to use
further prior knowledge in addition to sparsity for superior CA estimation. We derived a
closed-form expression of the CA of sampled linearly modulated signals with rectangular
pulse shape to be used both as prior information for the CA estimation and as a reference
for comparison. Finally, we extended a well known statistical test for cyclostationarity
to accommodate sparse input. The results allow us to conclude that the proposed DICE
algorithm in combination with the symmetric structure dictionary constitutes a viable
alternative to the classical TDT for the case of missing prior information about the cycle
frequencies contained in the signal.
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5 Eigenvalue-Based Detection

Under the assumption that a sensor’s received noise samples are i.i.d. with respect to
time and that the noise experienced at different receivers is statistically independent
of each other, the corresponding statistical covariance matrix contains only zero entries
outside of its diagonal, while all diagonal entries contain the noise power. This, in
turn, leads to the case where all eigenvalues of the covariance matrix have the same
value. This property is exploited in the category of spectrum sensing algorithms called
eigenvalue-based detection.

The idea is that while all eigenvalues have the same value when only i.i.d. noise is sensed,
the eigenvalues are different if a PU signal is present in addition to the noise. This is
true for both cases, the case where correlation between samples from different points in
time at a single receiver are considered and the case where synchronized measurements
from different receivers are under investigation.

Based on this premise, a rich literature has evolved, originating in the maximum-
minimum-eigenvalue (MME) detector [16]. While the MME detector is based on the
ratio between the largest and the smallest eigenvalue of the covariance matrix, i. e., its
(standard) condition number, all kinds of different functions of the matrix’s eigenvalues
have been analyzed.

In this chapter we investigate how realistic the i.i.d. assumption of the receiver noise is
and how important it is for the proper functioning of the MME detector. Furthermore,
we propose two new eigenvalue-based test statistics for spectrum sensing and compare
them to the most popular eigenvalue-based detectors.

Parts of the present chapter have been published in [20]. Other parts of the chapter are
contained in [24], which is currently under review.

5.1 Model Uncertainties and SNR-Walls

Various spectrum sensing approaches have been shown to suffer from a so-called SNR-
wall, an SNR value below which a detector cannot perform robustly no matter how
many observations are used. Up to now, the eigenvalue-based MME detector has been
a notable exception. For instance, the model uncertainty of imperfect knowledge of
the receiver noise power, which is known to be responsible for the energy detector’s
fundamental limits, does not adversely affect the MME detector’s performance. While
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AWGN is a standard assumption in wireless communications, it is not a reasonable one
for the MME detector. In fact, in this section we prove that uncertainty in the amount of
noise coloring does lead to an SNR-wall for the MME detector. We derive a lower bound
on this SNR-wall and evaluate it for example scenarios. The findings are supported by
numerical simulations.

5.1.1 Motivation and Prior Work

The requirements spectrum sensing algorithms have to meet are quite demanding, e. g.,
the IEEE 802.22 standard for cognitive wireless regional area networks [72] states that an
SU receiver should be able to reliably detect a PU signal at an SNR of -22 dB. There are
good reasons for these demanding requirements, like, e. g., the hidden terminal problem
[61, Ch. 14.3.3].

Under the ergodicity assumption, spectrum sensing algorithms are typically able to meet
the above requirement, i. e., if enough samples are available, the PDFs of the test statis-
tics are well separable. However, due to model uncertainties caused by, e. g., colored or
non-stationary background noise, non-ideal filters and imperfectly estimated parameters,
detection algorithms can exhibit so-called SNR-walls, i. e., SNR values, below which the
detectors cannot robustly [73] decide between H0 and H1. The existence of SNR-walls
has been established for the energy detector, the matched filter detector and the cyclo-
stationarity detector [29, 30, 31]. A spectrum sensing algorithm that, to the best of our
knowledge, has not been linked to the SNR-wall problem is the popular eigenvalue-based
MME detector.

In this section, we identify noise coloring as a model uncertainty adversely affecting the
MME detector. Then we show that uncertainty in the amount of noise coloring leads
to an SNR-wall for the MME detector by using noise coloring to derive a lower bound
on the SNR-wall of the MME detector. Finally, we support the analytical results with
numerical simulations.

5.1.2 Signal Model and MME Test Statistic

Consider the discrete time complex baseband signal x(n) observed at a secondary system
receiver, where n denotes the discrete time index. As mentioned in Section 3.1, the task
of a spectrum sensing algorithm is to decide between the following two hypotheses

H0 : x(n) = η(n)

H1 : x(n) = s(n) + η(n),
(5.1)

where s(n) represents a PU signal, while η(n) stands for additive noise. For the sake of
simplicity, no channel fading effects are taken into account in this section.
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Throughout this section, the PU is assumed to transmit a linearly modulated signal with
symbol length Tsymbol exhibiting a rectangular pulse shape. The signal is oversampled

at the receiver with an integer oversampling rate given by M =
Tsymbol

Tsample
, where Tsample

denotes the sampling period. The decision whether the band under observation is free
(H0) or occupied (H1) is based on a block of N samples. In the decision process, samples
from p different receivers are considered. The samples available at the fusion center at
time instant n are given by

x(n) = [x1(n), x1(n− 1), . . . , x1(n−Q),

x2(n), . . . , xp(n), . . . , xp(n−Q)]T ,
(5.2)

where the subscript indicates, which receiver the samples are from. Each receiver con-
tributes a consecutive set of Q + 1 samples, where the quantity Q + 1 is the so called
smoothing factor [45]. The inclusion of samples from different receivers as well as sam-
ples from different points in time allows the MME detector to exploit correlation from
both domains in the detection process. For simplicity, all receivers are assumed to expe-
rience the same SNR. The vectors s(n) and η(n) are defined analogous to x(n), leading
to the concise representation

x(n) = s(n) + η(n). (5.3)

We consider a scenario with a single PU transmitter and multiple SU receivers. The
receivers are assumed to be perfectly synchronized, i. e., si(n)|pi=1 = s(n). Signal and
noise are generated by mutually independent stationary random processes. The PU
signal s(n) is zero-mean, has variance σ2

s and its symbols are independent, i. e., s(n) and
s(n+M) are independent and identically distributed (i.i.d.). The receiver noise ηi(n) is
zero-mean and has variance σ2

η for all i. The noise vector η(n) is distributed according
to a circularly-symmetric complex Gaussian distribution, i. e., η(n) ∼ CN p(Q+1)(0,Rη).

Considering the fact that both the signal and the noise are zero-mean, the statistical
covariance matrices can be obtained as

Rs = E
[
s(n)s(n)H

]
Rη = E

[
η(n)η(n)H

]
Rx = E

[
x(n)x(n)H

]
= Rs + Rη,

(5.4)

where (·)H denotes the complex conjugate transpose. We assume that the received signal
x(n) is covariance ergodic [74, pp. 531], such that the sample covariance matrix

R̂x(N) =
1

N −Q

N−1∑
n=Q

x(n)x(n)H (5.5)

asymptotically converges to the statistical covariance matrix, i. e.,

lim
N→∞

R̂x(N) = Rx. (5.6)
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The analytic derivations in this section target the well-known MME detector [45]. Its
test statistic is composed of the eigenvalues of the received signal’s sample covariance
matrix. The test statistic and its accompanying decision rule are given by

ΓMME(x, N) =
λmax(R̂x(N))

λmin(R̂x(N))

H0

≶
H1

γ, (5.7)

where λmax(·) and λmin(·) denote the largest and smallest eigenvalue of a matrix re-
spectively and γ stands for the predefined decision threshold. If ΓMME(x, N) < γ, we
decide H0, while for ΓMME(x, N) ≥ γ we decide H1. Since both sample and statistical
covariance matrices are positive-semidefinite and thus all of their eigenvalues are ≥ 0,
the test statistic ΓMME(x, N) is always ≥ 1.

5.1.3 SNR Walls in Spectrum Sensing

Additive white Gaussian noise (AWGN) is a standard assumption in wireless commu-
nications research and for many problems in the field, it is a reasonable one. Indeed, a
classical result from information theory states that additive Gaussian noise represents
the worst case in point-to-point communication [75], which makes it a fair choice for
performance evaluation. However, modeling the receiver noise as AWGN is only an ap-
proximation of reality and for eigenvalue-based spectrum sensing, where correlation in
the received signal is the key to differentiability between the H0 and the H1 case, it does
not embody the worst case. As is shown in the subsequent parts of this section, the
assumption that the (Gaussian) noise samples are i.i.d. (and thus the noise is white) is
a crucial prerequisite for the MME detector’s optimal operation.

To take into consideration that different types of noise exist, we model η(n) as having
any distribution W from a set of possible distributionsW, all of which have the variance
σ2
η. The MME detector is a general spectrum sensing algorithm in the sense that it is

capable of detecting different kinds of signals. Thus, we do not assume a fixed signal
type but instead only make the assumption that the PU signal s(n) has any distribution
S from the set of possible distributions S, all of which have the variance σ2

s .

Given the sets S and W with the variances σ2
s and σ2

η respectively, we can now define
the SNR as

SNR =
σ2
s

σ2
η

. (5.8)

Further, we define the probability of false alarm and the probability of missed detection
as

Pfa(W,N) = P (ΓMME(x, N) ≥ γ | H0,W ),

Pmd(W,S,N) = P (ΓMME(x, N) < γ | H1,W, S),
(5.9)
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respectively. In conformity with the definition in [30] (except that we do not consider a
fading channel), we let a detector robustly achieve a pair (Pfa, Pmd) consisting of a target
false alarm probability Pfa and a target missed detection probability Pmd if it satisfies

sup
W∈W

Pfa(W,N) ≤ Pfa,

sup
W∈W,S∈S

Pmd(W,S,N) ≤ Pmd.
(5.10)

The detector is called non-robust at a given SNR if at that SNR even with an arbitrarily
high N , it cannot achieve any pair (Pfa, Pmd) on the support Pfa ∈ [0, 0.5], Pmd ∈ [0, 0.5].
The SNR-wall is finally defined as

SNRwall = sup{SNRt, s.t. the detector is non-robust

for all SNR < SNRt}.
(5.11)

For test statistics with symmetric PDFs, a definition of non-robustness equivalent to the
above is that a detector is non-robust iff the sets of means of the test statistic Γ(x, N)
under the two hypotheses overlap [30]. However, theH0 andH1 test statistic PDFs of the
MME detector are not symmetric. Thus, we use a third definition of non-robustness,
which states that a detector is non-robust iff the sets of medians of the test statistic
Γ(x, N) under the two hypotheses overlap. This definition is equivalent to the first one,
even for non-symmetric distributions. For symmetric distributions, it coincides with the
second definition. We make use of the third version of the definition of an SNR-wall
when deriving a lower bound on the SNR-wall for the MME detector, thus proving the
existence of an SNR-wall for that detector, in Section 5.1.5.

5.1.4 Sources of Noise and Noise Coloring

As mentioned in Section 5.1.3, AWGN can only be considered an approximation of
the actual noise experienced at a radio receiver. In this section we make the case for
considering colored receiver noise, which is an assumption used in the subsequent parts
of this section to prove the existence of an SNR-wall for the MME detector.

In [45] it is assumed that the receiver noise before processing is white and that the only
source of noise coloring is the use of a receive filter. The receive filter is assumed to
be known in advance and to be invertible, such that a pre-whitening filter can be used
to re-whiten the received samples before including them in the computation of the test
statistic. On close inspection, it seems to be problematic to remove all coloring, since
perfect filter design is hardly achievable, which makes employing an exact inverse of the
receive filter seem impossible.

Even if the coloring caused by the receiver architecture was perfectly reversible, the as-
sumption that the external noise is white represents an oversimplification, which in the
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case of the MME detector happens to be inappropriate, since for this detector uncor-
related noise is a requirement for proper functioning. In reality, the external noise is a
superposition of different kinds of noise from various sources and although the impact of
external noise decreases for higher frequencies [76], at moderate frequencies such as the
ones used for television broadcasting, external noise is present and should be considered.
Note that the television bands are of utmost interest for spectrum sensing, i. e., many
spectrum sensing algorithms originated in the context of the IEEE 802.22 standard [72],
which is concerned with communication in vacant television bands.

There are multiple different sources of realistic non-white external noise. One example is
galactic radiation noise. The power spectral density (PSD) of such noise is proportional
to 1

f2.7
[77], where f denotes the frequency, which makes it non-white. Another example

is man-made noise [78]. The reason this kind of noise leads to correlation in the received
samples under H0 is twofold. Firstly, it occurs in strong bursts that affect multiple
receiver samples, which leads to time correlation. Secondly, when multiple receivers or
multiple receive antennas are considered, the received noise is correlated in the case
that multiple of them are in the range of the same man-made impulsive noise. The
origin of man-made noise lies in, e. g., unintended radiation from electrical machinery
or power transmission lines. Furthermore, nearly every electronic device creates it and
thus, impulsive man-made noise is an effect that needs to be taken into account.

Given the above reasoning, it can arguably be expected that even in the absence of a PU
signal in the observed band, a certain amount of correlation is present in the received
samples.

5.1.5 SNR-Wall Lower Bound

In this section, we derive a lower bound on the SNR-wall of the MME detector, thus
proving its existence. More specifically, following the definition of the SNR-wall from
Section 5.1.3, we derive a lower bound on the SNR value below which the sets of medians
of the test statistic Γ(x, N) under the two hypotheses (H0 and H1) overlap even in the
asymptotic case (N →∞). To determine the location of the overlap we provide a lower
bound on the test statistic under H0 and an upper bound on the test statistic under H1.
The SNR below which the first of these two bounds has a higher value than the second
one is the lower bound on the SNR-wall. Due to the fact that for N →∞, the PDFs of
the test statistic under the two hypotheses both become degenerate distributions, such
that the PDFs coincide with their medians, this is equivalent to the above definition of
the SNR-wall.

Note, that in our system model the matrices Rs and Rη are no Toeplitz matrices. The
reason for this can be found in the composition of the vector x(n), i. e., the covariance
matrices contain two types of correlation, time and receiver correlation (cf. (5.2)). The
matrices are no Toeplitz matrices despite the facts that firstly, due to our asymptotic
approach, the matrices are statistical covariance matrices and secondly, the underlying
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5.1 Model Uncertainties and SNR-Walls

noise processes are assumed to be stationary. The correlation coefficients associated with
the entry in the i-th row and j-th column of Rs and Rη are denoted by ρsij and ρηij ,
respectively. Bounds are denoted by a bar above the respective symbol.

Lower Bound on the Test Statistic Under H0 In the H0 case, Rx = Rη, since no PU

signal exists. For this case, we aim at finding a lower bound Γ̄asym, lo
MME,H0

on the asymptotic
test statistic, i. e.,

λ̄lo
max(Rη)

λ̄up
min(Rη)

= Γ̄asym, lo
MME,H0

≤ Γasym
MME,H0

=
λmax(Rη)

λmin(Rη)
. (5.12)

To obtain the lower bound Γ̄asym, lo
MME,H0

, we need to determine a lower bound on the largest

eigenvalue (λ̄lo
max(Rη)) and an upper bound on the smallest eigenvalue (λ̄up

min(Rη)), i. e.,

λ̄lo
max(Rη) ≤ λmax(Rη),

λ̄up
min(Rη) ≥ λmin(Rη).

(5.13)

According to the Courant-Fischer theorem, the maximum and minimum eigenvalues
λmax(H) and λmin(H) of a hermitian matrix H can be obtained by solving the following
optimization problems [79]

λmax(H) = max
z:zHz=1

zHHz,

λmin(H) = min
z:zHz=1

zHHz.
(5.14)

From (5.14) it directly follows, that

λmin(H) ≤ zHHz ≤ λmax(H), (5.15)

for an arbitrary normalized z. This means, that we can obtain the bounds λ̄lo
max(Rη) and

λ̄up
min(Rη) by simply evaluating λ̄lo

max(Rη) = zH
1 Rηz1 and λ̄up

min(Rη) = zH
2 Rηz2 using two

arbitrary normalized vectors z1 and z2. However, an additional constraint we need to
take care of when obtaining the bounds is that λ̄lo

max(Rη) ≥ λ̄up
min(Rη) needs to hold. In

the following, we construct a set of vectors z1 and z2 that guarantees that this property
is satisfied.

Given a specific covariance matrix Rη, the vectors are constructed as to extract its
largest correlation coefficient ρηmax with |ρηmax| ≥ |ρηij | ∀ i, j with i 6= j. For the below
example, we assume that the largest correlation coefficient is located at the k-th column
of the first row of the matrix. Given the hermitian structure of covariance matrices and
the assumed stationarity of the noise processes, this assumption can be made without
loss of generality. The considered covariance matrix has the following structure

Rη = σ2
η


1 · · · |ρηmax|ejφ · · ·
...

. . . · · · · · ·
|ρηmax|e−jφ · · · 1 · · ·

...
...

...
. . .

 . (5.16)
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The accompanying vectors z1 and z2 are given by

z1 =
1√
2

[1, 0, . . . , 0,+e−jφ, 0, . . . , 0]T,

z2 =
1√
2

[1, 0, . . . , 0,−e−jφ, 0, . . . , 0]T,

(5.17)

where ±e−jφ is the k-th element of the respective vector, coinciding with the position of
|ρηmax|e±jφ in Rη. We can now obtain

λ̄lo
max(Rη) = zH

1 Rηz1 = σ2
η(1 + |ρηmax|),

λ̄up
min(Rη) = zH

2 Rηz2 = σ2
η(1− |ρηmax|).

(5.18)

Note that the above argument can be made for an arbitrary position of ρηmax by choosing
z1 and z2 accordingly, leaving (5.18) unchanged. Note also, that λ̄lo

max(Rη) ≥ λ̄up
min(Rη)

holds. The lower bound on the test statistic under H0 is now given by

Γ̄asym, lo
MME,H0

=
1 + |ρηmax|
1− |ρηmax|

, (5.19)

for 0 ≤ |ρηmax| < 1. For the case of complete noise correlation, i. e., |ρηmax| = 1 we get
0 ≤ λmin(Rη) ≤ λ̄up

min(Rη) = 0, where the first inequality is due to the general positive
semidefiniteness of covariance matrices. Since for λmin(Rη) = 0 detection becomes
impossible (cf. (5.7)), we exclude the case of complete noise correlation.

Upper Bound on the Test Statistic Under H1 In the H1 case, Rx = Rs + Rη. For
this case, we aim at finding an upper bound Γ̄asym, up

MME,H1
on the asymptotic test statistic,

i. e.,

λ̄up
max(Rx)

λ̄lo
min(Rx)

= Γ̄asym, up
MME,H1

≥ Γasym
MME,H1

=
λmax(Rx)

λmin(Rx)
. (5.20)

To obtain the upper bound Γ̄asym, up
MME,H1

, we need to determine an upper bound on the

largest eigenvalue (λ̄up
max(Rx)) and a lower bound on the smallest eigenvalue (λ̄lo

min(Rx)),
i. e.,

λ̄up
max(Rx) ≥ λmax(Rx),

λ̄lo
min(Rx) ≤ λmin(Rx).

(5.21)

Let rij denote the entry of Rx in the i-th row and j-th column. Given our assumptions
from Section 5.1.2, we get

rii = σ2
η + σ2

s = (1 + SNR)σ2
η,

rij = σ2
ηρ
η
ij + σ2

sρ
s
ij = (ρηij + SNR ρsij)σ

2
η.

(5.22)
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According to the Gershgorin circle theorem [80], all eigenvalues λk|gk=1 of a matrix A ∈
Cg×g, with g = p(Q+ 1), lie within the union of the circular disks

{z ∈ C : |z − aii| ≤ Ri}, (5.23)

where

Ri =

g∑
j=1
j 6=i

|aij |. (5.24)

Since Rx is hermitian, all of its eigenvalues are real and thus the disks from (5.23)
become intervals on the real axis. The value of rii is independent of i. Thus, an upper
bound on the maximum eigenvalue of Rx can be obtained as

λ̄up
max(Rx) = |rii|+ max

i
Ri

= σ2
η(SNR +1 + max

i

g∑
j=1
j 6=i

|(ρηij + SNR ρsij)|)

≥ λmax(Rx).

(5.25)

In analogy to (5.25), a lower bound on the minimum eigenvalue of Rx can be obtained
as

λ̄lo
min(Rx) = |rii| −max

i
Ri

= σ2
η(SNR +1−max

i

g∑
j=1
j 6=i

|(ρηij + SNR ρsij)|)

≤ λmin(Rx).

(5.26)

However, for (5.26) to be a valid bound in terms of the test statistic, we need to introduce
an extra constraint. We need to make sure that λ̄lo

min(Rx) > 0, i. e., |rii| −max
i

Ri > 0,

which leads to the constraint

1 + SNR > max
i

g∑
j=1
j 6=i

|(ρηij + SNR ρsij)|. (5.27)

Combining (5.25) and (5.26) finally provides the upper bound on the asymptotic test
statistic under H1 given by

Γ̄asym, up
MME,H1

=

SNR +1 + max
i

g∑
j=1
j 6=i

|(ρηij + SNR ρsij)|

SNR +1−max
i

g∑
j=1
j 6=i

|(ρηij + SNR ρsij)|
. (5.28)
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Lower Bound on the SNR-Wall Combining (5.19) and (5.28), we can say that the
MME detector is non-robust under the condition given by (5.27) and given that ρηmax < 1

when Γ̄asym, up
MME,H1

≤ Γ̄asym, lo
MME,H0

, i. e.,

SNR +1 + max
i

g∑
j=1
j 6=i

|(ρηij + SNR ρsij)|

SNR +1−max
i

g∑
j=1
j 6=i

|(ρηij + SNR ρsij)|
≤ 1 + |%ηmax|

1− |%ηmax|
. (5.29)

Note, that the correlation coefficients in the H0 case are now denoted by % instead of
ρ to facilitate the distinction between the noise correlation in the H0 and the H1 case.
For the interpretation of (5.29) it is important to note, that ρsij ≥ 0 ∀ i, j, i. e., the signal
correlation coefficients never become negative. This follows from (5.2), (5.4) and the
assumption that consecutive symbols are independent.

5.1.6 Examples of the Lower Bound on the SNR-Wall

Inequality (5.29) is quite involved and does not allow for easy interpretation. Since
our goal is to prove the existence of an SNR-wall, we continue our investigation with
examples that simplify (5.29), facilitating interpretation. We consider the case, where
under H1 no noise correlation exists, i. e., ρηij = 0 ∀ i, j except i = j, while under H0, the
noise is correlated, i. e., ∃ (i, j) with i 6= j for which %ηij 6= 0. This case occurs when the
sources of noise coloring in the vicinity of the sensor are only present at certain times
or if the sensor is used at different locations. Considering uncorrelated noise under H1,
(5.27) can be simplified as follows

1 + SNR > max
i

g∑
j=1
j 6=i

|(ρηij + SNR ρsij)|

⇔1 + SNR > SNR ·max
i

g∑
j=1
j 6=i

|ρsij |

⇔SNR <
1

κmax − 1
,

(5.30)

where

κmax = max
i

g∑
j=1
j 6=i

|ρsij |. (5.31)

This means, that the higher the correlation in the signal samples, the lower the SNR
for which our lower bound is defined. For κmax < 1, the condition is never satisfied. In
this case, we have to fall back to zero as a lower bound for λmin, which is guaranteed by
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5.1 Model Uncertainties and SNR-Walls

the properties of covariance matrices. This however leads to the test statistic under H0

taking the value infinity, which again rules out the possibility of giving a lower bound
for an SNR-wall. For a more concise notation, let

αmax = Γ̄asym, lo
MME,H0

=
1 + |%ηmax|
1− |%ηmax|

. (5.32)

By assuming a minimal amount of noise coloring under H0 and excluding the case of
complete noise correlation, we restricted the support of the largest noise correlation
coefficient, such that %max ∈ (0, 1). As a consequence, it holds that αmax > 1. Using
the definitions of κmax and αmax, as well as the assumption that under H1 the noise is
uncorrelated, (5.29) becomes

SNR +1 + κmax SNR

SNR +1− κmax SNR
≤ αmax, (5.33)

or equivalently

SNR ≤ αmax − 1

1 + κmax + αmax(κmax − 1)
. (5.34)

In order to obtain concrete numbers for the bound, we look at more specific examples
in the following.

(A) Receiver Correlation (Q = 0, p ≥ 2) In this example we consider a p-receiver setup
with perfect signal correlation, i. e., ρsij = 1 ∀ i, j. The maximum signal correlation in

this case is κmax = p − 1 and thus the condition (5.30) becomes SNR < 1
p−2 . If the

condition is satisfied, we can say that the MME detector becomes non-robust for

SNR ≤ αmax − 1

p+ αmax(p− 2)
. (5.35)

For p = 2 and a maximum noise correlation of %ηmax = 0.05, which we consider to be
moderate noise coloring, we arrive at a lower bound of SNR = 0.052632 = −12.788 dB,
which is considerably far away from −22 dB (cf. Section 5.1.1). This example is simple
enough for us to obtain the actual statistical covariance matrices for an evaluation of
the bound’s tightness. They are given by

RH0
x = RH0

η = σ2
η

(
1 0.05

0.05 1

)
,

RH1
x =

(
σ2
η + σ2

s σ2
s

σ2
s σ2

η + σ2
s

)
= σ2

η

(
1 + SNR SNR

SNR 1 + SNR

)
.

(5.36)

With the above covariance matrices, the asymptotic test statistics evaluate to Γasym
H0

=
1.10503 and Γasym

H1
= 1+2 SNR. This means, that for an SNR below 0.052632 = −12.788

dB, Γasym
H1

< Γasym
H0

, such that the detector becomes non-robust, i. e., in this special case
the bound is tight.
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(B) Time Correlation (p = 1, Q ≥ 1) To complement the receiver correlation example,
we next investigate a case with only one receiver that examines the correlation of the
received samples over time. In order to again obtain a bound via (5.34), the value of
κmax needs to be determined. Given an oversampling factor M and the independence of
consecutive symbols, the autocorrelation function of the PU signal can be obtained as

E [s∗(n)s(n± k)] =

{
σ2
s(1− k

M ) if |k| < M

0 else.
(5.37)

In our case, the row with the maximum off-diagonal correlation sum in Rs is the
⌊
g+1

2

⌋
-th

one, where g = Q + 1 is the number of rows of Rs and b·c denotes the floor operation.
This is illustrated in the following example for Q = 3 (assuming M ≥ 3)

Rs = σ2
s


1 1− 1

M 1− 2
M 1− 3

M
1− 1

M 1 1− 1
M 1− 2

M
1− 2

M 1− 1
M 1 1− 1

M
1− 3

M 1− 2
M 1− 1

M 1

 . (5.38)

The further away from the diagonal, the smaller the value. Thus, the middle row has
the highest sum.

In order to obtain κmax, three cases have to be distinguished. For
⌈
Q
2

⌉
< M and Q even,

we get

κmax = 2

Q
2∑
j=1

(
1− j

M

)

= Q− Q2 + 2Q

4M
,

(5.39)

for
⌈
Q
2

⌉
< M and Q odd, we get

κmax = 2

Q−1
2∑
j=1

(
1− j

M

)
+

(
1− Q+ 1

2M

)

= Q− (Q+ 1)2

4M
,

(5.40)

and for
⌈
Q
2

⌉
≥M , we get

κmax = 2
M−1∑
j=1

(
1− j

M

)
= M − 1, (5.41)

where d·e denotes the ceiling operation. In this example we model the noise as a station-
ary auto-regressive process of order one (AR(1)). It is supposed to mimic white external
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Figure 5.1: PSD of AR(1) process, which follows η[n] = 0.1η[n−1]+ε[n]. The frequency
is normalized to fsamples = 2π.

noise that has undergone filtering by a low-pass receive filter. The noise process is given
by

η(n) = 0.1η(n− 1) + ε(n), (5.42)

where ε(n) denotes an i.i.d. complex Gaussian random process with mean zero and
variance 0.99. It is independent of η(n − 1), and has independent real and imaginary
parts and E

[
|η[n]|2

]
= 1. Figure 5.1 shows the noise process’s PSD to illustrate its

characteristics. We consider the case of Q = 3 and M = 4, where the choice of Q leads
to the noise covariance matrix

Rη =


1 0.1 0.12 0.13

0.1 1 0.1 0.12

0.12 0.1 1 0.1
0.13 0.12 0.1 1

 (5.43)

and κmax = 2 (cf. (5.40)). Using (5.34), we again get a lower bound for the SNR-wall of
−12.788 dB.

(C) Time and Receiver Correlation (p > 1, Q > 0) As a final example, we consider
the case where both, time and receiver correlation, are exploited. Given our model
assumption that the signal strength is equal for all receivers, we can combine the κmax

terms derived in the preceding subsections to obtain

κmax = p− 1 + p · κmax,time, (5.44)

where κmax,time denotes the κmax term for time correlation.
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Table 5.1: Parameters

Parameter Symbol Value(s)

Modulation type BPSK
Oversampling factor M 4
Number of samples N {999, 9999, 999999}
# of Monte Carlo instances 2000
# of histogram bins 12

5.1.7 Numerical Evaluation

In this section we provide numerical results corresponding to examples A and B of
Section 5.1.6. The parameters used in the simulations can be found in Table 5.1. For
the H1 case we generate white Gaussian noise and an oversampled binary phase shift
keying (BPSK) signal with a rectangular pulse shape and symbols that are independent
of each other. For the H0 case we generate colored noise. The different noise types used
for H0 and H1 represent the model uncertainty that has to be taken into account when
designing spectrum sensing algorithms. When generating colored noise, our aim is to
create a stationary, sampled Gaussian process with a predefined covariance matrix.

Receiver Correlation In the receiver correlation case, we use a matrix multiplica-
tion approach for generating colored noise. We start by generating the p-dimensional
white Gaussian noise sample vector w(n) ∼ CN (0,Rw) for all time instances n, where
Rw = Ip×p, while p is the number of receivers. That is, the vector w(n) is generated ac-
cording to a p-dimensional zero-mean Gaussian distribution with the identity matrix as
its covariance matrix. The colored noise vector η(n), which is experienced at the receiver
in the H0 case, is subsequently obtained as η(n) = Aw(n), where the matrix A ∈ Cp×p
needs to be chosen such that the covariance matrix of η(n) equals the predefined Rη.
This approach leads to the desired result due to the fact that linear combinations of
Gaussian random variables are again distributed according to a Gaussian distribution.
It is well known that the covariance matrix of Aw(n) is given by AHRwA. Thus, the
matrix A can be easily obtained by computing the Cholesky decomposition Rη = AHA.

Figure 5.2 shows the normalized histograms (PDF estimations) for the MME test statis-
tic ΓMME in the H0 case (black) and the H1 case (colored). For the H1 case, the test
statistic histograms for different SNRs are shown. It can be observed that the estimation
variance of the test statistic decreases with an increasing number of samples N , which
is to be expected since asymptotically the sample covariance matrix converges to the
statistical covariance matrix. What we can also see is that the mean of the estimated
test statistic changes for an increasing N . This is a testimony to the biasedness of the
estimator (5.7). Recall, that the lower bound on the SNR-wall for this scenario has been
derived to be −12.788 dB. The simulation results confirm this bound. Indeed, when the
SNR drops below the derived bound, the medians of the test statistics under H1 are
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Figure 5.2: Estimated probability density function for receiver correlation (p = 2, Q = 0)
and different N . Noise correlation factor %ηmax = 0.05. Solid lines represent
the normalized histograms, while dashed lines depict the means. The H0

case result is shown in black, while the H1 case results are colored, where
the SNR from right to left is given by {−10,−11, . . . ,−15} dB.
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Figure 5.3: Estimated probability density function for time correlation (p = 1, Q =
4) and different N . Solid lines represent the normalized histograms, while
dashed lines depict the means. The H0 case result is shown in black, while
the H1 case results are colored, where the SNR from right to left is given by
{−6,−7, . . . ,−10} dB.
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below the median of the test statistic under H0 for all inspected N , making the detector
non-robust by definition.

A different point of view is assumed in Figure 5.4 (Pfa = 0.01), Figure 5.5 (Pfa = 0.05),
Figure 5.6 (Pfa = 0.10) and Figure 5.7 (Pfa = 0.50). In these figures the missed detection
rate Pmd is plotted over the number of available samples N and the SNR for a fixed false
alarm rate. A clear wall can be identified in all of them. We can see that below a certain
SNR, detection is just not possible anymore, since the Pmd goes to 1. Note however,
that what we may intuitively make out as the wall in the figures is actually stronger
than what we define as an SNR-wall. The actual SNR-wall as per definition can be
found in Figure 5.7. The figure shows the missed detection rate for a fixed false alarm
rate of 50%. The SNR-wall is the SNR value below which the missed detection rate
Pmd is above 0.5 for all N . In that figure we also see why it is important not to define
the SNR-wall with 100% missed detection rate as may seem reasonable since only for
Pmd = 1 detection becomes truly impossible. For small numbers of samples, the PDFs
of the test statistic under H0 and H1 become very wide, such that it is very unlikely
that all of the H1 PDF is below the median of the H0 PDF. This can be easily seen in
Figure 5.7. However, for a set (Pfa, Pmd) worse than (0.5, 0.5) the chances of making the
right decision in the hypothesis test are worse than those of simply guessing, i. e., the
chances are worse than those of a coin flip, such that using the test statistic does not
make any sense in this regime.

Time Correlation Since in the previous example, the noise correlation only exists be-
tween the noise processes of different receivers but not between noise samples taken at
a single receiver at different times, the matrix A, which is used to color the noise, has
a small dimension. This makes the matrix multiplication approach feasible for example
A. To use the same method in the time correlation example, a coloring matrix of size
N×N would be necessary, where in our simulations, N takes on values of up to 106. This
renders the matrix multiplication approach infeasible for the current example. Thus, a
different approach for generating colored noise has to be taken. First, we generate an au-
tocorrelation with a real-valued PSD from an autoregressive model of order one. We then
generate an N -dimensional vector distributed according to a zero-mean, unit-variance,
complex, white Gaussian distribution, which serves as a frequency-domain noise basis.
Its PSD is subsequently scaled by the PSD of the autocorrelation, after which it is
transformed to the time-domain via the IDFT and scaled to variance σ2

η. Here again, we
use the fact, that a linear combination of Gaussian random variables is also distributed
according to a Gaussian distribution.

Recall, that the lower bound on the SNR-wall for this scenario has been derived to be
−12.788 dB. According to the numerical results (cf. Figure 5.3), in this scenario the
MME detector exhibits an SNR-wall between −8 dB and −9 dB. While the lower bound
cannot be called very tight for this example, it nevertheless proves the existence of an
SNR-wall, which is guaranteed to be much higher than the desired −22 dB.
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Figure 5.4: Missed detection rate (Pmd) in the receiver correlation case (p = 2, Q = 0)
for different numbers of samples and SNRs (in dB) at Pfa = 0.01.
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Figure 5.5: Missed detection rate (Pmd) in the receiver correlation case (p = 2, Q = 0)
for different numbers of samples and SNRs (in dB) at Pfa = 0.05.
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Figure 5.6: Missed detection rate (Pmd) in the receiver correlation case (p = 2, Q = 0)
for different numbers of samples and SNRs (in dB) at Pfa = 0.1.
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Figure 5.7: Missed detection rate (Pmd) in the receiver correlation case (p = 2, Q = 0)
for different numbers of samples and SNRs (in dB) at Pfa = 0.5.
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5.1.8 Example of Noise Coloring: Impulsive Noise

In the preceding parts we have shown, that noise coloring, or more precisely, the amount
of coloring contained in the noise at a SU receiver can lead to a so-called SNR-wall.
As mentioned in Section 5.1.4, one of the sources of the potential noise coloring is the
presence of impulsive noise in the vicinity of the receiver. To substantiate the claim, that
impulsive noise leads to noise coloring, in this section we develop a noise model including
impulsive noise and derive closed-form expressions for its influence on the autocorrelation
of the receiver noise.

The presence of (man-made) impulsive noise in the vicinity of a SU receiver is a re-
alistic assumption. The reason for this is the ubiquity of impulsive noise in all places
frequented by humans. Indeed, it is caused by, e. g., non-linearities of electronic devices,
by electronic devices being switched on or off and it can be unintended radiation from
electrical machinery or power transmission lines. Nearly every electronic device or ma-
chine creates it. The strongest influence of such noise is found at lower frequencies, but
even at frequencies around 500 MHz, the impact is significant [76]. Since this frequency
band is used for terrestrial wireless television transmission, the effects of impulsive noise
are to be taken into consideration in spectrum sensing.

Our noise model is based on a measurement campaign presented in [78], which reveals
the characteristics of man-made impulsive noise. Two main observations have been made
in the presence of a big number of impulsive noise emitting devices. The first one is,
that the omnipresent white noise process, which consists of, e. g., thermal noise, has
an increased power. The second observation is that strong peaks appear in the time
domain. In [78], two types of impulsive noise are considered. Class A noise, which has a
bandwidth that is comparable to that of the receiver or lower, and class B noise, which
has a bandwidth much higher than that of the receiver. Since the authors of [78] state
that class B noise is a valid representation for the impulsive noise in most measurements,
we use it when building our noise model.

The usual way of modeling class B noise is given by [81, 78]

η(n) = ηno(n) + c(n) · ηimp(n). (5.45)

The white complex Gaussian base noise at time n is denoted by ηno(n), while the im-
pulsive noise, which is often generated according to a Weibull distribution, is denoted
by ηimp(n). The variable c(n) follows a Bernoulli distribution and controls how often a
noise impulse appears. Each of the three random processes are assumed to be i.i.d. with
respect to n.

Due to the limited bandwidth, class A noise is bound to be correlated in time. While
class B noise itself has a very high bandwidth, the receive filter of the sensor inevitably
confines its bandwidth and thus introduces correlation in time. Since the authors of [78]
state that the shape of the class B noise is mainly caused by the receive filter, we use
the receive filter as a basis for the time correlation in our model.
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The receive filter is modeled as a quasi-perfect lowpass filter with the time-constrained
impulse response given by

h(n) =

{
sinc(n) = sin(πn)

πn if |n| ≤ F,
0 else,

(5.46)

where F determines the filter length of the lowpass filter. For F →∞, the filter is ideal.

Most of the white part of the noise is caused by internal imperfections of the receiver
system, while the impulsive noise is external and traverses the receive filter before being
sampled. Thus, we obtain the following expression for the overall receiver noise.

η(n) = ηno(n) +
F∑

m=−F
c(n+m) sinc

(
m+ t(n+m)

M

)
ηimp(n+m). (5.47)

Note, that instead of scalars, we now deal with vectors, which contain an entry for every
receiver, i. e., η(n) = [η1(n), η2(n), . . . , ηp(n)]T, where the subscript indicates, which
receiver the samples are from. The time shift between the continuous time noise impulse
and the sampling clock is modeled by the random variable t(n). The random variables
are formally defined as follows:

• ηno(n) ∼ CN (0, σ2
noI), i. e., it follows a circularly-symmetric complex Gaussian

distribution with mean vector 0 and covariance matrix σ2
noI,

• ηimp(n) ∼ CN (0,Rimp) with power k · σ2
no,

• t(n) ∼ U(−0.5, 0.5), i. e., it is uniformly distributed on the interval [−0.5, 0.5],

• c(n) =

{
1 with probability ε

0 with probability 1− ε,
i. e., it follows a Bernoulli distribution and has the power E

[
c(n)2

]
= ε.

All four random processes are stochastically independent of each other, stationary and
i.i.d. with respect to the time index n. The only source of time correlation in our model
is the lowpass filter (5.46). Note, that t(n) and c(n) are scalar, such that an occurring
impulse is always present at all receivers and exhibits the same time shift at all receivers.
The amplitude of a pulse can differ from receiver to receiver, resulting in different receiver
correlation values. This spatial correlation is represented by the values contained in
Rimp. Since the maximum temporal distance between two dependent samples is finite
(2F + 1, cf. (5.47)), the noise is still autocovariance ergodic.

In the following paragraphs, we derive closed-form expressions for the overall noise power
as well as the noise correlation for the receiver correlation case, the time correlation case
and the combination of the two based on our noise model (5.47). First we list some
properties of our model that are useful for the subsequent derivations. Here, the symbol
? is a wildcard, such that η? stands for both, ηno and ηimp, while the additional subscript
i or j indicates which receiver is meant.

71



5 Eigenvalue-Based Detection

E
[
η∗no,i(n) · ηno,j(n)

]
= 0 ∀i 6= j. (5.48)

E
[
η∗?,i(m) · η?,i(n)

]
= 0 ∀m 6= n. (5.49)

E
[
η∗no,i(m) · ηimp,j(n)

]
= 0 ∀m,n, i, j. (5.50)

E
[
η∗imp,i(m) · ηimp,j(n)

]
= 0 ∀m 6= n, i 6= j. (5.51)

While (5.48) is due to the uncorrelatedness of the internal white noise of different re-
ceivers, the relation (5.49) expresses that the internal white noise as well as the external
impulsive noise before filtering at a single receiver are uncorrelated over time. Equation
(5.50) uses the fact that the internal white noise and the external impulsive noise are
always independent of each other. Lastly, (5.51) expresses that the external impulsive
noise at different receivers and different points in time is uncorrelated.

We can now obtain the overall noise power as

E [η∗i (n) · ηi(n)]

=E

[(
ηno,i(n) +

F∑
m=−F

c(n+m) sinc

(
m+ t(n+m)

M

)
ηimp,i(n+m)

)∗
(
ηno,i(n) +

F∑
m=−F

c(n+m) sinc

(
m+ t(n+m)

M

)
ηimp,i(n+m)

)]

(a)
= E

[
|ηno,i(n)|2

]
+ E

[(
F∑

m=−F
c(n+m) sinc

(
m+ t(n+m)

M

)
ηimp,i(n+m)

)∗
(

F∑
m=−F

c(n+m) sinc

(
m+ t(n+m)

M

)
ηimp,i(n+m)

)]
(b)
= σ2

no + E

[
F∑

m=−F
c(n+m)2 sinc2

(
m+ t(n+m)

M

)
|ηimp,i(n+m)|2

]

=σ2
no +

F∑
m=−F

E
[
c(n+m)2

]
· E
[
|ηimp,i(n+m)|2

]
· E
[
sinc2

(
m+ t(n+m)

M

)]

=σ2
no + kσ2

noε

F∑
m=−F

∫ 0.5

−0.5
sinc2

(
m+ t

M

)
dt

=σ2
no + kσ2

noε

∫ F+0.5

−F−0.5
sinc2

(
t

M

)
dt︸ ︷︷ ︸

:=D1(F,M)

=σ2
no + kσ2

no εD1(F,M).

(5.52)
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In (a), we use the fact that exploiting (5.50) we obtain,

E

[
η∗no,i(n)

F∑
m=−F

c(n+m) sinc

(
m+ t(n+m)

M

)
ηimp,i(n+m)

]
= 0 (5.53)

and

E

[
ηno,i(n)

F∑
m=−F

c(n+m) sinc

(
m+ t(n+m)

M

)
η∗imp,i(n+m)

]
= 0. (5.54)

In (b), we use property (5.49), which leads to

E

 F∑
m=−F

F∑
l=−F
l 6=m

c(n+m) sinc

(
m+ t(n+m)

M

)
η∗imp,i(n+m)

c(n+ l) sinc

(
l + t(n+ l)

M

)
ηimp,i(n+ l)

 = 0.

(5.55)

As mentioned before, the value of F determines the quality of the receive filter. For
large F , i. e., a good filter quality, the function D1(F,M) converges to M . A closed-form
expression for the function D1(F,M) is given by

D1(F,M) =

∫ F+0.5

−F−0.5
sinc2

(
t

M

)
dt

=

[
M
(
πt · Si

(
2πt
M

)
−M · sin2

(
πt
M

))
π2t

]t=F+0.5

t=−F−0.5

,

(5.56)

where

Si(x) =

∫ x

0

sin(ζ)

ζ
dζ. (5.57)

From (5.52), we can see that the overall noise power directly depends on the ratio k
between the power of the internal white noise and the power of the external impulsive
noise. Also, it becomes clear that the contribution of the impulsive noise is linearly
scaled by the noise impulse occurrence frequency ε.

In the next step we derive the unnormalized overall spatial correlation coefficient. It
represents the amount of correlation between two sensors which are located at different
positions. We can normalize it by dividing it by the overall noise power, which was
derived above. The impulsive noise spatial correlation coefficient between receiver i and
receiver j is predefined and is given by

E
[
η∗imp,i[n]ηimp,j [n]

]
= ρreckσ

2
no for i 6= j. (5.58)
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The overall spatial correlation coefficient is given by

E [η∗i (n) · ηj(n)]

=E

[(
ηno,i(n) +

F∑
m=−F

c(n+m) sinc

(
m+ t(n+m)

M

)
ηimp,i(n+m)

)∗
(
ηno,j(n) +

F∑
m=−F

c(n+m) sinc

(
m+ t(n+m)

M

)
ηimp,j(n+m)

)]
(c)
= E

[(
F∑

m=−F
c(n+m) sinc

(
m+ t(n+m)

M

)
η∗imp,i(n+m)

)
(

F∑
m=−F

c(n+m) sinc

(
m+ t(n+m)

M

)
ηimp,j(n+m)

)]
(d)
=

F∑
m=−F

E
[
c(n+m)2

]
· E
[
η∗imp,i(n+m)ηimp,j(n+m)

]
· E
[
sinc2

(
m+ t(n+m)

M

)]
= εkσ2

noρrecD1(F,M).

(5.59)

In (c), we use the two properties given in (5.48) and (5.50). Due to (5.48), we get

E
[
η∗no,i(n)ηno,j(n)

]
= 0, (5.60)

while (5.50) gives us

E

[
η∗no,i(n)

F∑
m=−F

c(n+m) sinc

(
m+ t(n+m)

M

)
ηimp,j(n+m)

]
= 0 (5.61)

and

E

[
ηno,j(n)

F∑
m=−F

c(n+m) sinc

(
m+ t(n+m)

M

)
η∗imp,i(n+m)

]
= 0. (5.62)

For (d), cf. (5.51).

The normalized version of the overall spatial correlation coefficient is given by

E [η∗i (n) · ηj(n)]

E [η∗i (n) · ηi(n)]
=
ρrecεkD1(F,M)

1 + εkD1(F,M)
. (5.63)

It depends on ε and k and since these parameters can change with the location of the
sensor, we can say that uncertainty is introduced into the test statistic used for PU
detection when employing receiver correlation.
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Subsequently, we derive the unnormalized overall time correlation coefficient. It rep-
resents the amount of correlation between samples taken at a single sensor at different
times (q 6= 0). It is given by

E [η∗i (n) · ηi(n− q)]

=E

[(
ηno,i(n) +

F∑
m=−F

c(n+m) sinc

(
m+ t(n+m)

M

)
ηimp,i(n+m)

)∗
(
ηno,i(n− q) +

F∑
m=−F

c(n− q +m)

· sinc

(
m+ t(n− q +m)

M

)
ηimp,i(n− q +m)

)]
(e)
= E

[(
F∑

m=−F
c(n+m) sinc

(
m+ t(n+m)

M

)
η∗imp,i(n+m)

)
(

F∑
m=−F

c(n− q +m) sinc

(
m+ t(n− q +m)

M

)
ηimp,i(n− q +m)

)]

=E

[(
F∑

m=−F
c(n+m) sinc

(
m+ t(n+m)

M

)
η∗imp,i(n+m)

)
 F−q∑
m=−F−q

c(n+m) sinc

(
m+ q + t(n+m)

M

)
ηimp,i(n+m)


(f)
=E

[
F−q∑
m=−F

c2(n+m)|ηimp,i(n+m)|2

sinc

(
m+ t(n+m)

M

)
sinc

(
m+ q + t(n+m)

M

)]

= εkσ2
no

∫ F−q+0.5

−F−0.5
sinc

(
t

M

)
sinc

(
q + t

M

)
dt︸ ︷︷ ︸

:=D2(F,M,q)

= εkσ2
noD2(F,M, q).

(5.64)

For (e), cf. (5.49) and (5.50). For (f), cf. (5.49). Note, that D2(F,M, q) = D1(F,M)
for q = 0. However, we are only interested in the case q 6= 0. For q ≥ 2F , D2 = 0,
since for these values of q, the time shift is bigger than the span of the cut receive filter.
A closed-form expression for D2(F,M, q) does exist and can easily be determined using
modern symbolic mathematical software. It is omitted here because it is quite lengthy
and does not add to the discussion.

75



5 Eigenvalue-Based Detection

The normalized version of the overall time correlation coefficient is given by

E [η∗i (n) · ηi(n− q)]
E [η∗i (n) · ηi(n)]

=
εkD2(F,M, q)

1 + εkD1(F,M)
. (5.65)

As the overall spatial correlation coefficient, the overall time correlation coefficient de-
pends on ε and k, which means that employing time correlation for PU detection also
makes us prone to uncertainty in the test statistic.

Lastly, the noise correlation coefficient for the case where receiver and time correlation
is exploited is determined. Since the derivation is analogous to (5.64), it is skipped. The
resulting unnormalized correlation coefficient is given by

E [η∗i (n) · ηj(n− q)] = εkσ2
noD2(F,M, q)ρrec, (5.66)

while its normalized version is obtained as

E [η∗i (n) · ηj(n− q)]
E [η∗i (n) · ηi(n)]

=
ρrecεkD2(F,M, q)

1 + εkD1(F,M)
. (5.67)

So far, we have shown that no matter if the employed detection method is based on
the receiver correlation or the time correlation alone, or if it exploits both, receiver and
time correlation, it is always prone to uncertainty in the noise correlation, i. e., the noise
coloring, because the exact parameters of the location-dependent external impulsive noise
cannot be known by the sensor. Since we have shown above, that uncertainty about the
noise coloring can make a detector non-robust, we can now say, that the uncertainty
about external impulsive noise can lead to an SNR-wall.

To round off the impulsive noise example, we now present lower bounds on the SNR-
walls caused by impulsive noise using (5.29) as well as a set of reasonable parameters.
The parameters are chosen such that they are in line with the measurement campaigns
documented in [81, 78]. In the latter, two different measurement settings, one at quiet
park and the other near a motorway road junction, are investigated. For the spatial
correlation we choose a setup with two receivers (p = 2), which are close to each other,
e. g., two antennas of the same device. We further choose a relatively low correlation
value from the measurements dome in [81], i. e., ρrec = 0.2. The full set of parameters
are given in Table 5.2.

Table 5.2: Parameters

Parameter Symbol Value

Impulse occurrence probability ε 2 · 10−4

Oversampling factor M 4
Receive filter impulse response length F 20
Number of receive antennas p 2
Spatial correlation coefficient ρrec 0.2
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Given the above parameter set we can numerically determine the following function
values

D1(20, 4) = 3.9193,

D2(20, 4, 1) = 3.5441,

D2(20, 4, 2) = 2.5485,

D2(20, 4, 3) = 1.2637,

(5.68)

as well as the overall noise power, which using (5.52) can be evaluated to

E [η∗i (n) · ηi(n)] = σ2
no(1 + 0.07839). (5.69)

Note, that the correlation matrices given below are normalized by the overall noise power.

The first example is receiver correlation (p = 2, Q = 0). Using (5.59), the noise cor-
relation matrix for the road junction, which represents the H0 case, can be obtained
as

RH0
η,rec = E

[[
η1(n)
η2(n)

]
[η1(n), η2(n)]∗

]
=

(
1 0.01454

0.01454 1

)
. (5.70)

The corresponding value of the test statistic is given by Γasym
H0

= αmax = 1.0295, leading
to a lower bound on the SNR-wall according to (5.35) and assuming white Gaussian
noise under H1 of

SNR ≤ 1.47 · 10−2 = −18.327 dB. (5.71)

The next example is time correlation (p = 1, Q = 1). Using (5.64), the noise correlation
matrix for this case under H0 can be obtained as

RH0
η,time = E

[[
η1(n)

η1(n− 1)

]
[η1(n), η1(n− 1)]∗

]
=

(
1 0.06573

0.06573 1

)
. (5.72)

The corresponding value of the test statistic is given by Γasym
H0

= αmax = 1.1407. From
(5.40), we can obtain the maximum signal correlation value κmax = 0.75. Inserting αmax

and κmax in (5.34) provides us with the lower bound on the SNR-wall given by

SNR ≤ 9.6052 · 10−2 = −10.175 dB. (5.73)

As we can see in the two above examples, introducing impulsive noise into a spectrum
sensing scenario even using mild parameters leads to uncertainty regarding the noise
coloring, causing bounds on the SNR-wall for the MME detector that are clearly above
the demanded -22 dB (cf. Section 5.1.1).
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5.1.9 Conclusion

In this section, we have proven the existence of an SNR-wall for the eigenvalue-based
MME spectrum sensing algorithm. The SNR-wall is caused by uncertainty about the
coloring of the receiver noise. A lower bound on the SNR-wall is derived and is comple-
mented by time and receiver correlation examples. For these examples, we give concrete
SNR values, below which the MME detector is non-robust and provide numerical results
that support the analytical ones.

To support the claim that (man-made) impulsive noise in the sensors’ surroundings can
lead to uncertainty in the noise coloring strong enough to cause relevant SNR-walls, a
model for impulsive noise is developed and the corresponding SNR-walls are evaluated.
The results corroborate the claim.

One possible direction for future work is the derivation of tighter bounds on the SNR-
wall. Also, it would be of great value if the results could be generalized to arbitrary
eigenvalue-based spectrum sensing algorithms.

5.2 New Eigenvalue-Based Detectors

In this section we propose two new eigenvalue-based detection algorithms, the maximum-
minus-minimum-eigenvalue (MMME) detector and the difference-of-means-of-eigenvalues
(DME) detector. We give an intuition of their respective inner workings and discuss the
choice of the second detector’s parameter. Subsequently, we analyze their performance
in comparison to other known eigenvalue-based detectors via numerical simulation.

5.2.1 System Model

The system model used in this work is a close adaptation of the model introduced in
[45], which is beneficial regarding comparability of the results. For completeness, we
shortly introduce it in the following.

Consider a system of P primary users, each transmitting a signal sj(t), with j ∈
{1, . . . , P}. The secondary system receives a noise-contaminated superposition of these
primary user signals after the effects of path loss, multipath fading and time dispersion.
The noise mixed into the received signal is assumed to be zero-mean, i.i.d. and circularly-
symmetric complex Gaussian with variance σ2. The secondary system oversamples the
symbols of the PU signal by the factor M , which here means that either there is one
cognitive radio (CR) possessing M receive antennas or there are M collaborating CRs.

The samples acquired in the discrete time-domain during one symbol duration are given
by

x(n) = [x1(n), x2(n), . . . , xM (n)]T (5.74)
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for the n-th symbol.

We define the channel between the j-th PU and the respective receive antennas of the
CR at the time of symbol n as

hj(n) = [h1j(n), h2j(n), . . . , hMj(n)]T, (5.75)

while the additive noise corrupting the reception of symbol n is denoted by

η(n) = [η1(n), η2(n), . . . , ηM (n)]T. (5.76)

We consider sets of L consecutive outputs, which we express as

x̂(n) =[xT(n),xT(n− 1), . . . ,xT(n− L+ 1)]T,

η̂(n) =[ηT(n),ηT(n− 1), . . . ,ηT(n− L+ 1)]T and

ŝ(n) =[s1(n), s1(n− 1), . . . , s1(n−Nc − L+ 1), . . . ,

sP (n), sP (n− 1), . . . , sP (n−Nc − L+ 1)]T,

(5.77)

where the n-th symbol of the j-th PU is denoted by sj(n) and Nc stands for the order of
the channel, i. e., the length of the channel impulse response. L is a so-called smoothing
factor.

Given the above definitions, we can write

x̂(n) = Hŝ(n) + η̂(n), (5.78)

with H = [H1,H2, . . . ,HP ], where

Hj =

 hj(0) . . . . . . hj(Nc) 0
. . .

. . .

0 hj(0) . . . . . . hj(Nc)

 . (5.79)

The statistical covariance matrix of the received signal can now be written as

Rx = E(x̂(n)x̂H(n))

= HRsH
H + Rη

= HRsH
H + σ2I,

(5.80)

with Rs = E(ŝ(n)ŝH(n)) and Rη = E(η̂(n)η̂H(n)) being the statistical covariance ma-
trices of the PU signals and the additive noise respectively and I denoting the identity
matrix. Note that the last step in (5.80) is due to the noise being i.i.d.

Since we are not able to acquire an infinite amount of samples, we cannot come by the
statistical covariance matrix and have to settle for its estimation, the ML×ML sample
covariance matrix, which for our signal model is obtained as

R̂x(Ns) =
1

Ns

L−2+Ns∑
n=L−1

x̂(n)x̂H(n), (5.81)

with Ns being the number of collected symbols.
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5.2.2 Prior Work

Several spectrum sensing algorithms exploiting the properties of the covariance matrix
can be found in the literature. Some of these are employed in a performance evaluation
of the two new eigenvalue-based detectors in Section 5.2.4. They are shortly covered
in the following. For each of the detectors, a test-statistic T is given such that for
some threshold γ, the detector decides on the occupancy status of the spectral resource
according to the following test:

T
H1

≷
H0

γ, (5.82)

i. e., if the test statistic is higher than the threshold γ, the detector decides that a PU
signal is present. If it is lower, the detector decides that there is no PU signal present.

Maximum-Minimum-Eigenvalue (MME) Detector We denote the maximum - and
minimum eigenvalue of R̂x(Ns) as λ̂max and λ̂min respectively. The MME detector as
introduced in [16] is given by

TMME =
λ̂max

λ̂min

H1

≷
H0

γMME. (5.83)

Maximum-Eigenvalue-Trace (MET) Detector The MET detector has initially been
introduced in [46]. It can be written as

TMET =
λ̂max

Tr(R̂x(Ns))

H1

≷
H0

γMET, (5.84)

where Tr(·) stands for the trace operation. Note, that for a square matrix A,

Tr(A) =
∑
i

aii =
∑
i

λi(A). (5.85)

Cholesky-Factorization-Squares (CFS) Detector Considering the Cholesky factoriza-
tion R̂x(Ns) = Q̂TQ̂, the CFS detector introduced in [47] is defined as

TCFS =

∑
1≤i≤j≤ML q̂

2
ij∑

1≤i≤ML q̂
2
ii

H1

≷
H0

γCFS, (5.86)

where q̂ij is the (i, j)-th element of Q̂.
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Quadratic Sphericity Test (QST) Given the ordered eigenvalues of R̂x(Ns) as

λ̂max = λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂ML = λ̂min, (5.87)

the QST as described in [48] is given as

TQST =

√∑
1≤i≤ML λ̂

2
i∑

1≤i≤ML λ̂i

H1

≷
H0

γQST. (5.88)

5.2.3 Introduction of MMME and DME

In this section we propose two new eigenvalue-based test statistics for spectrum sensing.

Maximum-Minus-Minimum-Eigenvalue (MMME) Detector Consider the ordered eigen-
values λ1, . . . , λML of the statistical covariance matrix Rx as well as the ordered eigen-
values ρ1, . . . , ρML of HRsH

H analogous to (5.87). The MME detector (5.83) is based
on the idea that since λn = ρn + σ2, it holds that λ1

λML
= 1 for H0 (if no PU signal is

present, ρi = 0|ML
i=1 ) and λ1

λML
> 1 for H1.

As the authors of [45] find, choosing L large enough leads to ρML = 0 even if a PU signal
is present. Taking this into account and including the estimation noise caused by the
finite amount of samples gathered, we can express the detector’s test statistic as

TMME,H1 =
λ̂1

λ̂ML

=
ρ1 + σ2 + ε1
σ2 + ε2

=
σ2 + ε1
σ2 + ε2

+
ρ1

σ2 + ε2
,

TMME,H0 =
λ̂1

λ̂ML

=
σ2 + ε3
σ2 + ε4

,

(5.89)

where −ε ≤ εi ≤ ε|i∈{1,2,3,4} models the perturbation of the eigenvalues. The estimation
noise vanishes for high Ns, i. e., lim

Ns→∞
ε = 0. Thus, we can see that on top of the

estimation noise, the MME detector is affected by the SNR. The lower the SNR, the
lower ρ1/σ

2.

To tackle this disadvantage, we propose the MMME detector as a modification of the
MME detector. Its test statistic is given as

TMMME = ln

(
eλ̂max

eλ̂min

)
= λ̂max − λ̂min

H1

≷
H0

γMMME (5.90)
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Note that the ln(·) has no influence on the detector’s performance. Investigating this
detector, we find that

TMMME,H1=ln

(
eλ̂1

eλ̂ML

)
=ln

(
eρ1+σ2+ε1

eσ2+ε2

)
=ρ1 + ε1 − ε2,

TMMME,H0=ln

(
eλ̂1

eλ̂ML

)
=ln

(
eσ

2+ε3

eσ2+ε4

)
=ε3 − ε4,

(5.91)

which shows that asymptotically (εi → 0|i∈{1,2,3,4}), the detector is independent of the
SNR.

Difference-of-Means-of-Eigenvalues (DME) Detector A typical strategy to diminish
noise is to average over multiple values. Neither the MME -, nor the MMME detector
exploits this. Both only make use of two of the ML available eigenvalues. Building
on the idea of the MMME detector, we implement this concept by proposing the DME
detector as

TDME(N1)=
1

N1

N1∑
i=1

λ̂i −
1

ML−N1

ML∑
i=N1+1

λ̂i
H1

≷
H0

γDME. (5.92)

The choice of N1 comes down to a tradeoff between multiple objectives. In order to
achieve a good detection performance, it would generally be favorable to minimize the
overlap between the PDF of TDME,H0 and the PDF of TDME,H1 . In fact, if the overlap of
the two PDFs was zero and a way of setting the correct decision threshold was known,
perfect detection could be achieved. When setting N1, we are thus interested in min-
imizing the mean of TDME,H0 as well as maximizing the mean of TDME,H1 . We should
also try to minimize the respective variances of TDME,H0 and TDME,H1 . An empirical
evaluation of these objectives is given in Section 5.2.4.

5.2.4 Numerical Evaluation

For the simulation, we consider a scenario exhibiting the parameters given in Table 5.3.
For each of the Monte Carlo realizations, a random BPSK signal for each PU, a random
Gaussian distributed channel and random noise is generated.

In Figure 5.8, the mean of TDME over the Monte Carlo realizations is plotted for different
SNRs in the case where a PU signal is present (H1) as well as in the case where no PU
signal is present (H0). Recall that while making the choice of N1 we try to minimize
TDME in the case of H0, but try to maximize it in the case of H1.

What we can see in Figure 5.8 is that the lower the SNR, the closer the H1-curve comes
to the H0-curve. We also see, that the lower the SNR, the more closely the H1-curve
resembles the H0-curve in its shape. These effects are brought along by the decreasing
influence of the signal eigenvalues in the test statistic caused by a decreasing SNR. The
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Figure 5.8: Mean of TDME(N1) over 104 Monte Carlo realizations for different SNRs in
the case of a present PU signal (H1) as well as in the case of noise only (H0).
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Figure 5.9: Variance of TDME(N1) over 104 Monte Carlo realizations for different SNRs
in the case of a present PU signal (H1) as well as in the case of noise only
(H0).
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Table 5.3: Scenario parameters

Parameter Symbol Value(s)

Number of PUs P 2
Number of receive antennas / collab. CRs M 4
Channel order Nc 9
Smoothing factor L 8
Number of symbols Ns 105

Number of Monte Carlo realizations 104

figure gives us a clear picture of the forces, which have to be traded off against each
other. In order to minimize TDME,H0 , N1 would have to be chosen to be roughly ML

2 .
However, even for low SNRs N1 has to be set to 1 to maximize TDME,H1 .

As we can see in Figure 5.9, minimizing the variance of TDME,H0 can again be achieved
by choosing N1 ≈ ML

2 . Regarding the minimization of the variance of TDME,H1 , the
higher the SNR, the higher N1 has to be chosen. For very low SNRs it is approximately
the same as for TDME,H0 .

The right choice of N1 has a large effect on the performance of the DME detector. Thus,
it would be advantageous to have an analytic way of setting it optimally.

In Figure 5.10, the performance of the two new detectors is compared against other
detectors from the literature. For the scenario used in the simulation, the optimal
choice of N1 empirically turned out to be 8. The figure shows the receiver operating
characteristic (ROC) of the detectors at an SNR of −20 dB. We observe, that the DME
detector shows the highest probability of detection (Pd) for all probabilities of false alarm
(Pfa). What can also be seen, is that although the MMME detector is weaker than the
top contenders, it clearly outperforms the MME detector.

5.2.5 Conclusion

In this section, we have introduced two new eigenvalue-based detectors for spectrum
sensing, the maximum-minus-minimum-eigenvalue (MMME) detector and the difference-
of-means-of-eigenvalues (DME) detector. We have discussed the respective ideas behind
them and have investigated the tradeoff leading to an optimal parameter choice for
the DME test statistic. Finally, we have numerically evaluated the performance of the
two new detectors in comparison to other detectors. Based on the MME detector, the
MMME detector improves upon the performance of its origin, while the DME detector
shows the best performance of all considered detectors.

Since the choice of the DME detector’s parameter heavily influences its performance, an
interesting research direction would be to find an analytic way of obtaining the optimal
parameter. It would also be of great value to have analytic expressions for the new
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Figure 5.10: Receiver operating characteristics of DME (5.92) with N1 = 8, QST (5.88),
CFS (5.86), MMME (5.90), MET (5.84) and MME (5.83) at an SNR of −20
dB.

detectors’ PDFs under H0. For MMME, this has been accomplished in [22], while for
DME this is still an open problem.
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6 Energy Detection

The energy detector, also called radiometer is one of the earliest and most basic spectrum
sensing algorithms. Its analysis dates back to at least 1967, when Harry Urkowitz pub-
lished the landmark paper [36]. The detector consists of measuring the energy contained
in a received signal and comparing it to a fixed threshold. Depending on the receiver
noise characteristics, the H0 PDF, which is used for setting the threshold according to a
desired false alarm rate, is assumed to follow a chi-squared or a Gaussian distribution.
The detector’s biggest drawback is its performance degradation under noise uncertainty,
as analyzed in [29].

In this chapter, we consider the problem of sensing a sparsely occupied wideband spec-
trum utilizing a set of spatially distributed sensing nodes as well as a fusion center.
Exchange of measurement data between the sensing nodes and the fusion center takes
up parts of the scarce radio spectrum and thus, methods for reducing the minimum
amount of measurements still ensuring a reliable reconstruction of the spectrum at the
fusion center are needed. To this end we propose two approaches in the form of convex
optimization problems to tackle the problem. The first approach applies classic com-
pressed sensing, while the second one improves the optimization problem such that the
measurements from all sensors, which have been acquired in a distributed manner, can
be taken into consideration in a single spectrum recovery operation. This makes it pos-
sible to exploit the inherent diversity gain stemming from the spatial distribution of the
sensors.

Parts of the present chapter have been published in [18].

6.1 Motivation and Prior Work

As pointed out in Section 3.3, reliable spectrum sensing can only be accomplished in
a distributed manner due to the effects of path loss and fading as experienced in all
wireless communication settings. Distributed spectrum sensing makes it necessary to
share either local sensor decisions or measurement data, which in turn claims some of
the spectral resources that are to be used by actual wireless services. In this chapter
we consider the case of measurement sharing. Our goal is to minimize the number of
measurements, which have to be shared for reliable spectrum sensing.

Due to the underutilization of the wireless spectrum [3, 4], a wideband signal acquired
for the purpose of spectrum sensing can be assumed to be only sparsely occupied in the
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frequency domain, which can be taken advantage of in the process of signal acquisition
by the means of CS. In the present application, the advent of CS means that a sparse
frequency spectrum can be acquired by taking an amount of time-domain samples dras-
tically smaller than necessary when conducting traditional Nyquist-rate sampling and
recovering the signal of interest from these.

A rich literature exists in the field of spectrum sensing via compressed sensing. One
example of this is the paper by Tian [82] in which the author proposes a system of spa-
tially distributed CRs that undersample the spectrum in the time domain and exchange
measurement data in a one-hop fashion to benefit from the spatial diversity gain which
helps increase the reliability of the system and fight channel fading effects. Making use
of the distributed average consensus algorithm presented in [83], each CR is in possession
of the collective view of the spectrum after a number of iterations. In [17] the authors
have proposed a spectrum sensing algorithm based on a method called matrix comple-
tion (MC) [84, 85], a data acquisition scheme similar to CS that exploits the low-rank
property of matrices to recover them from incomplete data. Their system assumes the
spectrum occupation to change only slowly in time and takes advantage of this by intro-
ducing a sliding window algorithm that takes measurements of previous sensing cycles
into account during the recovery of the current signal.

In this chapter, two approaches for recovering the spectrum from an incomplete set of
measurements are introduced. The first one is similar to the one introduced in [82]
and serves as a benchmark for the second approach. It employs classic compressive
sampling and subsequent signal fusion. In contrast to [82], our first approach only
considers a single transmitter emitting a signal instead of several ones. In order to
reduce the necessary amount of known samples even further while still guaranteeing a
reliable spectrum recovery, we propose a novel approach. It consists of an optimization
problem for recovering the spectrum in a way that makes it possible to take into account
the measurements of all collaborating CRs in a single recovery operation. This unleashes
the diversity gain inherent in the samples supplied by the spatially distributed sensing
nodes and thus allows us to make optimal use of the available knowledge. Another
substantial difference to [82] is, that we evaluate the case where the channel coefficients
are known to the system sensing the spectrum. While the authors of [82] also mention
this case, they focus on the scenario where the collaborating CRs are not in possession
of any channel knowledge.

6.2 Signal Model

A wide frequency-band containing nsc non-overlapping sub-channels is considered. The
sub-channels occupy equal parts of the band. These parts are narrow and thus, the
frequency-selective fading can be considered to be flat for each of them.

The licensee of the spectrum, transmits a frequency-domain signal f ∈ Cnsc containing
one coefficient per sub-channel. The signal is k-sparse, meaning that only k of its nsc
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entries are non-zero. The sparsity represents the underutilization of the spectrum. While
the partitioning of the band is fixed and known, the amplitudes and phases on the sub-
channels change over time.

A set of ncr geographically distributed cognitive radios is deployed to sense the signal so
that a fusion center (FC) can reconstruct the signal f , as observed at the transmitter,
as accurately as possible from the CRs’ measurements.

The signal sensed by CR i for i = 1, ..., ncr is given by

f̃ i = Hif + ni, (6.1)

where Hi ∈ Cnsc×nsc is a diagonal channel matrix, the entries of which are distributed
according to a Rayleigh distribution. The entry [Hi]jj represents the signal attenuation
that CR i experiences on channel j. The entries of the noise vector ni are independent
and identically distributed (i.i.d.) Gaussian random variables with mean zero and vari-
ance σ2. The CRs are assumed to have knowledge of their respective channel matrix
Hi.

In order to keep the amount of sampled data which has to be sent to the FC as small
as possible, the CRs employ CS, meaning that they undersample the spectrum in the
time domain, i. e., CR i takes m� nsc randomly distributed samples of the time-domain
signal vector

t̃i = F−1
nsc

f̃ i, (6.2)

where F−1
nsc

stands for the IDFT matrix of size nsc × nsc. Each CR transmits m time-
domain samples to the FC. These are selected in the following way:

t̂i = Mit̃i, (6.3)

where Mi ∈ {0, 1}m×nsc denotes the selection matrix consisting of m randomly chosen
rows of the nsc × nsc identity matrix. Note, that all matrices Mi are known to the FC.

The setup is illustrated in Figure 6.1.

6.3 Optimization Problems

To accomplish the collective objective, i. e., reconstruct f from the measurements, we
propose two approaches, both of which employ `1-minimization.

6.3.1 First Approach: Separate Reconstruction and Fusion

In the first approach, the basic compressive sampling problem is solved for the measure-
ments of each CR separately. This approach is similar to the one proposed in [82]. In
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Figure 6.1: System model.

the present chapter, it serves as a benchmark against which our novel approach is com-
pared. For the data received from CR i, the FC solves the following convex optimization
problem:

minimize
f̊ i

∥∥∥̊f i∥∥∥
1

subject to
∥∥∥MiF

−1
nsc

Hi̊f i − t̂i

∥∥∥
2
≤ εs,

(6.4)

where ‖·‖1 is the `1-norm defined by

‖z‖1 =

nz∑
j=1

|zj | (6.5)

given some vector z ∈ Cnz and ‖·‖2 stands for the `2-norm, i. e.,

‖z‖2 =

nz∑
j=1

|zj |2. (6.6)

The constant εs bounds the amount of expected noise energy in the signal.

The reconstructed spectra f̊
?

i are subsequently fused by the means of equal gain com-
bining:

f̊ =
1

ncr

ncr∑
i=1

f̊
?

i . (6.7)

Here, the star ? marks the solution to an optimization problem, i. e., f̊
?

i is the solution to
(6.4). The vector f̊ is the reconstruction of the frequency-domain signal as observed at
the transmitter, i. e., in a scenario with ni = 0 for all i, a perfect reconstruction would
yield f̊ = f .
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6.3.2 Second Approach: Combined Reconstruction

In the new approach, all available measurements are taken into account in a single
combined reconstruction of the spectrum in order to make better use of the diversity
gain inherent in the available data due to the spatial distribution of the sensors. Instead
of solving the optimization problem separately for each CR’s data, the optimization
problem is modified so that the `1-minimization directly recovers the primary user’s
signal from all measurements the FC has received.

In order to do so, we first define the matrix of time domain samples given by

T̃ = [t̃1, ..., t̃ncr ], (6.8)

in which each column represents the time-domain signal observed at one of the CRs.
Furthermore, we define the sampling set Ω. It has the cardinality m and is comprised of
the indices of the entries of T̃ that are to be sampled by the respective CRs. We define
the sampling operator PΩ : Cnsc×ncr → Cnsc×ncr as follows. Given a matrix X,

[PΩ(X)]ij =

{
[X]ij if (i, j) ∈ Ω,
0 otherwise.

(6.9)

Making use of the previous definitions, the measurements available at the FC can be
written as

T̂ = PΩ(T̃). (6.10)

Finally, we define the concatenated channel matrix as

H̄ = [H1, ...,Hncr ]. (6.11)

The resulting convex optimization problem which has to be solved by the FC is given
by

minimize
f̊

∥∥∥̊f∥∥∥
1

subject to
∥∥∥PΩ(F−1

nsc
H̄(Incr ⊗ f̊))− T̂

∥∥∥
2
≤ εc,

(6.12)

where Incr is the identity matrix of size ncr and ⊗ denotes the Kronecker product. Note
that since this optimization problem takes into account the measurements of all CRs,
no fusion is necessary and f̊ is the final reconstruction of the primary user’s signal.

Since both optimization problems are convex, the solution can be computed efficiently.
Note that, for a single cognitive radio, the optimization problems of the two approaches
are equivalent.
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6.4 Numerical Evaluation

In this section, the two approaches are compared via simulation, employing the param-
eters given in Table 6.1. For the purpose of solving the convex optimization problems,
the CVX software package [86] has been used.

The non-zero entries of f are generated randomly according to a zero-mean circularly-
symmetric complex Gaussian distribution. The channel coefficients are distributed ac-
cording to a Rayleigh distribution with standard deviation γ = 1 and the noise vectors
contain entries which are distributed according to a circularly-symmetric complex stan-
dard Gaussian distribution. The variance of the signal values is defined by the respective
SNR, where the SNR is defined as the signal energy of the wideband signal over the entire
spectrum divided by the overall noise energy (again over the entire spectrum).

Table 6.1: Scenario parameters

Parameter Symbol Value(s)

Number of frequency subchannels nsc 100
Number of occupied subchannels k 10
Number of CRs ncr {1, 3, 5, 7, 9}
Signal to noise ratio (SNR) SNR {0, 5, 10, ..., 40} dB
Undersampling factor m

nsc
{3, 5, 7, 10, 20, 30, 40, 50}%

Number of Monte Carlo instances 1000

We define the normalized root mean squared error (NRMSE) as

eNRMSE =

√
‖f−̊f‖2

2
nsc√
‖f‖22
nsc

=

∥∥∥f − f̊
∥∥∥

2

‖f‖2
. (6.13)

The NRMSE caused by undersampling the signal with 20 and 50 of the 100 Nyquist-rate
samples respectively is depicted in Figure 6.2 and Figure 6.3.

The two figures show the resulting NRMSE for various numbers of collaborating CRs
with respect to the SNR. Note that the two approaches are equivalent for the case where
only a single cognitive radio is utilized and that therefore the corresponding curves in
the graph completely overlap.

As expected, decreasing the amount of noise in the system yields a better reconstruction
result in all situations since the reconstruction is compared to the original noiseless pri-
mary user signal. However, in the heavily undersampled case, i. e., 20 samples per signal
recovery, the NRMSE resulting from applying the separate reconstruction and subse-
quent fusion decreases much slower for decreasing noise than the NRMSE of the second
approach. The more samples are available, the smaller the difference in performance
between the two methods.
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Figure 6.2: NRMSE of reconstructing the primary user’s signal utilizing various numbers
of collaborating CRs taking 20 (= nsc

5 ) samples each.
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Figure 6.3: NRMSE of reconstructing the primary user’s signal utilizing various numbers
of collaborating CRs taking 50 (= nsc

2 ) samples each.
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Figure 6.4: NRMSE of reconstructing the primary user’s signal for various SNRs utilizing
3 collaborating CRs.
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Figure 6.5: NRMSE of reconstructing the primary user’s signal for various SNRs taking
30 (= 0.3nsc) samples per CR.
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Figure 6.6: NRMSE of reconstructing the primary user’s signal from the measurements
of a single CR utilizing various numbers of samples.

In Figure 6.4 we observe how the error-behavior of recovering the primary user’s signal
depends on the number of samples that are taken into consideration per CR. For this
we use a fixed number of cognitive radios and different signal to noise ratios. We can see
that the combined recovery approach makes much better use of the samples available at
the FC.

Figure 6.5 shows how the two approaches perform when the number of collaborating
CRs changes while the number of samples per CR is fixed at 30. Again, since the two
methods are equal for a single cognitive radio, their error performance is the same in
this case. However, when the number of collaborating CRs is increased, the method
employing the combined reconstruction constantly outperforms the method doing the
reconstruction separately.

Another interesting effect is found in the observations depicted in Figure 6.6. The figure
shows the error performance of the reconstruction from measurement data of a single
CR in different SNR regions. As one would obviously expect, increasing the number of
samples available for the signal recovery decreases the RMSE. However, an interesting
observation directly visible in the figure is, that in terms of decreasing the RMSE, the
more samples we take into consideration the less gain we experience from every additional
sample. Although the number of samples used for the signal recovery increases by the
same amount from line to line, the distance between two adjacent lines becomes smaller
as the number of samples goes up.
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In reverse this means, that the first samples are the most valuable ones.

The reconstruction of the spectral coefficients using the combined knowledge of all CRs
yields a high diversity gain in contrast to the separate reconstruction and subsequent
fusion. The reason for this is that in the separate reconstruction, the diversity gain
is only exploited at the fusion stage, while in the combined reconstruction the whole
recovery process gains from all available information.

6.5 Conclusion

In this chapter we have proposed two approaches for the purpose of reducing signaling
overhead between a set of spatially distributed cognitive radios and a fusion center which
collaboratively try to estimate a signal transmitted by a primary user for subsequent use
in a detection algorithm. Both recovery algorithms have been formulated as convex
optimization problems in order to make the signal reconstruction from a small subset
of time-domain samples tractable, where the first approach applies actual compressive
sampling and the second approach consists of a modified optimization problem designed
to reduce the number of necessary samples even further. Both approaches have been
shown to be viable through a numerical simulation, the results of which have been
discussed for their different dimensions. Finally, the outcomes are explained.
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In this chapter we present the software framework that is used for most numerical eval-
uations presented in this thesis. In order to ensure flexibility and code reusability we
chose an object-oriented architecture. As a programming environment MATLAB was
selected. The reason for this is twofold: first, the syntax of the MATLAB programming
language provides a concise way of implementing math-heavy applications, especially
ones that contain a lot of linear algebra; second, MATLAB has an extensive ecosystem,
including the Communications System Toolbox, which simplifies standard tasks in the
development of spectrum sensing simulations.

The initial idea for the framework was to be modular such that monolithic code bases
are avoided, since they are hard to extend and maintain. The advantages gained by the
choice of a modular approach become apparent in the course of the chapter. The frame-
work consists of different types of building blocks, which we call components. These
components can be configured with different parameters and subsequently be put to-
gether to build a complete spectrum sensing simulation. An overview of the different
software entities involved is given in Figure 7.1. Detailed descriptions of the purpose
and features of those entities is provided in the following sections.

7.1 Components

The components contain the simulation specific functionality of the framework. In or-
der to run a spectrum sensing simulation, different types of components, like, e. g., a
signal source and a detection algorithm are necessary. An in-depth explanation of these
different types of components is given in the following subsections.

7.1.1 Source

The framework’s main purpose is to provide a reconfigurable system for doing Monte
Carlo simulations that assess the performance of block-based spectrum sensing algo-
rithms. Block-based spectrum sensing means that a sensor collects a block of consecu-
tive time-domain samples, calculates a test statistic value from these and compares this
value against a pre-specified threshold to decide between the two hypotheses, the one
that a spectral band is free and can be utilized (H0), and the one that a PU signal is
present in the band of interest such that the SU should refrain from accessing it (H1).
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EXPERIMENT

configure

run

MAIN LOOP

get samples

save samples

run detectors

save results

display samples / results

COMPONENTS

Source

Samples file

DETECTOR LIST

D1 D2 . . . Dn

Results file

DISPLAY LIST

G1 G2 . . . Gn

Figure 7.1: Block diagram providing an overview of the inner workings of the spectrum
sensing simulation framework.
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In the framework, the blocks of samples that are to be processed by the sensors are
provided by the source component. Different sources can be implemented to reflect
the different types of signal models considered in wireless communications. The sources
can differ regarding the signal waveform, e. g., linearly modulated, orthogonal frequency-
division multiplexing (OFDM), spread-spectrum coding, the implementation of a channel
model, the type of receiver noise and signal properties like the modulation space and
pulse shapes.

The source is expected to be configurable regarding the number of samples per block and
the SNR of the emitted signal at the receiver(s) as well as a random number generator
seed, which guarantees that simulations can be reproduced exactly.

The typical source generates the receiver signal randomly. However, two special sources
that have been implemented are an exception to this rule. The first one is the Universal
Software Radio Peripheral (USRP) source. It acts as an interface between the framework
and a USRP device, which provides the source with the blocks of samples it emits. The
source supports configuring the different run-time parameters of the USRP hardware,
such as the center frequency of the sensed band. The second special source is the playback
source. The framework supports saving the blocks of samples emitted by a source to a
file. This file can be played back at a later simulation such that situations can be exactly
reproduced, which is especially useful when working with samples from the USRP.

7.1.2 Detector

The detector component is the place where the actual spectrum sensing algorithms are
implemented. For each block of samples that is provided to a detector, it computes a
test statistic and compares it to a pre-defined threshold. Subsequently, it assembles a set
of results consisting of everything that might be of interest for an eventual performance
analysis and returns it.

The detector benefits from the object-oriented architecture of the framework, since de-
tectors that are similar to each other can share code, e. g., signal processing routines, in
a common parent class.

7.1.3 Display

The display component provides the user of the framework with real-time information
about a simulation at run-time. It is provided with the results of all detectors as well as
with the block of samples such that it has access to all relevant information regarding
the simulation.

One example of a display is one that simply displays the PSD of the current block of
samples. Another one calculates the cyclic autocorrelation (CA) of the block of samples
and displays it for different time delays. An example of a display that provides the user
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with information gained from the detectors’ results is one that shows the histograms of
the empirical test statistics of the different detectors and updates them for each new
block of samples that is processed.

Using these displays, the user of the framework can quickly experiment with different
parameters before starting a long-running Monte Carlo simulation or check if the USRP
system is working as expected.

7.2 Main Loop

The main loop is the part of the framework that connects all components and routes the
data to the places where it is processed. Each iteration of the main loop stands for one
block of samples, i. e., one Monte Carlo instance of the spectrum sensing simulation.

For each block of samples it first lets the source generate the actual samples. Depending
on the simulation configuration it then saves the block to a file for later reproduction
of the simulation. A simulation can be set up to compare multiple different spectrum
sensing algorithms, which are represented by objects in a detector list. The main loop
lets each of these detectors run their detection routine on the same block of samples. This
ensures that when comparing the performance of different detectors, they are not only
assessed with input that was generated from the same model with the same statistical
properties but with the exact same data. After saving the results of all detectors to files
for later evaluation, it provides each of the displays in the display list with the data from
the current iteration, i. e., the block of raw samples as well as the results of the detectors,
such that the displays have access to all information necessary to update what is shown
to the user.

The main loop defines a fixed process that is executed in every spectrum sensing simula-
tion. Its implementation is fixed and should not need to be changed from simulation to
simulation. One of the advantages of this concept is that the basic course of actions all
spectrum sensing simulations go through does not have to be implemented or adapted
for each simulation anew, which saves time and reduces the potential for bugs in the
code. Another benefit of its fixed nature is that interfaces stay fixed over a long time,
which makes the existing components like detectors and sources more long-lived.

7.3 Experiments

An experiment describes a simulation. While the main loop and the components are
configurable, the experiment contains all the necessary parameters. In the first part of
an experiment, the components that are to be used in the simulation are selected and
configured with a set of parameters. In the second part, the main loop is executed with
these settings.
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This architecture makes it very easy to reuse already written code and compare differ-
ent algorithms or signal models. For instance, adding a detector to the comparison or
changing the signal that is to be detected each is a change of a single line in the exper-
iment and does not touch the actual implementation of said components. Separating
the algorithms, i. e., the components and the main loop, from the parameters and the
configuration, i. e., the experiment, facilitates the reusability of the code and reduces
the potential for making errors when modifying code. To run a simulation with a given
set of parameters to compare the performance of a given set of detectors on a given
type of signal, the only file that has to be edited is the experiment, which facilitates the
overall stability of the simulation code. This also means that especially when working
together in a team, it is easy to track which persons made changes to which part of the
simulation, again reducing the potential for making mistakes. When a new detector or
a new source is implemented, this is independent of all other parts of the code.

Another advantage of experiments is that they can be archived, which enhances repro-
ducibility. To test a new set of parameters, one can create a new experiment, leaving
past experiments intact.

7.4 Conclusion

A spectrum sensing simulation framework has been developed to facilitate the numerical
evaluation of the algorithms proposed in this thesis. It has a modular architecture,
which benefits the code stability by dividing the code in small logical units, such that
when a component is created or modified, most files belonging to the simulation are left
unchanged. Another benefit of the modular nature of the framework is that the code of
components, like signal sources or detection algorithms, is made highly reusable. The
separation of algorithms and data as well as the configurability facilitated by the use
of experiment files leads to ease of comparison of different spectrum sensing algorithms
and different parameter sets.
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8 Conclusions

8.1 Summary

Reliable spectrum sensing is the main enabler for opportunistic access to the underuti-
lized wireless spectrum. The task of a spectrum sensing algorithm is to decide between
two hypotheses, the one that the spectral band under observation is free and can be
used by a secondary system (H0), and the one that the primary system is transmitting
on the band, such that the secondary system needs to refrain from accessing it (H1).
The goal in the design of spectrum sensing algorithms is to maximize the probability
of detecting a present primary system transmission (probability of detection Pd) given
a fixed probability of wrongly determining the band under observation to be occupied
when it is not (probability of false alarm Pfa). In the case of a missed detection, i. e.,
when the primary system is transmitting but the spectrum sensing algorithm decides
that the band is free, the secondary system might also start a transmission, by which it
might disturb the primary system. When a false alarm happens, the secondary system
misses a chance to use the spectrum. In this thesis, contributions have been made to
three types of spectrum sensing algorithms.

The first type of spectrum sensing we consider is cyclostationarity detection. Cyclo-
stationarity is a stochastic feature present in all man-made signals, e. g., wireless com-
munication signals, but is absent in pure stationary noise. Due to this property it can
be used to decide between H0 and H1, which makes it a good fit for spectrum sensing.
The problem arising is that in order to determine the presence or absence of cyclosta-
tionarity in a received signal, it has to be known beforehand which cycle frequency is
affected. In blind spectrum sensing it is assumed that the secondary system possesses
no knowledge about the primary system signal, which, for the above reasons, rules out
the use of cyclostationarity. Based on methods from the field of compressed sensing, two
algorithms for tackling this problem are proposed. In a second step, a modification of
the time-domain test (TDT) is devised to estimate the test statistic. This modification
is necessary to work around the problem that when using the compressed sensing CA
estimation algorithms, information required for estimating the spectrum sensing test
statistic is lost. Furthermore, to assess the CA estimation performance of the aforemen-
tioned algorithms, a closed-form expression of the discrete-time cyclic autocorrelation of
linearly modulated signals with a rectangular pulse shape is derived.

Eigenvalue-based spectrum sensing builds on the idea that a communication signal in-
duces either correlation in time or correlation between different receivers, while pure
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i.i.d. noise does not. The eigenvalues of a received signal’s covariance matrix are used to
define various test statistics for spectrum sensing. One of these is the condition number
used in the maximum-minimum-eigenvalue (MME) detector. The MME detector is inde-
pendent of uncertainty regarding the receiver noise power. In contrast, this uncertainty
has been shown to lead to an SNR-wall in the energy detector. An SNR-wall constitutes
the SNR-value that separates the regime where a detector can robustly detect a primary
system signal and the regime where it cannot. Obviously, not exhibiting an SNR-wall
is a desired feature of spectrum sensing algorithms. Unfortunately, the MME detector
does not possess this feature. Indeed, in this work we show that the MME detector
suffers from an SNR-wall induced by uncertainty regarding the amount of coloring of
the receiver noise. A lower bound on this SNR-wall is derived and examples for differ-
ent types of covariance matrices are given. Moreover, it is shown that low amounts of
man-made impulsive noise already lead to enough uncertainty in the noise coloring that
an SNR-wall considerably far above the desired regime of operation is brought about.
Furthermore, two new test statistics for spectrum sensing based on the eigenvalues of
the received signal’s covariance matrix are proposed.

One of the oldest test statistics used in spectrum sensing is the received signal power. The
corresponding method goes by the name of energy detection. It consists of measuring
the received energy in a spectral band and comparing it to a predefined threshold. One
of the problems occurring in spectrum sensing is the so-called hidden terminal problem,
which leads to an SNR between the active node of the primary system and the secondary
system sensor that is too low for reliable detection. In order to avoid the problem, a set of
spatially distributed sensors is deployed. To exploit the spatial diversity, the sensors have
to transmit either a local decision on the spectrum occupancy or their measurement data
to a fusion center for combined analysis and decision making. To minimize the resulting
overhead in spectrum usage, compressed sensing methods are utilized.

Finally, the architecture of the simulation framework used for most numerical evaluations
presented in this work is described. It facilitates the reuse of code and benefits its
stability.

8.2 Outlook

One task of special interest for future research is proving the existence of SNR-walls for
new kinds of spectrum sensing algorithms. While the literature has seen proofs for the
energy detector, the matched filter detector, the cyclostationarity detector, and (in this
thesis) the eigenvalue-based MME detector, it is conjectured that all spectrum sensing
algorithms suffer from this shortcoming. Facing this problem and analyzing the severity
of these deficiencies would greatly benefit the comparability of the algorithms.

Another topic that should be considered is the derivation of closed-form expressions for
the cyclic autocorrelation of different types of signals. While there is a rich literature on
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the topic, it is not comprehensive. These closed-form solutions are crucial for assessing
the performance of CA estimation algorithms.

The use of compressed sensing in spectrum sensing is still in its infancy. Thus, all areas
of the field should be investigated regarding a possible beneficial application of CS. While
bounds for the performance of compressed sensing in the estimation step of spectrum
sensing are known, it would be interesting to have bounds that span the whole spectrum
sensing process, e. g., it would be interesting to have a bound that directly links the
detection performance to the compression rate.
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Acronyms

AWGN additive white Gaussian noise.

BP basis pursuit.
BPDN basis pursuit denoising.
BPSK binary phase shift keying.

CA cyclic autocorrelation.
CFAR constant false alarm rate.
CoSaMP compressive sampling matching pursuit.
CR cognitive radio.
CS compressed sensing.

DC direct current.
DFT discrete Fourier transform.
DICE dictionary assisted CA estimator.
DME difference-of-means-of-eigenvalues.

FC fusion center.
FSS fixed sample size.

GLR generalized likelihood ratio.

HTP hard thresholding pursuit.

IDFT inverse discrete Fourier transform.
IHT iterative hard thresholding.
IoT Internet of Things.

JPEG Joint Photographic Experts Group.

M2M machine to machine.
MC matrix completion.
MME maximum-minimum-eigenvalue.
MMME maximum-minus-minimum-eigenvalue.
MPEG Moving Picture Experts Group.
MSE mean squared error.
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Acronyms

MWC modulated wideband converter.

NRMSE normalized root mean squared error.
NSP null space property.

OFDM orthogonal frequency-division multiplexing.
OMP orthogonal matching pursuit.
OSA opportunistic spectrum access.

PD probability distribution.
PDF probability density function.
PSD power spectral density.
PU primary user.

QCBP quadratically constrained basis pursuit.
QD quickest detection.

RIP restricted isometry property.
ROC receiver operating characteristic.

SC spectral correlation.
SCM slot comparison method.
SM symmetry method.
SNR signal-to-noise ratio.
SOBER SOMP-based CA estimator.
SOMP simultaneous orthogonal matching pursuit.
SP spectrum pooling.
SU secondary user.

TDT time-domain test.

USRP Universal Software Radio Peripheral.
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Blind Coarse Wideband Sensing: Comparative Performance Study,” in Interna-
tional Symposium on Wireless Communication Systems (ISWCS), Aug. 2015.

[22] M. Arts, A. Bollig, and R. Mathar, “Analytical test statistic distributions of the
MMME eigenvalue-based detector for spectrum sensing,” in International Sympo-
sium on Wireless Communication Systems (ISWCS), Aug. 2015.

[23] A. Bollig, M. Arts, A. Lavrenko, and R. Mathar, “Compressive Cyclostationary
Spectrum Sensing with a Constant False Alarm Rate,” 2016, submitted for review.
[Online]. Available: https://arxiv.org/abs/1610.04027

[24] A. Bollig, C. Disch, M. Arts, and R. Mathar, “SNR-Walls in Eigenvalue-
based Spectrum Sensing,” 2016, submitted for review. [Online]. Available:
https://arxiv.org/abs/1610.03892

110

https://arxiv.org/abs/1610.04027
https://arxiv.org/abs/1610.03892


Bibliography

[25] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing.
Springer, 2013.

[26] A. Wald, Sequential analysis. John Wiley & Sons, 1947.

[27] H. V. Poor and O. Hadjiliadis, Quickest detection. Cambridge University Press,
2008.

[28] M. Basseville, I. V. Nikiforov, and others, Detection of abrupt changes: theory and
application. Prentice Hall Englewood Cliffs, 1993.

[29] A. Sonnenschein and P. Fishman, “Radiometric detection of spread-spectrum sig-
nals in noise of uncertain power,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 28, no. 3, pp. 654–660, Jul. 1992.

[30] R. Tandra and A. Sahai, “SNR Walls for Signal Detection,” IEEE Journal of Se-
lected Topics in Signal Processing, vol. 2, no. 1, pp. 4–17, Feb. 2008.

[31] ——, “SNR Walls for Feature Detectors,” in IEEE International Symposium on
New Frontiers in Dynamic Spectrum Access Networks (DySPAN), Apr. 2007, pp.
559–570.

[32] S. M. Kay, Fundamentals of Statistical Signal Processing, Vol. II: Detection Theory.
Prentice Hall, 1998.

[33] T. Yücek and H. Arslan, “A Survey of Spectrum Sensing Algorithms for Cognitive
Radio Applications,” IEEE Communications Surveys Tutorials, vol. 11, no. 1, pp.
116 –130, Mar. 2009.

[34] Y. Zeng, Y.-C. Liang, A. T. Hoang, and R. Zhang, “A Review on Spectrum Sensing
for Cognitive Radio: Challenges and Solutions,” EURASIP Journal on Advances
in Signal Processing, vol. 2010, Jan. 2010.

[35] E. Axell, G. Leus, E. Larsson, and H. Poor, “Spectrum Sensing for Cognitive Radio :
State-of-the-Art and Recent Advances,” IEEE Signal Processing Magazine, vol. 29,
no. 3, pp. 101–116, May 2012.

[36] H. Urkowitz, “Energy Detection of Unknown Deterministic Signals,” Proceedings of
the IEEE, vol. 55, no. 4, pp. 523–531, Apr. 1967.

[37] J. Neyman and E. S. Pearson, “On the Problem of the Most Efficient Tests of
Statistical Hypotheses,” Philosophical Transactions of the Royal Society of London
A: Mathematical, Physical and Engineering Sciences, vol. 231, no. 694-706, pp.
289–337, Jan. 1933.

[38] A. Sahai, N. Hoven, and R. Tandra, “Some fundamental limits on cognitive radio,”
in Allerton Conference on Communication, Control, and Computing. Monticello,
Illinois, Sep. 2004, pp. 1662–1671.

111



Bibliography

[39] E. Larsson and M. Skoglund, “Cognitive radio in a frequency-planned environment:
some basic limits,” IEEE Transactions on Wireless Communications, vol. 7, no. 12,
pp. 4800–4806, Dec. 2008.

[40] W. A. Gardner, “Exploitation of Spectral Redundancy in Cyclostationary Signals,”
IEEE Signal Processing Magazine, vol. 8, no. 2, pp. 14 –36, Apr. 1991.

[41] ——, “Signal Interception: A Unifying Theoretical Framework for Feature Detec-
tion,” IEEE Transactions on Communications, vol. 36, no. 8, pp. 897 –906, Aug.
1988.

[42] J. Lundén, V. Koivunen, A. Huttunen, and H. Poor, “Collaborative Cyclostation-
ary Spectrum Sensing for Cognitive Radio Systems,” IEEE Transactions on Signal
Processing, vol. 57, no. 11, pp. 4182 –4195, Nov. 2009.

[43] S. Enserink and D. Cochran, “A cyclostationary feature detector,” in Asilomar
Conference on Signals, Systems and Computers, Oct. 1994, pp. 806–810.

[44] Y. Zeng and Y.-C. Liang, “Spectrum-Sensing Algorithms for Cognitive Radio Based
on Statistical Covariances,” IEEE Transactions on Vehicular Technology, vol. 58,
no. 4, pp. 1804–1815, Sep. 2008.

[45] ——, “Eigenvalue-based spectrum sensing algorithms for cognitive radio,” IEEE
Transactions on Communications, vol. 57, no. 6, pp. 1784–1793, Jun. 2009.

[46] Y. Zeng, Y.-C. Liang, and R. Zhang, “Blindly Combined Energy Detection for
Spectrum Sensing in Cognitive Radio,” IEEE Signal Processing Letters, vol. 15, pp.
649–652, Oct. 2008.

[47] X. Yang, K. Lei, S. Peng, and X. Cao, “Blind Detection for Primary User Based on
the Sample Covariance Matrix in Cognitive Radio,” IEEE Communications Letters,
vol. 15, no. 1, pp. 40–42, Jan. 2011.

[48] J. Font-Segura, J. Riba, J. Villares, and G. Vazquez, “Quadratic Sphericity Test for
Blind Detection over Time-Varying Frequency-Selective Fading Channels,” in IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
May 2013, pp. 4708–4712.

[49] E. J. Candès, J. Romberg, and T. Tao, “Robust Uncertainty Principles: Exact Sig-
nal Reconstruction From Highly Incomplete Frequency Information,” IEEE Trans-
actions on Information Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[50] D. L. Donoho, “Compressed Sensing,” IEEE Transactions on Information Theory,
vol. 52, no. 4, pp. 1289–1306, Apr. 2006.

[51] H. Nyquist, “Certain Topics in Telegraph Transmission Theory,” Transactions of
the American Institute of Electrical Engineers, vol. 47, no. 2, pp. 617–644, Apr.
1928.

112



Bibliography

[52] C. Shannon, “Communication in the Presence of Noise,” Proceedings of the IRE,
vol. 37, no. 1, pp. 10–21, Jan. 1949.
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