
M
el

an
ie

 N
eu

ne
rd

t

Part-of-Speech Tagging and
Detection of Social Media Texts

Pa
rt

-o
f-

Sp
ee

ch
 T

ag
gi

ng
 a

nd
 D

et
ec

tio
n 

of
 S

oc
ia

l M
ed

ia
 T

ex
ts

This thesis contributes to sequence labeling tasks in the field of Natural Language Processing 
by introducing novel concepts, models and algorithms for Part-of-Speech (POS) tagging, social 
media text detection and Web page cleaning.
 
First, the task of social media text classification in Web pages is addressed, where sequences 
of Web text segments are classified based on a high-dimensional feature vector. New features 
motivated by social media text characteristics are introduced and investigated  with respect to 
different classifiers. Two classification problems in the context of social media text classification 
are treated, (1) the problem of social media text detection and (2) a method for Web page 
cleaning for social media platforms. A new Web page corpus, particularly designed to train and 
test the classifiers on representative Web pages is created.
 
Moreover, a POS tagger for social media texts is developed. The need for a specialized tagger 
is due to the specific social media text characteristics and the high non-standardization of 
such texts. Based on these factors, a Markov model tagger with parameter estimation en-
hancements with respect to social media texts is proposed. Particular focus is put on reliable 
estimation of non-standardized tokens like out-of-vocabulary words. To that end, methods 
are proposed to improve the reliability of probability estimation. Moreover, a novel approach 
mapping unknown tokens to tokens either known from training or tokens which fall into a 
class represented by regular expressions is presented. Finally, for remaining unknown tokens, 
semi-supervised auxiliary lexica and adequate estimation from prefix and suffix information is 
proposed. Furthermore, we propose to combine sparse in-domain social media training data 
and a newspaper corpus by an oversampling technique which improves POS tagging accura-
cies significantly. Training and evaluation of the proposed POS tagger is performed on a new 
manually annotated German social media text corpus. Tagging accuracies are presented and 
compared to accuracies achieved with state-of-the-art POS taggers.

Finally, we show that the proposed social media text detection and Web cleaning methods, as 
well as the presented POS tagger can be efficiently used in the context of information retrie-
val for Web page corpus construction. By applying Web page cleaning and social media text 
detection to Web page corpora obtained from Web crawlers, the generated corpus can be 
further refined.
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verfügbar.



Bibliografische Information der Deutschen Nationalbibliothek 



Preface

This thesis was written during my time as a Research Assistant at RWTH Aachen
University’s Institute for Theoretical Information Technology.

First and foremost, I would like to thank my supervisor, Univ.-Prof. Dr. rer. nat.
Rudolf Mathar, for giving me the opportunity to take a very unique part in pursuing
my Ph.D degree. I would also like to thank Prof. Mathar for his continuous support
and for being an excellent example of fair and practical leadership.

Many thanks to Prof. Dr. Ing. Torsten Zesch for taking the effort to referee this thesis.

A special thankyou goes to Michael Reyer, Gholamreza Alirezaei, Alexander Engels,
Bianka Trevisan and Niklas Koep for their very helpful discussions and suggestions,
and for proofreading parts of this thesis. Furthermore, I would like to acknowledge
the support of my student workers Phillip Vaßen and Simon Rüppel.
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1 Introduction

The social media aspect of the World Wide Web leads to constantly growing user
generated content in the Web. Different types of social media platforms such as blogs,
forums as well as news sites allow users to post comments. This kind of consumer-to-
consumer communication can be used efficiently to access user opinions for marketing
studies or technology acceptance research. Among a variety of different topics, emerg-
ing technologies in particular are oftentimes controversially discussed on different social
media platforms. An example is mobile communication systems, which are taken for
granted in today’s use, even though the impact of radio emission on the health of
the human body is not yet fully understood. This yields high potential for analysing
Web discussions. A beneficial property of social media texts posted on the Web is
the fact that the data is natural, authentic, and public. Furthermore, opinions from
proponents, opponents as well as from impartial people can be obtained from differ-
ent Web domains, i.e., different communities. However, the process of extracting and
processing such social media texts is a challenging task for two reasons. First, the size
of the World Wide Web makes it a challenging task to detect Web pages containing
social media texts, which are at the same time topic-relevant. Second, the fact that
social media texts are non-structured and non-standardized texts requires adequate
Natural Language Processing (NLP) methods in order to extract, process and evaluate
relevant information.

The work presented in this thesis addresses parts related to these two problems. Par-
ticularly, we deal with two different sequence labeling tasks in the context of NLP and
propose two novel labeling concepts. First, the task of social media text classification
in Web pages is addressed. We consider two related subproblems, first the detection
of social media texts in Web pages for corpus construction and second the cleaning
of Web pages containing social media texts, where the intention is to separate the
main Web page content from, e.g., the template or commercials. Both tasks are solved
by decomposing Web pages into a sequence of text segments which are subsequently
labeled (classified) with the considered classes.

A variety of approaches dealing with certain text classification in Web pages [64] exists.
The closest task to social media text classification is text genre classification in Web
pages. However, common approaches like proposed in [45, 40, 34] only consider genre
classes like research articles, reviews, reportage or fiction. Social media texts have not
been considered so far. Furthermore, existing approaches aim at predicting one genre
class for the whole Web page and consequently do not operate on a sequence of Web
page segments. By contrast, state-of-the-art Web page cleaning approaches, [37, 18],
are solved by sequence labeling, where for each text segment usually a binary decision
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1 Introduction

between main content and non-content is made. However, applying these approaches
to Web pages containing social media texts results in a significant performance loss [50].

To solve the problem of social media text classification, initially we introduce a new
Web page corpus, particularly designed to train and test the classifier based on con-
secutive Web text segments of a representative set of Web pages from different social
media text platforms. We particularly propose to extend existing feature sets for text
classification by features related to social media text specific characteristics. Their
performance is studied in combination with different state-of-the-art classifiers where
each text segment is classified independently. Additionally, we apply Conditional Ran-
dom Fields (CRFs) to solve the sequence labeling problem modeling the dependencies
between consecutive Web text segments. CRFs allow for flexible feature function con-
structions, particularly designed for discrete features. We investigate the applicability
of different feature functions related to the considered problems and determine a us-
able set of feature functions. All approaches are both applied to social media text
detection, as well as Web page cleaning.

Second, we deal with the problem of automatic Part-of-Speech (POS) tagging for non-
standardized social media texts, where the goal is to label a sequence of tokens with
adequate part of speech tag classes, for example the word habe (have) as finite verb.
Recent results, [25, 51], have shown that applying state-of-the-art newspaper POS tag-
gers such as the Stanford tagger [83] or TreeTagger [74] to social media texts leads to
a significant performance loss. Other approaches dealing with non-standardized texts
predominantly deal with the annotation of Twitter messages [24, 60, 68]. However,
Twitter messages exhibit very specific characteristics such as hashtags or @-mentions.
Following these specifications, approaches are adapted to these characteristics and
POS tag sets are extended with Twitter specific tag sets. Hence, applying these meth-
ods to more general social media text types is not appropriate and significant tagging
improvements are not achievable. Application of these methods to more general so-
cial media text types can not improve tagging accuracies. We address these problems
and propose a Markov model tagger called WebTagger with parameter estimation en-
hancements for POS annotation of social media texts in general. The main difference
to other models lies in the calculation of probability estimates. One central goal is
to achieve reliable estimates for non-standardized elements in social media texts like
out-of-vocabulary tokens. Therefore, parameter estimation for out-of-vocabulary (un-
known) words is adapted in several ways. Furthermore, we propose to combine the
sparse in-domain social media training data and a newspaper corpus by an oversam-
pling technique to improve tagging accuracies. In contrast to existing approaches, the
standard Stuttgart Tübinger Tag Set (STTS) for the German language is used without
any extensions. This allows for straightforward integration of the POS tagger into
existing NLP pipelines without further modifications. In addition, to the WebTagger,
a new social media text corpus for training and test purposes is developed which is an
indispensable task.

Finally, we show that the proposed social media text detection and Web cleaning
methods, as well as the presented POS tagger can be efficiently used in the context
of information retrieval for Web page corpus construction. By applying Web page
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1.1 Social Media Texts

cleaning and social media text detection to Web page corpora obtained from Web
crawlers, the generated corpus can be further refined. Resulting corpora can be used
for marketing studies or technology acceptance studies depending on the requirements.

Parts of this thesis have already been published in [57, 55, 51, 52, 56, 53, 54] and [50].

1.1 Social Media Texts

It has already been mentioned that special characteristics are inherent in social media
text types [55]. Before the two methods are proposed, we motivate our work by
the main characteristics which differentiate non-standardized social media texts from
newspaper texts. These characteristics are important for two reasons: (1) They give
an idea about potential features to be used in order to detect social media text types,
i.e., to differentiate such texts from standardized texts, to solve the sequence labeling
problem based on text segments. (2) For social media text POS tagging, they reveal
the technical challenges that are posed and help to find adequate solutions.

In order to describe the characteristics in more detail we introduce four categories,
motivated by the above aspects:

1. Spoken language character - The language is borrowed from spoken language and
characterized by linguistic irregularities. In German social media texts, verbs
are often shortened or merged (e.g., hab, habs - have, have it), prepositions are
merged with articles (e.g., aufm, überm - on the, over the), articles are shortened
(e.g., ne, nen - a, a), fill and swear words are used (e.g., verdammt - damn),
reflection periods are verbalized by interjections (e.g., hmm, äh) or elliptical
constructions are used (e.g., Entschuldigung! - Sorry! ). Thus, the language is
characterized by a lower degree of standardization or colloquial style compared
to newspaper texts.

2. Dialog form - A dialogic style characterizes the communication in social media
applications. Hence, the use of first and second person singular and plural for-
mulations is predominant. On the other hand, newspaper texts are typically
written in third person singular or plural as this type of texts is more descriptive
in nature. Moreover, social media texts are dialogic texts where many anaphoric
expressions (e.g., die - this, that) can occur.

3. Social media language - The language is characterized by the use of interaction
signs such as emoticons (e.g., :-) ), interaction words (e.g., lol, rofl), leetspeak
(e.g., w!k!p3d!4 ), word transformations (e.g., nix - nothing, EiPhone), using
mixed languages in the same context and references such as URLs and filenames
(e.g., www.google.de).

4. Informal writing style - The majority of user posts are written in an informal
way. Hence, social media texts suffer from spelling errors, typing errors, abbrevi-
ations, missing words and incomplete sentence structures (e.g., missing punctu-
ation marks), missing capitalization, character repetitions (e.g., Helloooo), and
multiple punctuation (e.g., !?!, !!! ).

3



1 Introduction

1.2 Outline

Chapter 2 covers the mathematical preliminaries to the sequence labeling problems
considered in this work. This mainly comprises fundamental classification methods in
the field of NLP.

In Chapter 3 the task of social media text classification in Web pages is addressed.
In a sequence labeling approach Web text segments are classified based on a high-
dimensional feature vector. New features motivated by social media text characteris-
tics are introduced and investigated with respect to different classifiers. Particularly,
a Conditional Random Field approach with specialized feature functions is proposed
to solve the sequence labeling problem. Two classification problems in the context of
social media text classification are treated. Firstly, the problem of social media text
detection in Web text sequences is addressed. Secondly, a method for Web page clean-
ing for social media platforms is proposed which enables automated content detection
from Web text sequences. A new Web page corpus, particularly designed to train
and test the classifiers on representative Web pages containing social media texts is
created. The cleaning results achieved on German and English Web pages comprising
social media texts are evaluated and discussed.

In Chapter 4 we develop a Part-of-Speech Tagger for social media texts. The need
for a specialized tagger is due to the specific social media text characteristics and the
high amount of non-standardization of such texts. Based on these factors, a Markov
model tagger for social media texts with parameter estimation enhancements is pro-
posed. Particular focus is put on reliable estimation of non-standardized tokens like
out-of-vocabulary words. To that end, methods are proposed to improve the reliability
of probability estimation. Moreover, a novel approach mapping unknown tokens to to-
kens either known from training or tokens which fall into a class represented by regular
expressions is presented. Finally, for remaining unknown tokens, semi-supervised aux-
iliary lexica and adequate estimation from prefix and suffix information is proposed.
Furthermore, we propose to combine sparse in-domain social media training data and
an out-domain newspaper corpus by an oversampling technique which improves POS
tagging accuracies significantly. Training and evaluation of the proposed POS tagger
is performed on a new manually annotated German social media text corpus. Tagging
accuracies are presented and compared to accuracies achieved with state-of-the-art
POS taggers.

Before this work is concluded in Chapter 6, Chapter 5 demonstrates the application
of the developed methods in the context of information retrieval for Web page corpus
construction. By applying Web page cleaning and social media text detection to
Web page corpora obtained from Web crawlers, the generated corpora are further
refined in two different scenarios. Firstly, the Web page cleaning classifier proposed in
Section 3.7.2 is used in order to achieve a topic relevant Web page corpus. Secondly,
in the same way social media text detection proposed in Section 3.7.1 is used in order
to set up a corpus of Web pages containing social media texts.
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2 Sequence Labeling

This chapter gives a brief introduction to sequence labeling tasks in NLP and an
overview of some important concepts and related work linked to the task. The methods
and results are repeatedly used throughout the subsequent chapters. Before we give
an outline of this chapter, some notations are defined. Boldface capital letters indicate
matrices or a sequence of vectors and boldface lower case letters are used to denote
vectors or sequences. When dealing with randomness, capital letters indicate random
variables, capital boldface letters are used for random vectors and random matrices.
In the subsequent chapters, the symbols and identifiers are extended with respect to
the particular context.

The outline of this chapter is as follows: In Section 2.1 and 2.2, we give an introduc-
tion to the sequence labeling problem, give a short overview of the probabilistic models
applied in this thesis and introduce the Bayesian approach which is used throughout
this work. Subsection 2.2.1 describes the Viterbi algorithm with respect to the task
of solving the maximization problem given by a Bayesian approach for a probabilistic
sequential model and to predict the sequence of labels for a given sequence of observa-
tions. Section 2.3 discusses training methods and related algorithms to estimate the
probabilistic model parameters based on a set of training data. Before we give a short
overview about feature preprocessing steps in Section 2.4, Section 2.5 describes a num-
ber of methods to reduce the feature space dimension in order achieve less complex
probabilistic models. In addition to the previously mentioned probabilistic classifica-
tion approaches, some additional state-of-the-art classifiers are used in this work which
are described in Section 2.6. Finally, we list standard performance measurements and
evaluation techniques in Section 2.7 which are used to analyse the results achieved by
the proposed methods. A very detailed explanation of this chapter’s content can be
found in [17, 6, 42, 59].

2.1 Sequence Labeling Problem

The need to label sequences arises in many different NLP problems. The sequential
characteristic of spoken language and written text is obvious. Sequence labeling is
a special type of classification that aims at predicting the associated label sequence
cN1 = (c1, . . . , cN) for a given sequence of observations represented by a sequence of
feature vectors xN

1 = (x1, . . . ,xN). In this thesis we aim to label a sequence of words
with its associated sequence of POS tags and a sequence of text segments with its
corresponding sequence of text type labels, classes respectively. A common approach
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2 Sequence Labeling

is to use a probabilistic model and apply Bayesian decision rule. This results in the
optimization problem:

ĉN1 = argmax
cN1

P
(
cN1 | xN

1

)
(2.1)

where P
(
cN1 | xN

1

)
is defined as the conditional probability, determined by a proba-

bilistic model. This is a huge optimization problem which in practice is simplified in
different ways. In general these simplifications are based on independence assump-
tions of the observations xn or the labels ĉn. For the two considered sequence labeling
problems, we choose models with different complexities and evaluate their usability.
Here we give some general information about the models we use throughout this work.
Detailed model assumptions are given in the corresponding Sections 4.4 and 3.5.

The easiest way to label sequential data would be to ignore the sequential dependencies
completely by solving

ĉn = argmax
cn

P (cn | xn) (2.2)

for each n = 1, . . . , N . Such an approach is in general easier to solve, however, it fails
to exploit any sequential patterns in the data such as coherences between neighboring
observations. Suppose, for instance, that we observe a token in a text and would like
to predict its part-of-speech. In addition to the token itself, the context of this token
is of significant help in predicting the current part-of-speech.

A simple way to model statistical dependencies in a probabilistic model like equation
(2.1) is to consider a Markov model which is described in more detail in Section 4.4.
The POS tagger WebTagger proposed in this work is based on a Markov model.

Another common approach used in recent years are Conditional Random Fields, e.g.,
in [2] for POS tagging and in [80] for Web page cleaning, which are based on an expo-
nential model combining feature functions to calculate probabilities. Feature functions
are used to learn and describe relationships inherent in the training data and then com-
bine these into a model. CRFs are explained in more detail in Section 3.5.2, where the
method is applied to the sequence labeling task of Web text segments. Particularly in
the field of NLP, good results have been achieved with CRFs for different sequential
labeling tasks. Beside the CRF model, the earlier mentioned independent labeling
approach is applied to the task of labeling a sequence of Web text segments.

Before a label sequence ĉN1 can be predicted by solving equation (2.1), the parameters
of the probabilistic model need to be estimated. This process is called training. In this
thesis we use Maximum Likelihood estimation which is commonly used in classification
and explained in more detail in Section 2.3.1. Before that, some general principles and
reformulations of Bayesian decision theory are explained in the following section.

2.2 Bayesian Decision Rule

Bayesian decision theory is a crucial statistical approach to the problem of classifica-
tion. It assumes that the classification problem is given in a probabilistic way and all
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2.2 Bayesian Decision Rule

probability distributions are known. A Bayesian classifier is based on the Bayesian
decision rule, which minimizes the average probability of classification error if all true
data probability distributions are known [6]. This is equivalent to selecting the class c
with maximum a posteriori probability (conditional probability)

ĉN1 = argmax
cN1

P
(
cN1 | xN

1

)
, (2.3)

where xN
1 is a feature vector, which represents the object to be classified. Probabilistic

approaches based on modeling this conditional probability distribution, e.g., the later
used CRFs, are referred to as discriminative or conditional models. According to Bayes’
theorem the posteriori probability P

(
cN1 | xN

1

)
can be computed from P

(
xN
1 | cN1

)
according to:

P
(
cN1 | xN

1

)
=
P
(
xN
1 | cN1

)
P
(
cN1

)
P (xN

1 )
=
P
(
cN1 ,x

N
1

)
P (xN

1 )

with
P
(
xN
1

)
=

∑
cN1

P
(
xN
1 | cN1

)
P
(
cN1

)
. (2.4)

Instead of maximizing the class posteriori probability, the joint probability can be
maximized. Joint probabilities are generally observable in the training samples and
can be estimated from those. Problem (2.3) can therefore be rewritten with the joint
probability according to (2.4):

ĉ = argmax
cN1

P
(
cN1 | xN

1

)
= argmax

cN1

P
(
cN1 ,x

N
1

)
P (xN

1 )
= argmax

cN1

P
(
cN1 ,x

N
1

)
(2.5)

Note that P
(
xN
1

)
is a constant term in the maximization problem and therefore can

be omitted. Such approaches which are based on maximizing the joint probability are
referred to as generative model. Discriminative as well as generative models are used
throughout this thesis. A detailed analysis and discussion of the main differences and
advantages of the two approaches is given in [87] and [58].

2.2.1 Viterbi Algorithm

The task of solving maximization problems in the form of (2.5) for a given probabilistic
sequence model is also referred to as inference problem. The number of possible label
sequences grows exponentially with the length of the sequence, hence an exhaustive
search is not applicable. A commonly used inference algorithm is the Viterbi algo-
rithm [89] which solves maximization problems based on a Markov model. It searches
the space of possible sequences to find the most probable sequence with a computa-
tional cost that only grows linearly with the length of the sequence.
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2 Sequence Labeling

In order to explain the Viterbi algorithm in more detail, we consider a k-order Markov
model of the form

P
(
cN1 ,x

N
1

)
=

N∏
n=1

P
(
cn | cn−1

n−k

)︸ ︷︷ ︸
Transition Prob.

P (xn | cn)︸ ︷︷ ︸
Emission Prob.

. (2.6)

where

cpl =

{
(cl, . . . , cp) 1 ≤ l ≤ p ≤ N
(cl = cstart, . . . , c0 = cstart, . . . , cp) l ≤ 0

with l ∈ Z, n ∈ N, l ≤ n ≤ N and cstart a dummy label added to our set of classes C, i.e.,
labels, Cs = C ∪ {cstart}. Furthermore, we introduce the simplifying assumptions made
in our later proposed Markov model POS tagger in order to describe the algorithm
in more detail. Two simplifying assumptions are made in that model. Transition
probabilities calculate the probability of one label given its k previous labels (k-order
Markov assumption). Emission probabilities are given by the conditional probabilities
of an observation xn only depending on the given label cn at position n.

For the mathematical description of the algorithm, we introduce k-tuples of labels
c = ck1 which represent any sequences of labels with length k. Thereby, we introduce
a new Markov model, where k-tuples are considered to be the states with transition
probabilities P (c′ | c). Note that if n − k < 0 then the longest history available is
used for transition probabilities P

(
cn | cn−1

n−k

)
= P

(
cn | cn−1

1

)
. Hence, for the first ob-

servation in the sequence, only emission probabilities and for following observations
additionally the class history with a maximum length of k, which is known at position
n are considered. Emission probabilities are assumed to be position independent and
hence it holds that P (xn | cn) = P (x | c). Algorithm 1 illustrates the Viterbi algo-
rithm. Initially, we introduce a start sequence cstart = (c1 = cstart, . . . , ck = cstart) of
length k representing the case that no history is available at the starting point of the
sequence. The start sequence is set to probability δ1(cstart) = 1.

In each iteration, δn+1(c) calculates the probability of the most likely path to reach a
possible class subsequence c at position n. ψn+1(c) determines the preceding subse-
quence c′ shifted by one, which leads to the highest probability in the current node.
δn(c) is the probability of the path which leads to the preceding node. In principle, for
each preceding node, the transition probabilities to the current node need to be calcu-
lated. However, the Viterbi algorithm works more efficiently and only stores δn+1(c)
and ψn+1(c) for each position n. Only these values are used in step n+1. Finally, the
end state sequence ĉN+1 is read out and likewise the whole sequence of ĉN1 .

Note that the Viterbi algorithm is applied to solve the maximization problem based
on the Markov model for our POS tagging approach and for the CRF based sequence
labeling task of text segment classification. Here, the Viterbi algorithm is described
referring to a generative Markov model. Notation looks slightly different when applying
the Viterbi algorithm to a CRF model. However, the main idea remains the same.
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2.3 Training Methods and Algorithms

Algorithm 1 Viterbi k-order Markov Model(xN
1 )

Input: Sequence of feature vectors xN
1

Output: Predicted sequence of labels ĉN1

δ1(cstart) ← 1
δ1(c) ← 0 for c �= cstart
for each position n = 1 . . . N do

for each k-tuple of labels c ∈ (Cs)k do
δn+1(c) ← maxc′=(c′1,c1,...,ck−1),c

′
1∈Cs P (ck | c′)P (xn | ck) δn(c′)

ψn+1(c)← argmaxc′=(c′1,c1,...,ck−1),c
′
1∈Cs P (ck | c′)P (xn | ck) δn(c′)

end for
end for
cN+1 ← argmaxc′∈(Cs)k δN+1(c

′)
for each position n = N . . . 1 do

cn ← ψn+1(cn+1)
ĉn ← (cn+1)k

end for
return ĉN1

2.3 Training Methods and Algorithms

Before a statistical classifier can be used for prediction, e.g., of a POS tag sequence,
the probability distributions have to be estimated. This process is called training or
learning. In this work, we focus on supervised learning techniques where estimates are
determined based on a set of training samples. We introduce our training sequence

T R =
{
(x̃n, c̃n) | 1 ≤ n ≤ Ñ

}
, where the true class c̃n is known for each object rep-

resented by a feature vector x̃n. T R is a set of concatenated single training samples
(sequences), e.g., concatenated texts in the context of POS tagging. Hence Ñ denotes
the length (size) of the total training corpus. Even if dependencies at tie points of
single training sequences are not existent, it can be neglected due to the fact that
training sequences are pretty long in the considered problems of word sequences and
Web page segment sequences and do not influence classification results significantly.
Generally, these training samples are created manually where each object is annotated
with the true class by human experts. In the context of NLP, training samples are
also referred to as Gold standard.

In this thesis we apply two types of supervised learning techniques, parametric ap-
proaches, where the classes of density functions are assumed to have a known paramet-
ric form and non-parametric approaches. Since the common parametric forms rarely
fit the densities in most practical machine learning applications, these assumptions do
not lead to reliable estimates. In particular, most of the densities have a single local
maximum (unimodal), whereas many practical problems involve multi modal densities.
Therefore, non-parametric techniques have been introduced where no distributional as-
sumptions are made about the given features or classes. In contrast to estimating the
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2 Sequence Labeling

parameters of the distribution, we directly estimate the probability distribution, e.g.,
the conditional probability P (c | x), e.g. in the K-Nearest Neighbor classifier. In the
following sections, the parameter estimation methods used in this thesis and related
algorithms to solve the resulting optimization problems are explained.

2.3.1 Maximum Likelihood Estimation

Maximum-likelihood estimation (MLE) in general is a method to estimate the param-
eters of a probability model. It is a common approach for parameter estimation in
the training process of a classifier. The principle is to estimate the model’s parameter
for a given probability model by maximizing the probability of the training samples.
Maximum likelihood methods nearly always have good convergence properties as the
number of training samples increases. Furthermore, maximum likelihood estimation
is very simple compared to other methods.

Consider a classifier for our sequence labeling task which is based on a model for the
conditional probability P

(
cN1 | xN

1

)
. The conditional probability model for P

(
cN1 | xN

1

)
is assumed to be known and has a parametric form, e.g. assuming an exponential
form as given by the CRF model, see Section 3.5.2. To indicate the dependency of
P
(
cN1 | xN

1

)
on parameters λ = (λ1, . . . , λp)

T , it is written as P
(
cN1 | xN

1 ,λ
)
. Then

the likelihood function is defined as

L(λ) = P
(
c̃Ñ1 | x̃Ñ

1 ,λ
)

over the training realizations (x̃n, c̃n) for 1 ≤ n ≤ Ñ . Ignoring the sequential de-
pendencies of the training samples x̃n and assuming that the training samples are -
independent, and identically distributed (i.i.d.)- random variables, allows to multiply
the probabilities over all training samples and results in

L(λ) =
Ñ∏

n=1

P (c̃n | x̃n,λ).

For analytical reasons, it is usually easier to work with the logarithm of the likelihood,
than with the likelihood itself. Since the logarithm is a monotonically increasing
function, it does not affect the result of the maximization problem. Hence, in practice
the log-likelihood function

�(λ) = ln
Ñ∏

n=1

P (c̃n | x̃n,λ) =
Ñ∑

n=1

lnP (c̃n | x̃n,λ)

is used to solve the maximization problem. In general the maximum likelihood estimate
is by definition the value that maximizes P (c̃Ñ1 | x̃Ñ

1 ,λ) over all λ ∈ R
p:

λ̂ = argmax
λ

L(λ).

10



2.3 Training Methods and Algorithms

Thus, a set of necessary conditions for the maximum-likelihood estimate for λ is given
by a set of p equations

∇λL(λ) = 0

where ∇ denotes the gradient. For all but the most simple models, the λ̂ that max-
imizes L(λ) cannot be found analytically and the optimization problem needs to be
solved numerically. Depending on the form of the probabilistic model different algo-
rithms are used. In the following subsection, the Limited memory BFGS algorithm
is introduced which will be used in Section 3.5.2 to solve the maximum likelihood
problem based on a CRF probabilistic model.

Limited Memory BFGS

The Limited Memory BFGS (L-BFGS) is an algorithm particularly designed to solve
non-linear optimization problems and has efficiently been used to solve maximum
likelihood estimation in sequence labeling problems. L-BFGS, [59], is based on the
popular quasi-Newton algorithm BFGS, named after its inventors Broyden, Fletcher,
Goldfarb, and Shanno who published it independently in four publications, [10, 22,
78, 28]. Adapting the original Broyden-Fletcher-Goldfarb-Shanno (BFGS) by storing
approximations of the Hessian matrices represented in form of a few vectors, only a
limited amount of computer memory is used. Due to its linear memory requirement,
the L-BFGS is particularly well suited for large-scale optimization problems which
made it a popular algorithm for maximum likelihood estimation in classification where
a large number of training samples represented by high-dimensional feature vectors are
present. This is particularly the case in CRFs, see Section 3.5.2, where L-BFGS is the
algorithm of choice.

We consider our log-likelihood function �(λ) to be our objective function to be max-
imized over λ. The k-th iteration of the algorithm to find the maximum has the
form

λk+1 = λk − αkHk∇�(λk),

where αk is the step size determined in each iteration to satisfy the Wolfe condition [93].
This can be done by the backtracking line search approach [1].

The iteration rule is quite similar to the line search Newton method. The key difference
is that an approximation Hk of the true inverse Hessian matrix (∇2�(λk))

−1
is used.

Instead of computing (∇2�(λk))
−1

at every iteration, the Hk is updated in each itera-
tion according to

Hk+1 = VT
kHkVk + ρkyks

T
k

where

ρk =
1

yT
k sk

, Vk = I− ρkyks
T
k

and
sk = λk+1 − λk, yk = ∇�(λk+1)−∇�(λk)

11



2 Sequence Labeling

where I is the identity matrix, λk is the current iterate and ∇�(λk) is the gradient
evaluated at λk. The main contrast to the general BFGS algorithm is that the costs
of storage and manipulating the inverse Hessian approximation Hk, which will be
generally dense, are reduced. A modified version of Hk is stored implicitly by storing
only a certain number m of the vector pairs {si,yi} for i = 1, . . . ,m that are used in
the updating formula. The product Hk∇�(λk) can then be obtained by choosing an
initial Hessian approximation H0

k, e.g., the identity matrix, and performing products
and inner summations based on ∇�(λk) and the pairs {si,yi}. In contrast to the
original BFGS algorithm, in each iteration an initial Hessian approximation H0

k has
to be chosen which is allowed to vary from iteration to iteration.

After the new iterate is computed, the oldest vector pair is deleted and replaced by
the newest one {sk,yk}. Experimental results show that values between m = 3 and
m = 20 produce satisfactory results.

2.4 Feature Normalization and Discretization

In this work, two types of features are considered, discrete features and continuous-
valued features, particularly in the context of Web text segment classification (Sec-
tion 3.4). Depending on the classifier or feature selection algorithm, see Sec-
tion 2.5, feature normalization and feature discretization methods are applied. In
order to describe the following methods, we introduce discrete random variables
X = (X1, . . . , Xj, . . . , Xd) with Xj ∼ (P̃ (xi))i∈Ij for all d features, where Ij repre-
sents the index set for the feature values xi from the training samples. Additionally,
we introduce a set of discrete random variables C ∼ (P̃ (c))c∈C supported on the set
of classes C with C = |C|. In contrast to the real distribution P , P̃ (xi), P̃ (c), P̃ (c, xi)
indicate empirical distribution over the training samples, where P̃ (c, xi) is the joint
distribution.

Feature normalization is basically motivated by the variety of ranges features might
have. Hence, some classifiers, e.g., the K-Nearest neighbor classifier which is based
on a distance between two feature vectors, do not yield to accurate results. Features
with a large range would dominate the distance. Therefore, the range of all features
is normalized. A common method is to linearly rescale the range of all features to a
fixed interval, e.g. [0, 1]. For each feature j = 1, . . . , d the range is rescaled by

x̃
(1)
nj =

x̃nj − x̃min
j

x̃max
j − x̃min

j

with
x̃min
j = min

n=1,...,Ñ
{x̃nj}

x̃max
j = max

n=1,...,Ñ
{x̃nj}

12



2.4 Feature Normalization and Discretization

so that x̃
(1)
nj is the normalized value. In the same way as the feature values x̃nj for the

training samples are normalized, feature values for the unseen test samples xnj have
to be normalized. However, for real world classification problems, it is not guaranteed
that the transformation applied to the realized values xnj lead to values in the interval
of [0, 1] for new unseen test samples. Hence, applying linear transformation could lead

to values x
(1)
nj < 0 or x

(1)
nj > 1. Usually, those values are treated as outliers and set to

0 or 1, respectively.

Another linear method is called standardization, i.e., Z-score normalization, where fea-
tures are transformed in the way to be zero mean with standard deviation 1. Therefore,
a translation and scaling is performed according to

x̃
(2)
nj =

x̃nj − μ̃j

σ̃j

with mean value μ̃j and standard deviation σ̃j of the j-th feature determined over all
realizations in the training samples.

In this work the described feature normalization methods are particularly used in the
context of Web text segment classification in Chapter 3, where features with different
value ranges are computed. A linear feature transformation is applied, (1) for the
K-Nearest-Neighbor classifier, see Section 2.6.1 and, (2) as preprocessing step before
features are discretized, as explained in the following section. In addition to that,
non-linear transformations are applied to the feature vector from original space into a
higher-dimensional space in the context of Support Vector Machines, see Section 2.6.3.
Common transformation functions applied in SVMs can be found in [6].

Feature discretization is particularly needed for classification tasks, which involve
continuous-valued features. Although classification tasks often involve continuous-
valued features, many supervised classification algorithms are developed for learning
in discrete feature space. In order to handle continuous-valued features in such al-
gorithms feature discretization methods need to be employed. Some algorithms such
as the C4.5 decision tree [66] incorporate the discretization into the learning process.
Others, require discretization as preprocessing step. In addition to the algorithmic
requirements mentioned above, discretization can improve the classification accuracy
and decrease the runtime of some algorithms, as shown by Dougherty et al. [16]. There-
fore, discretization is additionally performed on integer-valued features (N0) belonging
to the class of discrete features, if | Ij | is in the range of Ñ . By doing so overfitting to
the training data can be prevented. Aside from classification algorithms, some feature
selection algorithms, e.g., based on an entropy criteria, require feature discretization
for continuous features.

The general idea is to discretize the range of any continuous feature into a discrete
feature by building intervals. Discretization methods can be categorized into unsu-
pervised and supervised methods. Several discretization methods such as equal width
interval binning do not make use of the class labels in the discretization process. Such
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methods are referred to as unsupervised discretization methods. In contrast, discretiza-
tion methods that consider the class labels are referred to as supervised discretization
methods.

In the context of social media text classification, see Section 3.4, we introduce many
non-discrete features in order to describe a Web page text segment. Therefore, we
apply a supervised discretization method when applying a CRF classifier in order to
achieve adequate feature functions, see Section 3.5.2. In this work we use the super-
visedMulti-Interval Discretization (MDL) method proposed by Fayyad and Irrani [19].
An initial study has shown that applying unsupervised techniques leads to miserable
classification accuracies, when applied to the proposed features for the task of social
media text classification. The basic concept of MDL discretization is to recursively
determine cut points and thereby split the range of continuous-valued features into
multiple intervals. The split criteria is based on the class information entropy of train-
ing sample partitions to select bin boundaries. In addition to our feature random
variables Xj ∼ (P̃ (xi))i∈Ij , new random variables supported on all possible cut points
tj ∈ T

Yjt =

{
0 Xj < tj

1 else

are defined for each feature j. For comparison of different cut points the information
gain criterion (transinformation) is used, which is introduced in more detail in the
following Section 2.5.1. For each given feature j the cut point is determined by

tmax
j = argmax

t
I(C, Yjt)

with
I(C, Yjt) = H(C)−H(C|Yjt).

The tmax
j is selected as binary discretization boundary, over all possible partition bound-

aries. Note that the set T of possible cut points results from the range of feature values
for Xj over all training samples. Assuming Ñ training samples with distinct values
therefore results in Ñ − 1 possible cut points.

Repeating this method recursively to both of the partitions induced by tmax
j until some

stopping criteria is reached, multiple intervals on the feature j are created. As a
stopping criteria the Minimal Descriptive Length Principle is used. Hence, recursive
partitioning induced by a cut point tmax

j for a set of Ñ training instances stops if

I(C, Yjtmax
j

) <
log

(
Ñ − 1

)
Ñ

+
Δ
(
C, Yjtmax

j

)
Ñ

,

with

Δ
(
C, Yjtmax

j

)
= log

(
3|C| − 2

)
−

(
|C|H (C)− |C0|H

(
C|Yjtmax

j
= 0

)
− |C1|H

(
C|Yjtmax

j
= 1

))
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where |C0|, |C1| are the numbers of classes in the resulting subsets. Since single par-
titions of the recursive discretization are evaluated independently using this criteria,
some areas in the continuous spaces will be partitioned very finely whereas others
(relatively low entropy) will be partitioned more coarsely. This is one of the main
differences compared to the unsupervised approach.

2.5 Reducing Feature Space Dimension

NLP classification tasks generally allow for a variety of features to be determined.
The same holds for our task of labeling a sequence of text segments where each text
segment is subject to a variety of characteristics, e.g., number of tokens or position
in the Web page. Hence, feature vectors representing such segments are naturally
high-dimensional. Dealing with high dimensional feature vectors leads to complex
models which in return results in high computational costs. In order to reduce the
dimension of the feature space, feature selection or feature transformation algorithms
are applied. Feature selection reduces the dimensionality by selecting only a subset of
features, whereas feature transformation is a dimension reduction technique based on
an approximation in a lower dimension of feature space. Feature dimension reduction
techniques are further differentiated into supervised and unsupervised techniques. In
contrast to supervised methods, which consider the predictability of a feature con-
cerning particular classes, unsupervised methods only consider the features and their
dependencies among themselves. In this work, we make use of two supervised fea-
ture selection methods, which are described in the following. A detailed evaluation
applying these methods in the context of social media text classification is proposed
in Section 3.7.

2.5.1 Information Gain and Information Gain Ratio

The information gain criterion evaluates the usefulness of a feature by measuring the
gain ratio with respect to the classes to be differentiated. Hence, it is appropriate for
supervised feature selection measures. Features are ranked according to their informa-
tion gain and by selecting the top p < d ranked features, the dimension d of the feature
vector can be reduced to p. An adequate value of p is determined by considering the
trade off between model complexity reduction and classification performance. Very
small p might lead to a considerable performance loss. Note that the usability of each
feature is evaluated independently. Hence, selecting the top ranked features might not
lead to the best result if the selected features are highly correlated. Due to that, the
information gain criteria is often used for an initial comparison of features instead of
feature selection.

In the same way, we evaluate the relevance of the proposed features for social media
text classification in Section 3.7. The information gain is calculated based on the
empirical distribution of the training data. In general terms, the information gain
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measures the change in entropy H from a prior class to a class that takes a feature
information as given. In the context of information theory, the information gain is
known as transinformation between any two random variables. However, in the context
of classification the term information gain has been established since the measure is
particularly used for evaluating the usability of a feature with respect to the considered
classes based on the empirical distribution of the training data.

Based on the previously introduced notation, the information gain is given by

I(C,Xj) = H(C)−H(C | Xj)

with
H(C) = −

∑
c∈C

P̃ (c) log P̃ (c)

and
H(C | Xj) =

∑
i∈Ij

P̃ (xi)H(C | Xj = xi).

The information gain between C and Xj is given by

I(C,Xj) =
∑
i∈Ij

∑
c∈C

P̃ (c, xi) log
P̃ (c, xi)

P̃ (c)P̃ (xi)
. (2.7)

In practice, classification features have different values and different numbers of values
they can attain. The main drawback of the information gain criterion is that it depends
on that number of values, i.e., |Ij|. A simple example shows that the criterion is biased
towards multi-valued features. One of the features might be a customer’s telephone
number. This feature has a high mutual information, because it uniquely identifies the
customers that are present in the training data. However, this feature does not give
any information about new customers and hence would lead to overfitting.

To counteract this problem the information gain ratio criterion was introduced. In
order to reduce the bias towards multi-valued features, the uncertainty of a feature Xj

is taken into account. The higher the uncertainty of a particular feature, the lower the
feature is weighted:

IR(C,Xj) =
1

H(Xj)
(H(C)−H(C | Xj)) (2.8)

Features with | Ij |= 1 are excluded in advance since H(Xj) = 0. Hence, H(Xj) > 0
holds for all remaining features. Both criteria are used to evaluate the relevance of the
proposed features for social media text classification in Section 3.7.

Beyond general feature evaluation, the two criteria are successfully used in the training
process of decision trees, see Section 4.4.3. In the decision tree context, the informa-
tion gain is frequently preferred where the criterion is used as a decision criterion for
building the tree, i.e., to decide what feature to test at which node. The information
gain ratio criteria is subsequently used for pruning the tree. It is shown in different
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works, e.g., [33, 74], that the information gain ratio promotes the development of un-
even trees. An extensive comparison of the two criteria in the context of decision trees
can be found in [33]. In order to achieve reliable values for continuous features, feature
discretization is required as proposed in the previous section.

2.5.2 Correlation-based Feature Subset Selection

Finally, a feature subset evaluation considering the class predictive ability of each
feature (supervised), along with the degree of redundancy/correlation between the
features is applied. The Correlation-based Feature Selection (CFS) proposed in [29]
ranks feature subsets according to a correlation based heuristic evaluation function

f (X, C) =
p corr(X, C)√

p+ p (p− 1) corr(X)

where X is a p × p matrix consisting of column-wise random variables
X1, . . . , Xj, . . . , Xp supported on feature subset where p < d is the size of the
considered feature subset. C is a random variable supported on the set of classes
c ∈ C. The term

corr(X) =
1

p2

∑
i,j

corr (Xi, Xj)

denotes the average feature inter correlation between individual features and

corr(X, C) =
1

p

∑
i

corr (Xi, C)

is the average feature-class correlation. Feature subsets are compared in terms of
|f (X, C) |, such that feature subsets with |f (X, C) | close to zero are ranked higher.
The principal idea is to prefer subsets that contain features which are highly correlated
with the predictive classes and uncorrelated among themselves.

With the evaluation function defined by f (X, C), it remains to define the feature
subsets. Since dimension reduction is generally applied to high-dimensional feature
spaces, the enumeration of all possible feature subsets is exhaustive. Therefore, in
practice greedy stepwise forward or backward search methods through the space of
feature subsets are used. A comparative study of correlation based feature selection
and information gain ratio based methods is presented in [94].

2.6 Classification Methods

The simplest way to solve a sequence labeling problem is to predict the classes for each
observation in a sequence independently as in equation (2.2). By doing so, a simple
classification task has to be solved where each object is classified independently based
on its feature vector. Any supervised classification approach can be applied in this
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case. In this work we use the independent labeling approach to solve the sequence
labeling problems based on Web page text segments, see Section 3.5.1. Three different
state-of-the-art classifiers are applied in this thesis: (1) K-Nearest Neighbor classifier,
(2) Decision Tree and (3) Support Vector Machine. The basic concepts of the different
classifiers are illustrated in the following.

2.6.1 K-Nearest Neighbor

The general principal of a K-Nearest Neighbor (KNN) approach is to compare the
object to be classified with its K nearest training samples and perform a majority
decision over the present training sample classes. KNN, first proposed by Cover et
al. [13], falls into the category of non-parametric probability estimation approaches.
The basic concept of a non-parametric approach is to make only few assumptions
about the form of the distribution, but rather work with methods based on frequency
counts. More precisely, KNN is a type of instance-based learning or lazy learning
where new test instances are classified by direct comparison with instances seen in
training. The disadvantage of lazy learning include the large memory requirement
to store the entire training set. Another disadvantage of the KNN classifier is that
lazy learning methods are usually slower in classification which is mitigated by faster
training phase. In general, a KNN classifier is most useful for large training sample
sets with few classification features.

As one would expect from the name of the classifier, this rule classifies by assigning
the label most frequently represented among the K nearest training samples. Near-
est training samples are determined by calculating the distance to all training sam-
ples T R = {(x̃n, c̃n) | 1 ≤ n ≤ N}, with feature vectors x̃n ∈ R

d and class labels
c̃n. Let y(i) = ‖x − x̃i‖, then we identify the smallest K elements by the sequence(
y(1), . . . , y(K)

)
with K < N . Based on the sequences, the KNN estimates the condi-

tional probability by

P (c | x) = | {n | 1 ≤ n ≤ K, c = c̃in} |
K

where i1, . . . , iK are the indices of the K smallest elements. The derivation to this
estimate can be found in [6] and [17].

The computational complexity of the KNN algorithm both in space (storage of training
samples) and time (classification) is important to mention. In the most naive approach,
the search for classifying a test sample for, e.g., K = 1, is O (Nd), with a d-dimensional
feature vector. Different algorithms have been proposed to reduce the computational
costs in nearest-neighbor searches, see [4, 49].

2.6.2 Decision Tree

Like KNN classifiers, decision trees belong to the class of non-parametric approaches.
In this work, we consider the C4.5 decision tree algorithm from [66] which is commonly
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used in the context of Natural Language Processing. In the context of POS tagging a
slightly modified binary version is used for the estimation of transition probabilities.
C4.5 is build up on the ID3 (Iterative Dichotomiser 3) algorithm from [65] with very
crucial extensions for real life classification tasks (1) allowing continuous-valued fea-
tures in addition to discrete features, (2) suggesting an adequate pruning technique to
avoid overfitting and (3) allowing for classification with missing features.

In principle, the decision tree is built recursively in the training phase according to the
training samples. The result is a decision tree where each non-terminal node represents
a test on a particular feature. The decision tree can subsequently be used to classify
new test samples x by passing through the tree and reading out the class label, i.e.,
the estimated class distribution P̂ (c | x) at the resulting terminal node. In order to
choose the test (feature) for a node l, the information gain criterion is applied by

ĵ = arg max
j∈X (l)

I(C,Xj)

with I(C,Xj) as in equation (2.7), C a random variable supported on the set of
classes C, Xj ∼ (P̃ (xi))i∈Ij a random variable supported on feature j and X (l) the set
of possible tests at node l. At the root node we initialize

X (1) = X

with X representing the set of all features. After determining ĵ for a node l, the
corresponding set of possible features is updated by

X (li) = X l \
{
Xĵ

}
for all child nodes i ∈ Iĵ, i.e., for all values of feature ĵ a child node is created. The
training data set valid for the used node is partitioned with respect to the values Iĵ.

The information gain criterion was adopted from the original ID3 algorithm. Although
it gives good classification results it has a strong bias towards tests with many out-
comes. In order to counteract this problem, C4.5 proposes to use the information gain
ratio criterion, see equation (2.8), as alternative criterion. This problem has already
been addressed in more detail in the context of feature selection in Section 2.5.

Furthermore, C4.5 addresses the task of handling different feature types. It proposes
two methods to deal with discrete (nominal) features and one for continuous (real-
valued) features. For the discrete feature case, the standard test works with one
outcome and branch for each possible value of the corresponding feature. A more
complex test, often applied to avoid overfitting is to further cluster the feature values
into a smaller number of groups where each group is represented by one value rather
than considering the exact feature value. If the feature takes on continuous values, a
binary test with outcomes xj ≤ z and xj > z with a threshold z is performed. The
additional challenge here is to determine an appropriate threshold/cut point z. The
problem of determining these thresholds is equivalent to the feature discretization of
continuous features treated in Section 2.4. Therefore, the training samples are sorted
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according to the values of feature xj which results in an ordered finite sequence of
values v1, . . . , vNj

with Nj < |Ij|. Any threshold lying between vi and vi+1 divides
training samples into two groups according to that features threshold, resulting in
Nj − 1 possible splits. Similar to the other tests, the best threshold is determined
by choosing the test (threshold) with maximum information gain (information gain
ratio).

Another important issue in the context of decision trees is overfitting. A decision tree
that correctly classifies every training sample might not be as good as a smaller tree
that does not fit all the training samples. In general, this problem is counteracted by
allowing binary splits only or applying pruning to the tree. C4.5 includes a pruning
method based on estimating the error rate of every subtree and replacing the subtree
by a terminal node if the estimated error of the new terminal node is lower.

Finally, Quinlan [66] introduces another constraint which proved to be useful in prac-
tice: For any split, at least two of the subsets must contain a number of α training
samples. Experiments have shown that α = 2 is an adequate value in many problems.
In Section 4.4.3, we use a slightly modified version of the C4.5 algorithm for the es-
timation of transition probabilities in the context of POS tagging. Modifications are
described in that section.

2.6.3 Support Vector Machine

Support Vector Machines (SVM) fall into the category of linear discriminant mod-
els. In contrast to probabilistic models, a discriminant function without underlying
probabilistic model is used for classification. Note that the optimization problem to
be solved is different from the one presented in equation (2.2). Instead of assuming
that the form of the underlying probability distribution is known, in a discriminant
approach the proper form of the discriminant function is assumed to be known and
the training samples are used to estimate the parameters of the classifier.

The main idea of an SVM is to preprocess the feature vectors representing the objects
in a higher dimensional space, typically much higher than the original feature space,
in order to allow for a linear separation. Using an appropriate non linear mapping φ(·)
(kernel function) to a sufficiently higher dimensional space, the instances of two classes
can be separated by a hyperplane. This is also known as kernel trick. An overview of
different kernel functions is given in [17, 6]. Furthermore, the goal in training a SVM
is to find the separating hyperplane with the largest margin in order to reach a high
generalization of the classifier.

The general idea is to find a linear model of the form

g(x) = wTφ(x) + b (2.9)

where φ : Rd → R
p with d < p denotes a fixed feature space transformation function,

w is a normal vector and b ∈ R is a bias parameter and a new test object x is classified
according to the sign of g(x). Consider a 2-class problem with a set of Ñ training data
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pairs T R =
{
(x̃n, c̃n) | 1 ≤ n ≤ Ñ

}
where x̃n is a feature vector with corresponding

label c̃n ∈ {−1, 1}. Assuming that φ(·) has been chosen appropriately, so that the
training data is linearly separable in the higher dimensional feature space, then there
exists at least one choice of the parameters such that a function of the form (2.9) fulfills
g(x̃) > 0 for training data pairs (x̃n, 1) and g(x̃) < 0 for training data pairs (x̃n,−1).

However, there may be more than one solution that separates the classes exactly. As
mentioned before, the idea is to find a hyperplane, which maximizes the margin to the
training samples. To that end, we introduce the distance from a hyperplane to a given
(transformed) point φ(x)

c̃ng(x̃n)

‖w‖ =
c̃n(w

Tφ(x̃n) + b)

‖w‖ .

The margin is given by the perpendicular distance to the closest point xn from the
training set. Thus the maximum margin solution is solved by the optimization problem

argmax
w,b

1

‖w‖ min
n

[
c̃n(w

Tφ(x̃n) + b)
]

This optimization problem can be converted into a less complex constrained optimiza-
tion problem, which can be solved by using the method of Lagrange multipliers. A
detailed description can be found in [87].

Originally, the SVM was developed to solve a two-class problem. In practice, we often
have to deal with C ≥ 2 classes. Different methods have been proposed to combine
multiple two-class SVM in order to build a multi-class classifier. A commonly used
approach is to construct C separate SVMs, in which each SVM separates the data
of class c from the remaining C − 1 classes [88]. This approach is also known as
one-versus-the-rest approach. A detailed treatment of SVMs can be found in [87, 11].

2.7 Performance Measures and Evaluation Methods

The classification problems treated in this thesis, are so-called multi-class problems,
where each object is assigned to one, and only one of several non-overlapping classes.
In order to measure the performance of such classifiers, common statistical measures
are used. In the following the performance measures used throughout this thesis are
briefly described. A more detailed description and analysis can be found in [79].

The correctness per class cj ∈ C for classes j = 1, . . . , J of such classifiers can be
assessed by computing the number of correctly detected class samples of class cj (true
positive TP j), the number of correctly recognized samples that do not belong to class
cj (true negative TN j), and either samples that were incorrectly assigned to class cj

(false positive FP j) or were not detected as cj class sample (false negative, FN j).
FP j and FN j are also known as Type I and Type II errors known from statistical
hypothesis testing. Note that in a multi-class problem, the correctness per class is
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2 Sequence Labeling

determined by treating all remaining classes as cj. Based on TP j, TN j, FP j, FN j

different evaluation measures can be calculated. Note that the considered class cj is
referred to as positive class and any others as negative class.

Table 2.1 presents the most commonly used measures for multi-class problems. The

Measure Formula Evaluation focus

Accuracy 1
J

∑J
j=1

TP j+TNj

TP j+FP j+TNj+FNj The average per-class effectiveness of a classifier

Precision (PRj)
TP j

TP j+FP j Class agreement of the labels c̃j with the classifier labels ĉ

Recall (REj)
TP j

TP j+FNj Effectiveness of a classifier to identify labels ĉ

F -Score (Fβj)
(β2+1)PRjREj

β2PRj+REj
Weighted average of precision PRj and recall REj

Specificity TNj

TNj+FP j Effectiveness of a classifier to identify labels which are not cj

Table 2.1: Performance measures for a multi-class problem with classes cj ∈ C.

average accuracy is the most general evaluation measure which calculates the ratio
between correctly classified instances and the total number of instances. However, the
main drawback is that no insights into the classification performance of specific classes
cj are gained and it is not sensitive to unbalanced a priori class distributions. E.g.,
consider the case of a two class problem where the class probabilities are significantly
different, the average accuracy can be significantly higher even if the class with the
lower probability is detected particularly bad. A more detailed per-class evaluation
is given by the precision and recall measures. Particularly in the field of information
retrieval, e.g., for the result of a Web Crawler, see Section 5.2.1, the precision is
important. In the context of information retrieval, it measures the retrieved documents
that are relevant to the find. Recall, also known as sensitivity or true positive rate
(TP j rate), denotes the fraction of instances of a particular class cj that are successfully
detected. The Fβ-Score can be interpreted as a weighted average of precision and recall.
The balanced case with β = 1 is the harmonic mean. By choosing different values for
β, the weights can be adapted. All previously described performance measures can also
be calculated from the confusion matrix by building the ratios between summation of
the columns and rows of the matrix. As the name indicates, it visualizes the confusion
between two classes. Each column of the matrix represents the instances in their
predicted class, while each row represents the instances in their true class.

Note that the average classification quality over all classes cj ∈ C is in general assessed
in two ways: One way is to average over the same measures calculated for c1, . . . , cJ ,
e.g., the average over precisions PRj, (macro-averaging) or the sum of counts TP j,
FN j, TN j, FP j to obtain cumulative TP , FN , TN , FP and then calculate the
performance measure, e.g., the precision, (micro-averaging). Since macro-averaging
treats all classes equally while micro averaging favors classes with higher frequencies,
we use macro-averaging in this thesis. Generally, each classifier is tested on multiple
randomly collected combinations of training and test sets. A particular approach is
to use a k-fold cross validation where the training data is separated into k equally
sized subsets by random selection. In each run the classifier is trained on k − 1
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subsets and tested on the remaining one. Both sequence labeling problems are basically
evaluated in form of cross validations, see Section 3.7 and Section 4.6. All performance
measurements are depicted consistently in percent.

Significance tests

In order to show that improvements achieved by a classifier compared to another
are significant, statistical significance tests are needed. Diettrich et al. review and
evaluate five statistical tests for comparing supervised classification learning algorithms
in [15]. In a cross validation evaluation statistical tests for comparison of more than
one algorithms on multiple trials (resampling) are needed. Furthermore, it has to be
considered that the test sets in each trial of cross validation are indeed independent
but the training sets are overlapping and hence dependent. The resampled paired
t-test is an adequate significance test for a series of trials where in each trial the
available training samples are randomly divided into training and test sets. However,
considering the dependence between the training samples in a cross validation the
corrected resampled paired t-test has been proposed in [48]. Note that the variance in
the corrected t statistic may still be underestimated which may result in large t values.

Consider two classification algorithms A and B which are trained and tested via k-fold
cross validation. The training data are generated by combining k − 1 subsets in
each trial and hence are overlapping random samples. Let fA

i (fB
i ) be the observed

proportion of misclassified test samples by algorithm A(B) during trial i. Assuming
that the k differences fi = (fA

i − fB
i ), i = 1, . . . , k were drawn independently from a

normal distribution, the resampled paired t-test can be applied:

t =
f
√
k√(

1
k−1

)∑k
i=1

(
fi − f

)2 ,
where f = 1

k

∑k
i=1 f

(i) is the mean difference. However, the dependence of the training
samples has to be considered. Therefore, the formula is adapted to the corrected
resampled paired t-test according to

t̃ =
f
√
k√(

1
k
+ k2

k1

)∑k
i=1

(
fi − f

)2 ,
where k1 is the mean fraction of data used for training and k2 is the mean fraction
of data used for testing. Under the null hypothesis this statistic has a Student’s t
distribution with k − 1 degrees of freedom. In this work significance tests are applied
when comparing our approaches for social media text POS tagging, see Section 4.6.4
and Web page cleaning, see Section 3.7.2 to state-of-the-art methods.
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3 Social Media Text Detection and
Classification

Following different interests Not only linguists working in the field of Natural Language
Processing are evermore interested in acquiring social media text corpora. A common
example is the request of a topic-specific social media text corpus in order to perform
an empirical or manual study on topic-specific user opinions or even perform automatic
sentiment analysis. Founded on that request the problem of automatic social media
text corpus construction has to be solved. Therefore, the problem of social media text
classification in Web pages is processed in this work. To the best of our knowledge
this problem has not yet been addressed by researchers so far. Strong related research
topics as text genre classification and subjectivity detection, which have been treated
in different research papers. However both objectives are not exactly solving our
problem. The differences are explained in more detail in the Related Work Section 3.1.
We pursue two closely related objectives with inherent social media text classification
in this chapter.

First, we address simple social media text (comment) detection in Web pages. We
propose a method solving a 2-class problem, which differentiates social media texts
from other texts in a Web page. Applying this classifier could serve to filter a corpus
by selecting only Web pages containing social media texts. The construction of such
corpora is addressed in more detail in Section 5.2.1, where the here proposed methods
are applied. In addition to a 2-class problem we solve a 7-class problem, where relevant
meta informations, such as the title or the posting time are differentiated as additional
classes. This very fine-grained classification would procure useful corpus information
allowing for a more detailed analysis.

Second, the task of Web page cleaning is addressed. It is one of the most essential
tasks in Web corpus construction. The intention is to separate the main content from
navigational elements, templates, and advertisements, often referred to as boilerplate.
Several approaches have been introduced to solve the problem of Web page cleaning,
i.e., boilerplate detection. However, existing approaches do rather study the results
achieved on pages containing social media texts. This is particularly reasoned by the
fact that existing training corpora suffer from low numbers of Web pages containing
social media texts (comments), e.g., the L3S-GN1 corpus introduced in [37], which
contains only 1% comments. In this thesis, we particularly enhance Web page cleaning
applied to pages containing social media texts.
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Both tasks are solved in the way that at first a Web page segmentation is performed
and second classification is conducted based on these segments. The resulting problem
is a sequence labeling problem, where a sequence of segments has to be classified into
one out of two classes. In both cases the social media text characteristics differing from
characteristics coherent in standardized texts help for classification, hence, the same
feature vectors are used. Furthermore, we introduce a new Web page training corpus,
particularly designed to train and test the two classifiers on Web pages containing
social media texts.

The outline of this chapter is as follows. We summarize related work considering
the two sequence labeling problems in Section 3.1. In Section 3.2, we give a math-
ematical description of the considered sequence labeling tasks. Section 3.3 describes
the annotation principals for Web pages. In Section 3.4 we propose token-, POS- and
HTML-based features, which serve for the representation of a text segment. Section 3.5
introduces different classification approaches to solve the sequence labeling problems.
Sections 3.6 and 3.7 introduce a new manually annotated training Web page corpus
and discuss experimental results achieved with different approaches. A final conclusion
is given in Section 3.8.

3.1 Related Work

The following section is differentiated into two parts, first related work to social media
text classification is presented and second a short overview about state-of-the-art Web
page cleaning algorithms is given. However, both approaches and their related work
are strongly related in terms of text classification.

Social media text classification is a specific task of text classification, which is not
directly known from literature. However, a number of strongly related works exists.
The two main factors that characterize a text are, its content and its style. Both of
which are interesting aspects for automatic text classification purposes. Classification
approaches dealing with the texts content, mainly refer to the topic of a text. Whereas
approaches considering the style of a text address a variety of objectives, e.g., Web
text genre classification or subjectivity classification. Both text classification tasks
particularly differ in their selection of classification features. Topic classification basi-
cally operates on token-level features such as n-gram language models, whereas genre
classification often employs additional stylistic features, e.g., the mean sentence length.
The task of social media text classification in Web pages is more related to text style
classification approaches. In particular it’s related to Web text genre classification and
subjectivity classification.

Before state-of-the-art approaches dealing with these two problems are listed in the
following, we would like to mention some fundamental work, see [77, 94, 44, 23] dealing
with text classification in more general. Even if in all approaches rather thematic than
style classification is addressed approaches and selected features are taken up in related
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works. Beside a number of different classification approaches, the mentioned papers
give an overview of feature selection algorithms, which are evaluated and compared.
Lastly, Sebastiani et al. [77] discuss the main machine learning approaches to the
task of text classification. In particular, three different problems, namely document
representation, classifier construction and classifier evaluation are discussed.

With the increasing amount of Web information, much research dealing with Web
document classification according to various criteria has been performed in recent
years. One focus is the task of Web text genre classification.

Meyer zu Eissen et al. [45] differentiate between eight genres following a user study
on genre class usefulness. Moreover, they examine various feature sets attempting to
combine different kinds of information. They differentiate four feature types, style-
related features, e.g. HTML tags, closed word/token features, e.g. dates or currency
symbols, text statistics, e.g. letter digit frequencies and POS features, e.g. noun or
verb frequencies. Using discriminant analysis, they report 70% average classification
accuracy over a ten-fold cross-validation.

Lim et al. [41] also evaluate different feature sets and focus on the usefulness of
information found in different parts of the Web pages, e.g. the body or title. In
addition to HTML-related and textual features some URL-related features, e.g. depth
of URL, are proposed for genre classification. Based on a corpus of 15 genres they
indicate that the main body and anchor text features are the most effective with an
classification accuracy of 75%.

Kessler et al. [34] identify four feature categories: structural features, e.g. POS tag
frequencies, lexical features, e.g., accuracies of addressing terms, character level fea-
tures, e.g. question mark frequencies, and derivative features, e.g. the average sentence
length. For classification they use logistic regression and different neural networks that
combine 55 features. Based on a corpus with 5 different genres a maximum accuracy
of 75% is achieved.

Qi et al. [64] review Web classification approaches with respect to its features and
algorithms. They particularly investigate Web-specific features and their usability
for different Web page classification tasks, e.g., sentiment classification and subject
classification. Beside, on-page features, directly located on the page to be classified,
they investigate the usability of features of neighbors, wich are found on the pages
related in some way.

In [40] they distinguish genre-related features from topic-related features.To this end,
they use a corpus annotated for both genre and topic. Considering the genre and
topic class, they use the term frequency (tf) and term’s document frequency (df) as
features. Closely related terms to the topic of the Web page are eliminated. Using a
set of seven genres they report mean precision and recall values of 86.7% and 86.6%
over all genres.

The performance of different POS-related features is studied in [20, 71]. In [20] they
propose to use POS histograms over a sliding text window as features. Compared to
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the results achieved by a classifier working with POS trigram features a significant
performance increase is reported.

Stamatatos et al. performed a series of feature evaluations for automatic text genre
classification. In their first research papers [46, 81] they perform genre classification
based on newspaper texts. In [46] they differentiate five newspaper genres according
to their style: public affairs, scientific, journalistic, everyday communication and liter-
ary. Different style markers based on token- and POS-level, e.g., number of word per
sentence or verb-noun ratios are introduced and evaluated. In [81] they propose a text
genre detection approach based on a linear discriminant classifier, using common word
frequencies. Four new newspaper genre classes are introduced adapted to the new
training and test corpus. In contrast to other approaches the most frequent words are
determined based on the entire written language (represented by the British National
Corpus) in contrast to use the training corpus itself. Like in [34] results show that
punctuations mark frequencies play an important role for classification.

In [82] they present their first work dealing with text genre classification applied to
Web documents. By means of existing NLP tools, features on a more structural level,
e.g., the ratio of noun phrases to the total number of chunks are used. They achieve
better results on a Web page corpus with 11 different genre classes compared to a pure
token-level approach.

Indeed, the mentioned Web text genre classification approaches differ in the classes
their consider, however the number of classes is greater than five. The problem of social
media text classification we deal with is more a detection problem (2-class) problem
so that features can be selected more specifically. Furthermore, the considered genre
classes are often related to newspaper genres and do not consider any social media
text specific genre class.

In addition to Web text genre classification, social media text classification is strongly
related to subjectivity classification. Most works dealing with subjectivity classifica-
tion pursue the goal to improve information extraction systems. In [21] they focus
on the task of identifying weather a news article from a Web page reports objectively
or presents the authors opinion. Three different feature types, bag of words, part-of-
speech tags and stylistic text statistics are investigated for this task of classification. In
this work, they focus on the classifiers transferability to corpora dealing with different
topics than in the training corpus. Results show that particularly, features based on
POS statistics result in a more general classification model for this task.

Wiebe et al. intensify their work on sentence-level subjectivity classification. In [91]
they propose to classify the subjectivity of a sentence according to the presence or
absence of particular adjectives. Using a word clustering according to distributional
similarity the feature space is extended with additional adjectives for classification.
These features are further refined with the addition of lexical semantic features of
adjectives. In a 10-fold cross validation they show that the extended feature space
leads higher precision rates.

The work in [92] comprises a huge study on different features and their suitability
for subjectivity classification. Sentence-level classification is performed, but also ex-
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tended to document-level. Applying a KNN classifier using n-gram features based on
a combination of POS tags and tokens, particularly improves the precision to detect
opinionated documents.

A subjectivity classifier for improving information extraction results is proposed in [70].
In contrast to other approaches they concentrate on filtering out subjective documents
from a data corpus about terrorist events. Their approach applies a rule-based classifier
to an unlabeled corpus to create training data, which is used to train a Naive Bayes
classifier at sentence level. In addition to precision improvement their results show
that subjectivity filtering is a good complement to topic-based filtering for information
extraction systems.

To the best of our knowledge subjectivity classification research particularly for Ger-
man is not addressed so far. Since the proposed approaches use a number of language
specific features, i.e., lexica, the transferability to German needs to be tested. Fur-
thermore, most approaches are performed on sentence level, rather than a whole text
segment. Beside these mentioned aspects two more differences compared to subjectiv-
ity classification in the existing approaches exist. First, HTML-based features, give
additional structural informations, e.g., the position in Web page and format charac-
teristics. Css-style classes are often related to their meaning and hence are frequently
a good hint to the text type of the particular Web page segment. Second, particularly
social media text characteristics, which are not present in standardized texts, e.g.,
emoticons, multiple punctuations, see Chapter 1.1, which serve as additional features
for social media text classification.

Web page cleaning is strongly related to Web text classification in general, but
differs in the way that classification is based on Web page segments and the specific
2-class problem is solved. However, classification approaches and the features used are
overlapping.

Automatically extracting the main content from Web pages has been well studied and
a wide range of methods has been proposed. Common alternative terms for Web page
cleaning are content extraction or boilerplate detection. Although Web page cleaning
is a very crucial step in the construction of Web corpora, only relatively little literature
can be found in this area. The CleanEval shared task and competition, [3], is one of
few works, which particularly aims at cleaning arbitrary Web pages with the goal of
preparing Web data for the use as a corpus. The shared task competitors basically
apply different classification algorithms based on a variety of classification features [3].
For instance, NCleaner, [18], extracts content by deleting boilerplate with regular
expressions and uses n-gram language models to separate content segments from non-
content segments. Spousta et al., [43, 80], employ Conditional Random Fields based on
multiple features and thereby treat the problem of boilerplate detection as a sequence
labeling task.

Kohlschütter et al., [37], analyse a representative set of features used by the approaches
proposed by the CleanEval competitors. In addition to a boilerplate detection algo-
rithm working with a small set of shallow text features, they introduce a new Web
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page training corpus called L3S-GN1 corpus. Furthermore, they extend their approach
with handcrafted rules for comment detection (11 indicator strings like, e.g., User com-
ments), but achieve lower precision. Both corpora, CleanEval and L3S-GN1, contain
only a little amount of comment pages, which are annotated as part of the main con-
tent. Kohlschütter et al., [37], even explicitly annotate comments as separate class.
Nevertheless, their publication reveals few insights about the efficiency of extracting
comments as main content.

3.2 Problem Description

In the following, we first mathematically describe the two related sequence labeling
problems, which only differ in the classes, which have to be predicted. A Web page
p is segmented into a sequence of Mp text blocks (segments), where each block is
represented by a d-dimensional feature vector

(bp
m)

T ∈ X = B1 × B2 × . . .Bd.

A detailed description about single feature ranges Bj for j = 1, . . . , d is given in
Section 3.4.

The aim is to predict the to Bp =
(
bp
1, . . . ,b

p
Mp

)
associated class sequence

cp =
(
cp1, . . . , c

p
Mp

)
,

with cpm ∈ C and C = |C| for m = 1, . . . ,Mp.

In the task of Web page relevance detection, we consider a 2-class problem, where
we differentiate between the classes COMMENT (social media text) and NON-
COMMENT. Additionally, we consider a 7-class problem where the classes COM-
MENT, ARTICLE, USER, TITLE, TIME, META and OTHER are differentiated.
We assume, that the more fine-grained classification can improve classification accu-
racy on the COMMENT class, due to similar sequences of classes, e.g., a user name
(USER) followed by a TITLE followed by a COMMENT, which are coherent in Web
pages containing social media texts. Furthermore, this detailed differentiation between
meta informations belonging to the posted comment, could further enrich a social me-
dia text corpus and thereby increase corpus quality. Application of such classifiers for
social media text Web page corpus construction is discussed in Chapter 5. Here, the
focus lies on solving the sequence labeling problem.

Considering the second problem of Web page cleaning, the set of text classes C com-
prises CONTENT and BOILERPLATE. According to the classification result, the Web
page is cleaned in a very simple way, where all segments classified as BOILERPLATE
are discarded.

The following steps are performed equally for both problems with respect to the con-
sidered classes. As a feature vector a combination of selected features proposed for
text genre classification and Web page cleaning from [41, 45, 37] is used. The resulting

30



3.3 Web Page Annotation

combination of features is complemented by some new features, which are especially
motivated by social media text characteristics. Altogether, three types of features are
used, token-, POS- and HTML-based. A detailed description of the feature set is given
in Section 3.4.

For Web page segmentation, we use the segmentation from Kohlschütters boilerpipe
tool. Web pages p are segmented into atomic text blocks (TB), represented by bp

m,
by a simple split at each HTML tag, except for the <a> tag. The result is a very
fine-grained segmentation, which might result in splitted articles or comments. To
counteract this problem, we apply the same block fusion algorithm delivered with
Kohlschütters Article Extractor and achieve a sequence of fused text blocks represented
by

Sp =
(
sp1, . . . , s

p
Np

)
,

with Np ≤ Mp, where feature vectors spn are calculated analogously to bp
m. The fused

text blocks are later referred to Article Segments (AS).

The resulting sequence labeling task is solved by the optimization problem

ĉp = argmax
cp

P (Sp, cp) (3.1)

where the label sequence ĉp is determined that maximizes the joint probability
P (Sp, cp). Note that we propose solutions to both segmentation results AS and TB.
The optimization problem for the TB segmentation is formulated and solved in the
same way. This is a huge optimization problem, which needs to be simplified in
practice. In Section 3.5 two approaches, which particularly differ in the degree of
simplifying assumptions and hence the complexity of the model are proposed.

3.3 Web Page Annotation

Depending on the task it is more or less challenging to develop an annotation scheme
and to decide, which annotation tool to use. In the context of Web page content
annotation the main questions are (1) is the annotation performed based on the vi-
sual representation of the Web page or directly based on the source code and (2) is
the annotation performed based on the resulting segments or before the segmenta-
tion. In this work a visual self-implemented annotation tool called AnnotationHelper
is provided, which supports direct annotation in the visual representation of the Web
browser Firefox. This approach is much more simple for the assessors, since they can
directly assign classes according to their visual perception. Annotating based on the
representation of the source code is in general much more confusing and time consum-
ing. Following that decision, the annotation is performed directly on the Web page
without any given segmentation. The main advantage is, that the data is segmenta-
tion independent and can still be used for different approaches. However, an adequate
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mapping from the annotated Web pages to the resulting segments is needed. This
mapping and associated difficulties are explained in more detail later in this section.

In general the preparing steps and annotation works as follows: The Web pages are
stored locally and supplemented by an additional CSS header to implement background
coloring of the annotated blocks/areas on the Web page (preprocessing step). For
example, the CONTENT is colored in turquoise, social media texts, i.e., COMMENT,
are labeled in yellow. This color-scheme simplifies the manual annotation process and
allows to check at a glance the Web pages structure and the annotation progress, see
Figure 3.5. For the training (gold standard) corpus, two annotators manually classify
the selected Web pages offline using the DOM inspector function of the Web browser
Firefox. The assessors annotate offline to prevent reloading of additional dynamic
content by JavaScript. The tool follows and bases on the manipulation of HTML tags
and includes the corresponding CSS class name. Marking the area to be annotated,
with right click in the Web page opening Firefox’ inspector function, the corresponding
HTML code can be edited by the tool. AnnotationHelper simplifies the annotation
process: Copying the corresponding HTML code, the class can be selected via clicking
on the related button provided by the tool. Then, the code is pasted at the same
position with adding the corresponding CSS class that colors the block on the Web
page as defined in the header (preprocessing). According to the given CSS classes the
annotation can be read out for further processing.

The annotation process is performed in to levels: (1) coarse-grained for Web page
cleaning and (2) fine-grained annotation for social media text detection. Figure 3.5
shows the coarse-grained annotation, Figure 3.1 shows the fine-grained annotation of
an example Web pages. (1) For the coarse-grained annotation, three classes are distin-
guished: CONTENT, BOILERPLATE and COMMENT AREA. Note that only the
first two classes are considered for the purpose of training the Web cleaner. How-
ever, since we are particularly interested in evaluating the accuracy achieved on Web
page parts, where comments are posted, we additionally annotate such areas as COM-
MENT AREA. The class CONTENT (turquoise) labels the whole textual content
of a Web page including the (main) article, social media texts/comments (yellow),
meta-data and functionalities referring to the article as well as the comments like
ratings, the reply-function, navigational elements, keywords, information about the
author and publication date and location. Within the CONTENT area, all com-
ments, the entry form to reply on posts and all meta-information belonging to the
comment-functionality, e.g., number of comments, authors’ avatars, are characterized
as COMMENT AREA. All areas which are not marked by the annotator, are auto-
matically assigned to the BOILERPLATE class. These areas comprise basically the
Web pages template including all menu items, but also advertisement banners between
article or social media text blocks or article teasers placed between article and social
media texts to motivate the user for further reading of related articles.

(2) For the fine-grained annotation, six classes are distinguished: COMMENT, ARTI-
CLE, TITLE,TIME, META. Note that all non-annotated areas are summarized into
the class OTHER. For the purpose of social media text detection a 2-class problem
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is solved, where the only relevant class is the COMMENT class. All differently and
non-annotated areas are summarized to be NON-COMMENT in this case.

The COMMENT areas cover all social media text parts, such as blog posts, forum
posts, comments posted to an article or any form of discussion between users written
. ARTICLE covers all text parts that do relate to the main article’s content. The
main title and all subheadings within the article, as well as the titles on top of the
COMMENT AREA or repeating headings between the comments are annotated as
TITLE. The class TIME covers all exact date and time information referring to the
article’s publication date as well as the comments’ publication dates. In addition, all
dates about the user such as the date of registration or the date of the last editing
are annotated as TIME. The class META covers all meta information related to the
article or the comments such as the number of comments or the related keywords. The
class USER covers all user names or the authors’ pseudonyms. In addition, particles
such as von (from) or geschrieben von (written by), bearbeitet von (edited from) are
also annotated with the class USER.

3.4 Web Page Features

The number of potential features for any kind of text classification is huge and results
in a large variety of proposed features known from literature, [41, 45, 37, 92, 21].
Pure token-based approaches like bag-of-words models can result in a huge feature
vector dimensions. The potential feature space increases for the task of classifying
text segments in Web pages, where additional HTML-based features and features
based on predecessor and successor segments are available. Searching for a topic
independent approach for social media text detection claims for carefully selecting
token-based features, in order to avoid overfitting to the topic/content of the considered
training data. Inconsiderately using token-level features may provide skewed results
that describe a particular topic only. Study text at the functional level rather at the
textual level claims for features at a higher, topic- and language independent level.
We believe that a topic independent solution for social media text detection, requires
a good trade-off between token-based and higher level features.

In the following, 245 features of three different types, token-based, POS-based and
structural features based on the HTML source code are introduced. It is generally ex-
pected that the combination of several features from different types can be used to iden-
tify text segments as COMMENT, NON-COMMENT,CONTENT,BOILERPLATE.
In our approach we combine modified features proposed for text genre classifica-
tion [41, 45], with features for Web page cleaning [37] and introduce some new features
for the particular task of social media text detection. The newly introduced features
distribute over all three feature types. Feature suggestions are motivated by investi-
gating the language in and style of social media texts, see Section 1.1, as well as the
structure of Web pages like news sites, blogs and forums. The basic idea is to identify
significant differences considering both aspects.
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3.4.1 Token-based Features

Token-based features are easily accessible, without any text preprocessing. However, in
order to develop a topic independent solution, token-level features need to be carefully
selected. It might explode to a thousand of features, which make the classifier prone to
overfitting to the particular content or even content topic. In our approach we extend
several frequency count features by social media text related features. We believe that
the additional features particularly serve to differentiate social media text segments
from other text segments. Table 3.1 gives an overview of the different types of token-
based features including 149 features in total. The table is structured column wise,
feature names are followed by possible feature ranges and a short description of the
feature type. A detailed description follows.

Feature Range Description

TO1-TO10 ∈ R≥0/N0 Overall Token/Character based frequencies
CA1-CA6 ∈ R≥0/N0/ {0, 1} Capitalization related frequencies
DT1-DT2 ∈ N0 Date/Time related tokens

TE1 ∈ R≥0 Mean Text Density
TE2 ∈ R≥0 Ratio between TE1 of previous segment and TE1

SO1-SO6 ∈ R≥0/N0 Social media text characteristics
SU1-SU2 ∈ N0 Subjectivity related features
SE1-SE2 ∈ R≥0/N0 Frequency of sentiment related words

PU1-PU17 ∈ R≥0/N0/ {0, 1} Punctuation mark related features
LC1-LC50 ∈ N0 Frequencies of top 50 CONTENT words

LC51 ∈ N0 Total frequency of top 50 CONTENT words
LC52-LC102 ∈ N0 Frequencies of top 50 FUNCTION words

LC103 ∈ N0 Total frequency of top 50 FUNCTION words
US1 ∈ N0 Frequency of USUAL words ≥ 1,000
US2 ∈ N0 Frequency of UNUSUAL words with frequency of 1

Table 3.1: Frequency and ratio features based on tokens.

Initially, we adopt some general features from other text classification approaches
and complement them by some task specific features represented by TO1-TO10, the
number of characters, tokens, special characters, alphabetic characters, digits and
token combinations of alphabetic characters and digits is calculated. Additionally,
the mean token length and number of differing tokens/words in the segment, which is
equivalent to the lexicon size of the text, is determined. Based on that, we measure
the vocabulary richness in more detail by the ratio between the lexicon size and the
number of tokens.

CA1-CA6 comprise features related to capitalization, which is generally considered
with less importance in social media text compared to standardized texts. Another
issue is, that capital letters are used to emphasize someones expression in social me-
dia texts. We differentiate between capitalized words and words completely written
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in capital letters. Additionally, a binary feature is introduced to mark if a text seg-
ment starts with a capital letter. All tokens starting with an uncapitalized letter are
counted and the ratio between such tokens and the capitalized tokens is determined.
Furthermore, the same ratio is calculated based on character level.

The posting time or date is a common information given to each article or socia media
text. Therefore, DT1 calculates the occurrence of common date strings by regular
expressions in a binary way, e.g. 10.11.99 or 10/11/99. The feature, DT2 additionally
considers time related strings such as 10:50 and counts the frequency of such date and
time related elements in the segment. This helps to detect common structures like the
posting date typically located above a comment or an article. Beside the link density
in a Web page a text density measure has been proposed for Web page cleaning by [37],
originally developed for segmentation. The idea is to identify similar text densities in
segments of the same class. This feature TE1 counts the number of tokens in a text
segment divided by the number of lines after word-wrapping the text at a fixed column
width, here 80 characters. Due to the side-effect of having an incompletely filled last
line after wrapping, the latter is not taken into account, unless it is the only line in the
segment. Furthermore, the ratio between TE1 of the previous segment and current
text segment is determined.

In Section 1.1 the different types of social media text characteristics have been shown
in a very detailed way. The following features are developed according to that char-
acteristics. One of the most essential features is the number of emoticons counted in
a text segment. Related to the dialog form the occurrence of complimentary closes,
e.g. Hey or Hallo, is counted, as well as the occurrences of addressing forms like Herr
or Frau. Using multiple letters in a word, e.g. Haaaaalllo is very unique for social
media data and is introduced as additional feature. Frequencies are counted by means
of regular expressions. It is generally common to relate to other relevant comments
in a comment itself by giving the corresponding URL, which is additionally counted.
Finally, a counter of eight social media text related words (CA6), lol, ne, nein, danke,
bitte, jo, man, so, super, nichtmal is used. The list of words is compiled from the par-
ticular training text segments assigned to the COMMENT class. We manually select
the words considering their frequencies in such segments.

Strongly related to the previous features are subjectivity related features and sentiment
related features. We differentiate two subjectivity feature types. First frequency counts
of personal and possessive pronouns in the singular form, e.g., ich or dir, are summed
up. Second the plural forms, e.g., ihr or wir are counted. Furthermore, some sentiment
related features are defined. Adjectives in social media texts are inherently connected
with evaluative judgments. Hence, frequency counts of positive and negative orientated
adjectives are a good feature for differentiation. The SentiWS word list proposed in [69]
is used for frequency counts. Supplementary, a weighted frequency is used as feature
by multiplying with the polarity weight.

Punctuation mark related features PU1-PU16 comprise frequency counts of coherent
tokens representing a punctuation mark in the given text segment, but at the same
time frequencies of punctuation mark relevant characters. Full stops are differentiated
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from, question marks, exclamation marks, commas, colons and semicolons in single
counts and are complemented by a total count on character and token level. Addi-
tionally to the standard frequency counts, we count social media specific occurrences
of multiple punctuation marks, e.g. !!!, !?! and put this in ratio to the total count of
punctuation mark related tokens. Finally, we introduce a binary feature, which stores
the information if a text segment is terminated with a final punctuation mark. This
could be a useful criteria since social media texts are often completed with the users
name in contrast to articles, which are terminated by a final punctuation mark.

Features based on lexical information are most commonly used for any type of text
classification. Counts of function words as well as counts of content words play an im-
portant role in a sentence, hence we want to evaluate their usability for our approaches.
In order to achieve a reliable list, the top fifty content words (open class words) in-
cluding nouns, verbs, adjectives, interjections, and most adverbs are extracted from
the training corpus. In the same way the list of function words is constructed, in-
cluding prepositions, pronouns, auxiliary verbs, conjunctions, grammatical articles or
particles. In total fifty frequency counts and one total counter are used as feature for
both word types. Note that for the list generation the part-of-speech information is
needed, which is taken by applying WebTagger. Additionally, all usual words with a
frequency higher 1,000 and unusual words occurring only once in the training corpus
are extracted. Based on these lists, two features, US1 and US2 are introduced, building
the sum over the single word frequencies.

3.4.2 POS-based Features

POS analysis assigns the word of a sentence according to their part-of-speech and/or
syntactical function. Using POS informations requires automatic POS tagging (higher
level feature), which increases computational complexity. However, existing text clas-
sification approaches have shown, that POS information can increase classification
accuracies. Differences in POS tag statistics for newspaper texts compared to social
media texts reinforce the usability of such features for our purposes.

We employ WebTagger proposed in Chapter 4, which leads to particularly high ac-
curacies for social media texts and performs adequately on standard texts. Hence, it
is suitable for tagging the text segments of the present Web page corpus. Table 3.2
depicts the 33 POS-based features, which are explained in more detail in the follow-
ing. Based on the automatically POS tagged training data corpus a list of the 15 most
frequent POS tags is extracted. 15 features ST1-ST15 are calculated from that list
counting the frequencies of such POS tags in the segment. Additionally, the frequency
of POS tags indicating the imperative form of a verb are summed up and added as
feature ST16. The imperative is a frequent instrument used in social media dialogs,
e.g., question and answering forums, but rather not occurring in articles or any other
text parts of a Web page. The features ST17-ST18 are basically introduced as typical
social media text characteristics, which comprise the frequency of answer particles,
e.g., ja, nein, danke, bitte and frequency counts of interjections, e.g. ach, naja, lol in
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Feature Range Description

ST1-ST15 ∈ N0 Frequencies of top 15 STTS POS classes
ST16 ∈ N0 Frequency of imperative verbs
ST17 ∈ N0 Frequency of answer particles
ST18 ∈ N0 Frequency of interjections
ST19 ∈ N0 STTS POS class variety

PO1-PO5 ∈ N0 Frequencies of morphological POS classes
RA1-RA3 ∈ R≥0 Ratios between different POS classes
SE1-SE6 ∈ R≥0/N0 Sentence related frequencies/ratios

Table 3.2: Frequency and Ratio features based on POS information.

the text segment. ST19 simply sums up the different occuring STTS POS tags and
thereby measures the POS tag variety in a text segment. In addition to features based
on the fine-grained STTS POS annotation considering the morphosyntax we use counts
based on the morphological information exclusively. Features PO1-PO5, comprise fre-
quency counts of verbs, pronouns, adjectives, nouns, and adverbs. Features RA1-RA3
are adopted from many text genre classification approaches. They calculate ratios
between morphological POS classes, the verb-noun ratio, the adjective-noun ratio and
adverb-noun ratio. Note that POS tag informations are used to determine the end
of sentence and hence features related to that are assigned to that feature category.
Use POS information here, is more exact considering social media texts, where, e.g.,
a sentence is terminated by an emoticon, which is detected by WebTagger correctly.

The sentence related features S1-S6 comprise basically length informations. Apart
from the mean sentence length in tokens, the median, maximum and minimum token
length of a sentence is calculated. Long sentences, predominantly exist in standard-
ized articles whereas sentences in social media texts are rather expected to be short.
Elliptical constructions, i.e. one word sentences, are exclusive for social media texts.
Additionally, the total number of sentences for a segment is calculated, so that the to-
tal amount of sentence related features results in five. Finally, we calculate the number
of conjunctions per sentence, which is a common feature in text genre classification.

3.4.3 HTML-based Features

HTML-based features are the cornerstone off many Web page classification tasks. In
this work we propose 63 structural features based on the HTML source code, a com-
bination of HTML tag based, CSS class name and link based features. An overall list
considering the different types is given in Table 3.3. Initially, absolute and relative
segment position (P1,P2) features are introduced. They give essential structural in-
formation. A class is normally located in the same area of a Web page. For instance,
BOILERPLATE segments are rather located at the beginning or end of a Web page
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Feature Range Description

P1 ∈ N0 Absolute Web page position
P2 ∈ [0, 1] Relative Web page position

LI1-LI4 ∈ {0, 1} /R≥0 Link related features
CS1-CS33 ∈ {0, 1} CSS class names related features
HT1-HT22 ∈ {0, 1} HTML tag related features

LE1 ∈ R≥0 DOM level related features

Table 3.3: Frequency and ratio features based on HTML informations.

in contrast to CONTENT segments. COMMENT segments are usually located at the
end of a Web page but still followed by some BOILERPLATE segments.

LI1-LI4 comprise four link related features, which are crucial for Web page cleaning. In
addition to the frequency of links in a segment a binary feature is introduced, which
marks if the segment itself is a link. This serves to differentiate BOILERPLATE
segments, which frequently fulfill that criteria. If a segment is a link itself or contains
some links, the link density feature is different from zero. It is the ratio of tokens in a
link environment(<a> . . . <a\>) divided by the total number of tokens. In order to
measure the transition from the previous segment, the ratio between the link density
in the previous and current segment is calculated as additional feature.

Whereas previous structural features are well-chosen for BOILERPLATE detection,
the following features are rather useful for detecting comments and their surounding
elements, e.g. the title or user name. These features measure the occurrence of common
CSS class names or common HTML tags itself. Binary features of 22 common CSS class
names for comments, 5 for time related information and 3 for user related classes are
introduced. A feature value is equal to one, if the class name contains the considered
name/string. The 22 features are a mix of more general class names, e.g. post or
kommentar and specific class names extracted from the training data, e.g. postingtext
or commentbody. The time and user related features calculate the existence of typical
names like date,year,author or user. In addition to the single CSS classname related
feature, we introduce one overall binary feature per type, comments, time and user,
which measures the existence of one of the mentioned class names. Furthermore, we use
22 HTML tag based, binary features, which measure the occurrence of a special tag.
The list of HTML tags used is a set up of tags which indicate different functionalities
of the particular segment, e.g. heading tags like h1,h5 or commenting specific tags like
form.

An HTML document is given in a tree structure. We assume that the position in a
tree structure could be a good indication to differentiate the here considered classes.
Therefore, we introduce the HTML tag depth of the segment to be classified as feature,
which simply measures the depth in the DOM tree (LE1).
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3.5 Classification Approaches

In order to solve the sequence labeling problems, we compare two different approaches.
We successively reduce our independent assumptions, which at the same time increases
the complexity of our classification models. Starting with a simple independent clas-
sification for each text segment in a Web page in Section 3.5.1, we evaluate three
classification methods based on the described feature set. In order to integrate the
dependencies from surrounding text segments, the feature vector is extended by the
features of predecessor and successor text segments. Furthermore, we apply a Condi-
tional Random Field classifier in Section 3.5.2, which is a more complex model inte-
grating dependencies of the predictions and features from predecessor and successor
text segments.

3.5.1 Independent Labeling Model

Initially, we make very strong independence assumptions: (1) The classes ĉpn are pre-
dicted independently from predictions ĉpr for r �= n. (2) We assume that the class
for a given text segment spn at position n only depends on some - here k - preceding
and succeeding text segments. Hence, the optimization problem from formula (3.1) is
reformulated into

ĉpn = argmax
cpn

P (Sp, cpn) (3.2)

for n = 1, . . . , N optimization problems. In this approach, we apply different classifiers,
which operate on a single feature vector as input. Therefore, we represent our segment
spn by a feature vector

spnk =
(
(spn−k)

T , . . . , (spn)
T , . . . , (spn+k)

T
)T
.

Note that, for the first and last segments of each Web page p, there are not enough
predecessor and successor segments available. In such cases the number of considered
predecessor and successor segments is reduced to the maximal possible amount. Hence,
the problem can be reformulated to

P
(
spn−k, . . . , s

p
n, . . . , s

p
n+k, c

p
n

)
= P (spnk, c

p
n) .

According to the Bayes’ theorem we can rewrite the joint probability by

P (spnk, c
p
n) = P (cpn | spnk)P (spnk) .

Since the probability of a segment P (spnk) does not change with the label sequence
and is a constant considering the optimization task in equation (3.2), solving

ĉpn = argmax
cpn

P (cpn | spnk) (3.3)

39



3 Social Media Text Detection and Classification

leads to the same solution, i.e., classification result. Furthermore, we assume all prob-
abilities to be position and Web page independent. Three different models are used to
solve the optimization problem given in equation (3.3), a K-Nearest Neighbor (KNN)
algorithm, a decision tree (C4.5), and a Support Vector Machine (SVM). A detailed
description about the different methods can be found in Section 2.6. Note that a SVM
is a classifier based on discriminant function, hence a slightly different optimization
problem is solved, see Section 2.6.3.

3.5.2 Linear Chain Conditional Random Fields

Additionally, we apply a Linear Chain Conditional Random Field to the sequence la-
beling task. Conditional Random fields are more and more used in order to build prob-
abilistic models for sequence labeling tasks in NLP. The main advantage compared to
the independent labeling model proposed in Section 3.5.1 is that strong independence
assumptions are relaxed in such models. CRFs allow for modeling the dependencies
of consecutive text segments and their predicted classes.

CRFs, first introduced in [39], are probabilistic models, where the sequence of text
classes cp is predicted, dependent on the whole sequence of observed text segments Sp.
They fall into the category of discriminative probabilistic models, where the conditional
probability P (cp | Sp) is modeled directly, which is sufficient for classification. The
main advantage of a discriminative model is that no modeling effort of observation
probabilities P (x) need to be expanded, since they do not affect the classification
because they are constant with respect to the maximization problem. Furthermore,
the conditional probability of the text class sequence can depend on arbitrary, non-
independent features of the sequence of observations. Additionally, the probability of a
transition between classes may depend not only on the current observation, but also on
past and future observations. In comparison, generative models, e.g., Markov models,
must make very strong independence assumptions on the observations, e.g., conditional
independence given the classes, to achieve tractability. Note that for simplicity we
replace P (cp | Sp) by P (c | S).
For our approach, we implement a Markov model like linear chain CRF. It is based
on the model described in [39], however we use additional feature functions, which is
essential for the resulting model. The models assumptions are that dependencies of
cp, conditioned on Sp form a linear chain. Therefore, by the fundamental theorem of
random fields, see [32], the conditional probability distribution has the form

Pθ (c | S) = 1

Z(S)
exp

(∑
n,p

λptp (cn, cn−1,S) +
∑
n,q

μqeq (cn,S)

)

with an instance-specific normalization function

Z(S) =
∑
c∈CM

exp

(∑
n,p

λptp (cn, cn−1,S) +
∑
n,q

μqeq (cn,S)

)
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where θ = (λ1, . . . λR, μ1, . . . μQ) ∈ R
r+q are the parameters of the distribution. Fea-

ture functions tr and eq are assumed to be given and fixed. Their specific construction
is described in more detail in the course of Section 3.5.2. Parameters λr and μq cor-
respond to usual transition P (c | c′) and emission probabilities P (s | c) in a Markov
model. Since, the parameters are not required to be log probabilities, it is no longer
guaranteed that the probability distribution sums up to 1, unless we use the normal-
ization constant Z(S) for a particular S to ensure Pθ to be a probability distribution.

Before the CRF can be used for classification the parameter estimation problem of
determining θ needs to be solved. The parameter estimation is based on a set of
training Web pages

T R =
{(

S̃p, c̃p
)
| 1 ≤ p ≤ P

}
.

As described in previous sections, we solve this by a maximum likelihood approach.
In order to maximize the log-likelihood objective function

θ̂ = argmax
θ
�(θ)

with

�(θ) =
P∑

p=1

logPθ (c
p | Sp)

we apply the Limited Memory BFGS algorithm as described in Section 2.3.1.

Computing the likelihoods additionally requires an inference algorithm 2.2.1. Inference
algorithms are employed in two cases for CRFs. First, the gradient based training
requires computing marginal distributions P (cn, cn−1 | S) and computing the likelihood
function requires Z(S). Second, to apply the classifier and label an unseen sequence
of text segments, the most likely (Viterbi) labeling ĉ = argmaxc P (c | S) needs to
be computed. In case of a linear chain CRF both inference tasks can be performed
efficiently and exactly by variants of the standard dynamic-programming algorithms for
Markov models. Here, we use the to CRF adapted Viterbi algorithm, see Section 2.2.1.

Feature Functions

In general for a linear chain CRF, each feature function can be any real-valued function
of the form f(cn, cn−1,S). However in practice, boolean feature functions have been
proven to be successful in the context of different applications [39, 12, 36, 43]. For our
approach we construct a first-order Markov model like CRF with transition related
feature functions and boolean emission related feature functions as proposed in [39].
Emission related feature functions based on the current observation are particularly
extended by feature functions based on the observed predecessor and successor text
segments.

Initially, we adopt the same model proposed by Lafferty, [39], and use one transition
like feature function

t(cn, cn−1,S) = 1{c}(cn)1{c′}(cn−1) (3.4)
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for each transition pair (c, c′) and additional emission like feature functions

e(cn, cn−1,S) = 1{c}(cn)1{lj}(snj) (3.5)

for all class-observation pairs (c, lj), where lj ∈ Sj is a realization of the feature j.
The sets Sj with |Sj| = Lj are defined as the set of all training data realizations of
each feature j = 1, . . . , d. In total this results in R = C2 transition related feature
functions t and Q =

∑
j CLj emission related feature functions e.

For our approach we perform modifications to emission like feature functions in two
ways. Initially, we perform modifications, which are referring to the feature vector
extensions by k preceding and succeeding segment features for independent predictions,
as proposed in Section 3.5.1. In addition to the feature functions proposed in equation
(3.4) we create emission related feature functions for features of preceding segments

e(cn, cn−1,S) = 1{c}(cn)1{lj}(s(n−1)j)

...

e(cn, cn−1,S) = 1{c}(cn)1{lj}(s(n−k)j)

and for features of succeeding segments

e(cn, cn−1,S) = 1{c}(cn)1{lj}(s(n+1)j)

...

e(cn, cn−1,S) = 1{c}(cn)1{lj}(s(n+k)j).

The resulting number of emission feature functions increases by a factor (2k + 1).

Apart from the extensions of feature functions ek, emission feature functions are
adapted to use a combination of two features j and m. The idea is to consider two
features dependently and thereby use and identify good feature value pairs for the
considered classification. Therefore, the feature functions are modified in the way

eq(cn, cn−1,S) = 1{c}(cn)1{lj}(snj)1{lm}(snm) (3.6)

for all feature combinations j,m with j < m. This results in a total number of∑
j,m,j<mCLjLm emission feature functions.

Dealing with real-valued features when constructing binary feature functions results
in an overfitted model. Furthermore, it leads to a significant increase of the models
complexity, which makes parameter estimation more challenging and requires more
training data to achieve reliable estimates. One way to counteract these problems, is
to perform feature discretization from Section 2.4. Additionally, we perform differ-
ent feature subset selections as preprocessing step, see Section 2.5. In the addressed
tasks of social media text detection and Web page cleaning a 2-class sequence labeling
problem is solved, so that the number of classes C is the minor part in complexity
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increase. We are interested in the influence of different feature functions on problems
with higher class dimensions. Therefore, the 7-class problem, see Section 3.2, for a
more fine-grained Web page corpus classification is additionally evaluated.

3.6 Web Page Corpora

Evaluations are performed on different corpora investigating different aspects of the
proposed methods. However, one Web page corpus called GWebTrain is the main
evaluation corpus, which serves particularly for training but at the same time for
testing. The additionally used corpora are in general annotated more coarse-grained
and hence are not useful for training but serve for further validation. The GWeb-
Train corpus is a social media text Web page corpus enriched with manual annotation
according to the guidelines described in Section 3.3 and hence serves to train the clas-
sifiers. It consists of 200 manually assessed German Web pages all from different Web
sites/domains. Web pages contain forums, blogs or different news sites, which allow
for commenting of the published articles. Samples are selected preferring highly com-
mented articles or pages with social media texts exclusively. The Web pages topic is
related to renewable energies with the topics ”Windpark” (wind farm) (100 pages) and
”Pumpspeicherkraftwerk” (pumped storage power plant) (100 pages). This is due to
the fact that these data later serve for a topic detection study.

Class # TB Mean TB # AS Mean AS # Tokens Mean Tokens
Total 41, 796 222± 120 31, 305 167± 98 312, 282 1, 661± 1, 171

BOILERPLATE 24, 694 131± 126 23, 179 123± 121 79, 521 423± 522
CONTENT 17, 102 91± 109 8, 126 43± 56 232, 761 1, 238± 1, 587

COMMENT AREA 12, 909 69± 87 6, 191 33± 43 148, 868 792± 1, 081
NON-COMMENT AREA 4, 193 22± 22 1, 935 10± 13 83, 893 446± 507

Table 3.4: Class distributions in the GWebTrain Corpus with 200 Web pages calcu-
lated based on textblocks (TB) and fused segments (AS).

Distributions of the classes CONTENT, BOILERPLATE, and COMMENT AREA at
token, text block (TB), and fused segment (AS) level for GWebTrain are depicted in
Table 3.4. Beside total corpus frequencies, mean values are depicted. Note that the
standard deviation is depicted by ±. In the first row of the table class independent
segmentation statistics are depicted, which give an idea about the granularity of the
different segmentation results proposed by Kohlschütter. In addition to the annotated
classes, we calculate statistics on the CONTENT areas, which are not assigned to
the COMMENT AREA and call that NON-COMMENT AREA. Comparing the total
and mean numbers of TB and AS segments for BOILERPLATE and CONTENT,
shows that particularly the main content of a Web page is further merged to bigger
segments. This is established by the fact, that the content consists of long articles and
comments and the BOILERPLATE parts contains many little links or menu items.
COMMENT AREA frequencies are consistently higher compared to the remaining
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content area NON-COMMENT AREA. It reflects the large proportion of social media
texts inherent in the data.

Exemplary segmentation results of a Web page into text blocks and article segments
are depicted in Figure 3.1 and 3.2. Segmentation results are illustrated with respect
to the fine-grained annotation.

Background colors depict the manual annotation, whereas frame colors depict the
resulting segment and its class assignment according to the manual annotation. Areas,
which are not labeled by the annotator are not highlighted with any background color
(BOILERPLATE). The colored frames depict the segments, which are used as training
data. The following color scheme is used: ARTICLE in light green, COMMENT in
yellow, TITLE in blue, USER in red, TIME in light olive and META in dark green.
Frame colors are slightly darker than background colors for better illustration. Note
that if a segment overlaps two different classes it is assigned to the class, with the
higher number of tokens. For example in Figure 3.2, the first two posted comments
are fused together, with user name (USER), and posting date (TIME). The whole
segment is assigned to the class COMMENT due to the higher number of tokens.
Comparing the results to segmentation results achieved on the third posted comment,
shows that the comment is not fused to one comment segment.

Overall, the different segmentation results show that text blocks of articles and com-
ment areas are fused adequately in general. Related links, menu items and headlines
in boilerplate areas are kept in smaller segments, fusion of text blocks is only applied
to few areas. For the task of Web page cleaning and social media text detection both
segmentations are adequate. However, the article segmentation is not so appropriate
if a fine-grained classification into the 7 classes is required. In that case to many text
blocks from differing classes are fused to one segment.

Two additional corpora are introduced in order to show the transferability of the
proposed methods to other languages exemplary to English and additionally evaluate
results of the proposed methods on a benchmark corpus. Therefore, first the English
EWebTrain corpus is introduced. EWebTrain consists of 50 English Web pages and is
annotated in the same way as theGWebTrain corpus. Even if the corpus is significantly
smaller it serves as training corpus for the introduced methods. Additionally, the
CleanEval corpus, an English benchmark corpus serving for the validation compared
to state-of-the-art methods, is used. CleanEval is part of a shared task on the cleaning
of arbitrary Web pages, with the goal to prepare Web data for use as a corpus. The
manually annotated corpus includes two divisions for English, a development set, and
an evaluation set. For our experiments, we only consider the evaluation set consisting
of 674 Web pages.

3.7 Evaluation

Evaluations are structured into four parts. First, we analyse the usability of the
proposed feature types for the considered classification problems. Feature’s qualities
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Figure 3.1: Text block segmentation result (depicted by colored frames) with underly-
ing fine-grained annotation (depicted by background colors).
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Figure 3.2: Article segmentation result (depicted by colored frames) with underlying
fine-grained annotation (depicted by background colors).

46



3.7 Evaluation

are assessed and compared by the information gain and information gain ratio criteria.
Furthermore, we evaluate our methods, by applying two 10-fold cross validations to
the GWebTrain corpus. Cross validation splits are performed by randomly selecting
Web pages. Classification performance is measured by the classes precision, recall,
mean F1-Score and total accuracy. The metrics are depicted in percentage. All values
are macro-averages (see Section 2.7) over the two cross validations. Due to the strong
variety of class prior probabilities we especially compare mean F1-Scores instead of
total accuracies. Classes such as NON-COMMENT in the 2-class problem or OTHERS
in the 7-class problem occur with high probabilities. Note that performance measures
are always calculated based on text block (TB) segments. The reason for that is that
results are more comparable and the performance measure is more independent from
potential segmentation errors as mentioned in the previous section.

In Section 3.7.1 results achieved for social media text detection, i.e., solving the 2-
class problem COMMENT vs. NON-COMMENT and the more fine-grained classifi-
cation into seven classes are evaluated. Section 3.7.2 evaluates the Web page cleaning
methods, solving the 2-class problem CONTENT vs. BOILERPLATE. Finally, the
proposed Web page cleaning methods are applied to the English benchmark corpus
CleanEval to show the portability of our methods to other languages. It is shown that
Web page cleaning performances lead to similar results compared to state-of-the-art
approaches achieved on the English benchmark corpus, where no social media texts
are covered.

For our experiments applying a KNN classifier, a decision tree (C4.5) and a Support
Vector Machine, we use the WEKA software, [31]. All three classifiers are used with
their standardWEKA parameters. The KNN classifier is applied withK = 3 neighbors
and the euclidean distance. As a C.4.5 decision tree we use a tree, pruned with a
threshold of 0.25 with a minimum number of 2 of instances per leaf. The SVM is
employed with a polynomial kernel function.

Feature Evaluation

In this section, we investigate the different features by calculating the per-feature
information gain and information gain ratio, see equation (2.7) and equation (2.8).
Specifically, we compare and discuss the three types of features. Note that both cri-
teria serve to assess and compare the usability of features with respect to the classes,
but are not sufficient for determining a good subset of features for classification. Fea-
ture qualities are assessed independently and hence might be strongly correlated. We
perform and evaluate subset selections of features with a correlation-based metric later
in Section 3.7.1. However, calculating the per-feature information gain (ratio) allows
for giving a first impression about a feature’s usability. First, we consider the 2- and
7-class problem in the context of social media text classification. Figure 3.3 shows the
top 100 features in decreasing order according to their information gain ratio for the
2-class and 7-class problem. Different colors represent the three types of features: red
for token-based, blue for POS-based and green for HTML-based features. The infor-
mation gain ratio is lower than 0.27 for the 2-class and 0.47 for the 7-class problem.
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Comparing features with similar ranks for the different classification problems shows
a nearly constant difference of 0.1. This is caused by the fact that specific features are
higher valued due to their relevance for one of the more specialized classes different
from COMMENT. For example, some features are strong indicators for segments of
the TITLE or TIME class. The amount of POS-based features ranked in the top 100 is
significantly higher for the 2-class. Typical high ranked features in both classification
tasks are the frequency of finite verbs (ST1-ST15), the frequency of adverbs (PO1-
PO5), the frequency of interjections (ST18), the frequency of answer particles (ST19),
the number of pronouns (PO1-PO5) or the verb noun ratio (ST1-ST15). Particu-
larly, HTML-based features are ranked under the top 10 features for the fine-grained
classification. Such features are CSS class name counts (CS1-CS30) of class names
which are username, time stamp or comment specific. Additionally, link related fea-
tures (LI1-LI4) such as the link density or the number of links in the segment yield
high information gain ratios. Similar to HTML-based features, token-based features
related to the COMMENT and TIME class are higher ranked for the 7-class problem.
For example, counts of the content word uhr (LC1-LC50) and counts of date/time
related tokens (DT1) are strong indicators to differentiate between the TIME class
and other classes. Features based on frequency counts of content and function words
(LC1-LC102) such as ich (I) or so reach high information gain ratios considering the
7-class problem. Social media text related token-based features (SO1-SO6) such as the
number of emoticons, the occurrence of complimentary clauses yield high information
gain ratios in both classification problems. In a second step, we evaluate the usability
of the proposed features for the considered Web cleaning task. The information gain
ratio is evaluated in comparison to the information gain criteria. Figure 3.4 shows the
top 200 features in decreasing order of their information gain (ratio) for the 2-class
problem CONTENT vs. BOILERPLATE. Comparing the values of the two criteria
at similar ranks shows that differences are slightly higher for the top 100 features.
Furthermore, the amount of HTML-based features ranked under the top 60 for the
7-class problem is doubled compared to the 2-class problem. This can be explained by
the fact that most of the HTML-based features are binary features and hence ranked
lower according to the information gain criteria. In contrast, many of the POS-based
features are POS tag counts, i.e., elements of N0 where |Ij| is in the order of Ñ . This
leads to a higher information gain for such features, which is adjusted by calculation
of the information gain ratio. Comparing information gain ratio ranks with the ranks
achieved on the 2- and 7-class social media text classification problem shows very simi-
lar distributions over the top 100 ranks for the different feature types. Specific features
are ranked similarly. In particular, social media text related HTML- and token-based
features yield high ranks.

We conclude that for our task, in which features are a combination of binary, integer-
valued (N0) and real-valued (R) features with different value ranges, the information
gain ratio seems to be the more adequate metric for the assessment and comparison of
a feature’s usability. However, results achieved with the decision tree in the following
section will show that the information gain criterion can be effectively used to build a
decision tree yielding high accuracies based on such features.
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Figure 3.3: Per feature information gain ratio in decreasing order for the 2- and 7-class
problem.

0 

0,05 

0,1 

0,15 

0,2 

0,25 

0,3 

Token-based (InfoGain) 

POS-based (InfoGain) 

HTML-based (InfoGain) 

Token-based (InfoGainRatio) 

POS-based (InfoGainRatio) 

HTML-based (InfoGainRatio) 

Figure 3.4: Per feature information gain ratio in decreasing order for the 2-class Web
cleaning problem.

49



3 Social Media Text Detection and Classification

3.7.1 Social Media Text Classification

We start evaluating social media text classification. The cross validation results of
social media text classification for the 2- and 7-class problem are discussed in the
following and depicted in Table 3.5 and Table 3.6. We measure classification accuracy
by COMMENT class precision PCOM , COMMENT class recall RCOM , mean F1-Score
(F 1) and total accuracy AC. The mean F1-Score particularly reflects performances
achieved over all classes ARTICLE, TITLE, TIME, META, OTHER and COMMENT
in the 7-class problem. The upper part of Table 3.5 depicts classification accuracies
(2- and 7-class) achieved with the independent labeling approach for the different
classifiers KNN, SVM and C4.5 trained and tested with all proposed features.

In order to analyse the influence of integrating features from predecessor and successor
segments for classification in more detail, classification accuracies for k = 3 are depicted
in addition. In the same way results for a CRF are depicted in the upper part of
Table 3.6. Generally results achieved with a SVM and CRF significantly outperform
the other methods. With respect to total accuracies and mean F1-Scores the SVM
(k=3) reaches the highest values for the 2- and 7-class problem with 89.05% and
65.64%. Accuracies achieved on seven classes are significantly lower, however more
classes have to be differentiated and hence the problem is more complex. Performances
with a CRF for the 2-class problem are only slightly lower.

Integrating features from three preceding and succeeding text segments, yields mean
F1-Scores and PCOM improvements up to 15 and 5 percentage points for the SVM.
Consistently for all classifiers performances are improved for k = 3. Comparing F1-
Scores for the SVM and CRF approach shows that values differ more for k = 3 com-
pared to the k = 0 especially for the 7-class problem. Due to the fact that the CRF
uses emission like feature functions for each combination of observed feature values
combined with each class, especially for the 7-class problem model the complexity
significantly increases and hence parameter estimates are less reliable performed on
the same amount of training data. With the given amount of training data and the
number of parameters to be estimated, on average for each parameter less than one
training observation is available. Furthermore, it is worth mentioning that for k = 0
the KNN classifier and C4.5 decision tree significantly outperforms the SVM. A reason
for that could be that SVMs are designed to solve 2-class problems. Solving classifica-
tion problems considering more classes is done by combining several 2-class SVM and
join the results. This could lead to a performance loss.

In order to investigate the relevance of different feature types in more detail, we ex-
emplarily train a KNN classifier and CRF method for each feature type separately.
Results are depicted in the middle part of Table 3.5 and Table 3.6. Using an ap-
proach based on token-based features outperforms the POS-based and HTML-based
approach. This is consistent with our expectations. Beside high information gains
ratios for such features, see Figure 3.3, the higher amount of such features contributes
to better performances. However, for all feature types performances drop significantly,
compared to the approach, when using all feature types in combination, see KNN (k=0)
and CRF (k=0). The performance loss for the 7-class problem is worth mentioning.
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The mean F1-Score drops by a maximum of 19 percentage points. This emphasizes
the importance of combining different feature types, the more specific text classes are
differentiated.

After analysing the features separately, feature combinations are evaluated in more
detail. In order to investigate the combination of different features considering their
redundancy, we apply a greedy correlation-based feature subset selection proposed
by [30], see Section 2.5.2. For the 2-class problem 20 features combined of 35% token-
based, 30% POS-based and 35% HTML-based features are selected by applying the
algorithm. The amounts of different feature types are more balanced. Token-based
features are for example the FUNCTION word ich (I), the CONTENT word auch
(also) (LCn) or capitalization ratios (CAn). POS-based features are exemplarily the
frequency of interjections (ST18), pronouns in singular form (POn) or adverb noun
ratio (STn). Selected HTML-based features are for example the HTML-tag level or the
occurrence of a link in the text segment. Analyzing the resulting feature subsets for the
7-class problem results in a set of 30 features combined of 47% token-based, 26% POS-
based and 27% HTML-based features. The number of selected token-based features is
significantly higher compared to the other types. Features such as the occurrence of
date/time related tokens (DT1) or the frequency of digits (TOn) in the text segment
are chosen. Additionally, features based on frequency counts of commas, colons and
punctuation marks (PUn) are selected. Such features serve to differentiate between the
additional classes considered in the 7-class problem. Overall, all selected features yield
high ranks according to the information gain ratio as discussed in the previous section.
Tagging accuracies achieved with the reduced set of features are depicted in the lower
part of Table 3.5 (feature subset). PCOM rates are slightly lower, compared to the
classifiers using all 245 features, however the number of features can significantly be
reduced by 7/8, which reduces computational classification effort. Bringing together
the previous results that (1) subset selections are a combination of all three feature
types, (2) single per-feature information gain ratios are rather low and (3) classification
accuracies are relatively high, shows that combining features from different types is
one of the key components to achieve satisfying classification results.

Finally, we evaluate the influence of emission like feature functions with combined
features as proposed in equation (3.6) for the CRF approach. Results are depicted in
the lower part of Table 3.6. We apply a CRF based on a selected subset of features
selected according to the correlation based measure described in Section 2.5.2. Ap-
plying this method, when the whole set of d features is used for classification would
lead to a high complexity of the model and hence a high number of parameters would
have to be estimated. For reliable estimates an adequately higher amount of training
data is needed. Accuracies achieved by the CRF trained on the feature subset (CRF
feature subset) serve as reference values in the following comparisons. Although pre-
cision and recall rates for the COMMENT class drop slightly for the 7-class problem,
mean F1-Scores are improved by 3 percentage points for the 7-class problem. In gen-
eral, combining features in that way in a CRF lead to higher mean tagging accuracies
over all classes. This is also reflected in the 2-class problem differentiating between
COMMENT and NON-COMMENT. Mean F1-Scores are improved by 1.5 percentage
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points. Notable, is the increase from 63.38% RCOM to 67.22% for the 2-class problem.
The interaction of single features in a combined way lead to a better detection of social
media text segments. Total accuracies are only slightly affected. Hence, depending on
the problem and application combined features are useful. It would be interesting to
analyse the influence of feature functions based on a combination of all 245 features,
if a sufficiently large training corpus is available.

Algorithm d PCOM RCOM F1-Score AC
2-class 7-class 2-class 7-class 2-class 7-class 2-class 7-class

KNN (k=0) 245 70.39 69.53 62.50 63.78 80.49 59.02 91.87 82.20
KNN (k=3) 1715 72.67 70.79 76.89 77.86 85.33 64.49 93.57 86.24
SVM (k=0) 245 77.67 72.63 68.06 76.09 83.90 50.43 93.28 83.44
SVM (k=3) 1715 83.13 80.95 79.38 83.97 89.05 65.46 95.35 88.43
C4.5 (k=0) 245 72.09 71.18 69.31 68.36 82.89 59.67 92.62 83.14
C4.5 (k=3) 1715 72.33 68.79 66.81 66.63 82.23 59.01 92.49 82.65

KNN, token features 149 64.43 62.98 53.75 55.26 76.38 50.44 90.45 79.58
KNN, POS features 33 60.48 58.79 45.00 46.45 72.47 40.11 89.24 77.21

KNN, HTML features 63 57.23 56.46 47.35 48.75 72.22 42.68 89.02 74.95
KNN, feature subset 20 | 30 68.12 67.93 61.99 63.15 79.52 51.65 91.31 79.74
SVM, feature subset 20 | 30 72.96 69.16 57.18 69.25 79.06 41.97 91.62 80.77
C4.5, feature subset 20 | 30 72.90 68.32 63.15 66.21 80.99 56.24 92.11 81.49

Table 3.5: Cross validation results for social media classification (2-class/7-class)
achieved with independent labeling approaches performed on text blocks
based on a d-dimensional feature vector.

Algorithm d PCOM RCOM F1-Score AC
2-class 7-class 2-class 7-class 2-class 7-class 2-class 7-class

CRF (k=0) 245 79.00 76.80 73.58 77.44 85.69 51.87 93.98 85.16
CRF (k=3) 1715 83.09 82.41 78.17 83.68 88.62 56.64 95.17 87.90

CRF, token features 149 74.01 73.75 66.63 75.53 82.79 48.21 92.97 83.51
CRF, POS features 33 66.87 68.44 51.11 62.34 75.84 40.05 90.56 81.65

CRF, HTML features 63 66.42 63.46 49.35 53.34 74.69 35.90 90.42 79.59
CRF, feature subset 20 | 30 74.91 77.23 63.38 73.15 81.38 47.21 92.50 83.94

CRF, combined features on subset 20 | 30 76.74 75.75 67.22 72.93 82.99 50.18 92.98 84.18

Table 3.6: Cross validation results for social media text classification (2-class/7-class)
achieved with CRF approaches performed on text blocks based on a d-
dimensional feature vector.

3.7.2 Web Page Cleaning

In this section we evaluate and compare the proposed Web cleaning methods to state-
of-the-art methods. In addition to cross validation evaluations performed on the
GWebTrain corpus, the Web cleaning methods are evaluated on an English benchmark
corpus. Classification performance is measured by CONTENT/BOILERPLATE pre-
cision (PCONT , PBOILER), recall (RCONT , RBOILER) and mean F1-scores (F 1-Score)
based on TB segments. The Web cleaning methods are particularly trained and
developed for social media text platforms, i.e., Web pages containing social media
texts. Hence, we additionally calculate the recall achieved on COMMENT AREA
(RCOM AREA). Cross validation results are depicted in Table 3.7 for independent la-
beling approaches and in Table 3.8 for CRF methods. In addition to the different
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classification methods, we concentrate on comparing results for different set of fea-
tures.

Particularly good results are achieved by applying a CRF (k=0) or a SVM (k=3) with
F1-Scores up to 92.52%. The KNN classifier (k=3) attracts attention by its high CON-
TENT precision, which is particularly interesting for Web corpus construction. More
importantly, the CRF achieves a good balance for both precision and recall achieved
on both classes. Furthermore, both CRF approaches (k=0,3) lead to higher recall
values on the COMMENT AREA compared to the independent labeling approaches
up to 95.11%. This can be explained by the fact that the classes of the preceding
and succeeding segments are good indicators if the current text segment is part of the
commented area in a Web page. This dependency is particularly modeled in a CRF.
However, we expect performance improvements to be higher when using a CRF mod-
eling the dependencies between neighboring text segments (observations) and labels.
We resume that for the 2-class problem CONTENT vs. BOILERPLATE under the
given conditions like the training data amount and feature space dimension there is
not much difference between the independent labeling approaches and the CRF. Per-
forming the same cross validations on a bigger training corpus is expected to lead to
improved results.

Additionally, we compare the results for specific classification methods based on the
original feature vector (k=0) and extended feature vector (k=3). Different develop-
ments are observed. In contrast to the social media text classification results, applying
the CRF approach with an extended feature space a consistent performance loss is ob-
served with exception for the recall achieved on the COMMENT AREA, which can
slightly be improved. These results have to be analysed in more detail in future work.
Nevertheless, one explanation could be the increased number of model parameters,
which are not estimated reliably from the current amount of training Web pages. Es-
pecially, if the new parameters are highly correlated with existing ones and in addition
contribute weak information with respect to the classes, leads to higher estimation
noise. Consequently, performances decrease. Different optimizations could improve
the performance: more training data, reduction of the parameters (features) to those
with a high information gain or removing parameters (features) with high correlations.
Applications to a bigger training corpus would help for clarification.

The middle part of Table 3.7 and Table 3.8 depicts classification performances achieved
on single feature types. A detailed discussion with respect to social media text classi-
fication has been performed in the previous section. Overall results are similar for the
2-class problem CONTENT vs. BOILERPLATE and hence not further discussed in
this section.

Equivalently to the evaluation performed in 3.7.2 we apply the subset selection pro-
posed by [30]. For the Web cleaning task 23 features combined of 57% token-based, 4%
POS-based and 39% HTML-based are chosen as feature subset. It is worth mention-
ing that CONTENT words (LCn) antworten (reply), kommentar (comment) beiträge,
(contribution) are selected for the detection of commented areas in contrast to HTML-
based features. This is in oppositional to the evaluation results in Section 3.7.1, where

53



3 Social Media Text Detection and Classification

Algorithm d PCONT RCONT PBOILER RBOILER F1-Score RCOM AREA
KNN (k=0) 245 85.88 80.69 87.21 91.05 86.08 83.07
KNN (k=3) 1715 94.41 68.05 81.69 97.37 83.73 73.47
SVM (k=0) 245 88.37 81.41 87.91 92.80 87.44 85.92
SVM (k=3) 1715 92.24 88.95 92.63 95.06 92.12 94.66

C4.5 Tree (k=0) 245 85.00 82.75 88.42 90.23 86.49 86.19
C4.5 Tree (k=3) 1715 87.42 84.39 89.44 91.79 88.15 88.07

KNN, token based 149 85.51 74.77 84.07 91.38 83.62 77.52
KNN, POS based 33 83.89 66.15 79.67 91.47 79.45 67.04

KNN, HTML based 63 79.55 69.23 80.75 87.97 78.96 72.96
KNN, feature subset 23 82.68 77.45 85.08 88.99 83.39 79.91
SVM, feature subset 23 87.80 72.58 83.26 93.27 83.61 76.01
C4.5, feature subset 23 85.16 81.43 87.67 90.45 86.09 84.51

Table 3.7: Web cleaning cross validation results achieved with independent labeling
approaches performed on article segments based on d-dimensional feature
vectors.

rather HTML-based features such as the occurrence of specific CSS class names are
selected. One explanation for this is that classification is performed on different seg-
mentations, textblocks vs. article segments. Article segments often comprise whole
areas of comments instead of single comments, hence CSS class names of the contained
elements are not considered in the feature calculation. The result is that tokens such as
antworten (reply) or kommentar (comment) become valuable features for the detection
of commented areas.

All classification methods are trained using only the determined subset of features.
Results are depicted in the lower parts of Table 3.7 and Table 3.8. With respect to the
mean F1-Score over the considered classes, for all classification methods performance
increases. This is consistent with the results achieved for social media text detection.
However, performance losses are slightly lower between 0.5 and 4 percentage points
for all methods. For similar reasons explained in the previous section, applying the
decision tree again leads to the smallest decrease of about 0.5 percentage points. Con-
sidering the differences in the recall of the COMMENT AREA shows performance
losses in the same range or even higher compared to mean F1-Scores. This reveals
that discarded features are more important for the correct classification of commented
areas. However, overall a small accuracy decrease in combination with a significant
reduction of feature space dimension of about 7/8, yields a good trade-off between
classification accuracy and complexity.

Similar to social media text classification evaluations, we evaluate the influence of
emission like feature functions with combined features according to equation (3.6) for
the CRF approach based on feature subsets. Results are depicted in the lower part of
Table 3.8. As reference values we choose performances achieved with the CRF trained
on the feature subset (CRF feature subset) for the following comparisons. Accuracies
achieved with subset selection serve as reference values in the following comparisons.
Precision and recall rates for the CONTENT class are improved by 2 and 3 percentage
points. This bears in relation to the improvement achieved for the COMMENT class
considered in the social media text detection problem discussed in the previous section.
Social media texts are part of the CONTENT class in the context of Web cleaning.
Hence, improvements achieved by combined features are reflected by precision and
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recall rates for the CONTENT class. Overall mean F1-Scores and total accuracies are
only slightly increased in the context of Web cleaning.

Algorithm d PCONT RCONT PBOILER RBOILER F1-Score RCOM AREA
CRF (k=0) 245 91.95 90.12 93.44 94.71 92.52 95.04
CRF (k=3) 1715 91.57 89.98 93.43 94.52 92.33 95.11

CRF, token features 149 91.72 88.20 92.24 94.71 91.63 94.12
CRF, POS features 33 91.31 81.85 88.67 94.77 88.92 88.97

CRF, HTML features 63 91.33 76.89 86.03 95.07 86.65 86.13
CRF, feature subset 23 92.53 86.71 91.72 95.27 91.41 94.39

CRF, Combined feature subset 23 90.79 89.51 92.96 93.80 91.70 94.50

Table 3.8: Web cleaning cross validation results achieved with CRF performed on
article segments based on a d-dimensional feature vector.

Finally, we compare the proposed Web cleaning methods to state-of-the-art meth-
ods. We depict GWebTrain cross validation results achieved with methods provided
by Kohlschütter’s tool in Table 3.9. Comparing our results to those achieved by
Kohlschütter shows that F1-Scores can be increased up to 25 percentage points com-
pared to the best result achieved with a CRF (k=0) approach. Differences between
our and Kohlschütters methods are statistically significant according to a corrected re-
sampled paired t-test [48] applied to the two cross validation with a significance level
of p = 0.005. The CONTENT recall for the LARGEST CONTENT Extractor is the
highest compared to the other two methods. However, at the same time CONTENT
precision rates drop significantly. This coincides with the principal of this approach
aiming at classifying rather a large area as CONTENT. However, recall rates are still
significantly lower, compared to our approaches. The ARTICLE Extractor follows the
opposed principal following the idea to extract only the article from a Web page, i.e.,
rather a smaller content area. Hence, precision rates reach values in the range of our
methods but recall rates drop significantly. All approaches suffer from bad recall rates
on the COMMENT AREA. Recall rates drop down by 50 percentage points or more
compared to our CRF (k=3) approach. Due to the missing social media text specific
features and adequate training data, such methods tend to classify social media text
areas as BOILERPLATE.

Algorithm PCONT RCONT PBOILER RBOILER F1-Score RCOM
LARGEST CONTENT Extractor 80.21 49.13 68.06 93.37 66.63 43.45

DEFAULT Extractor 91.38 31.36 64.33 98.72 58.69 16.89
ARTICLE Extractor 93.64 21.17 62.05 99.34 51.99 7.28

Table 3.9: Web cleaning cross validation results for three exemplary state-of-the-art
methods.

Figure 3.5 illustrates the result for an example Web page with our approach com-
pared to two approaches proposed by Kohlschütter, (1) our approach using a SVM
with k=3 (red), (2) the DEFAULT extractor (black), (3) ARTICLE extractor (dotted
black). Detected CONTENT parts of the Web page are depicted by the particular
box. The two Kohlschütter’s extractors do not even detect any or only small parts
of the comment area as CONTENT. Our classifier successfully detects the complete
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COMMENT AREA except for the headline. However, some keywords like Blogsuche
(Blogsearch) or Neuste Postings (recent posts) are wrongly detected as CONTENT.
This can be explained by the fact that these keywords are strongly related to com-
mented areas and in other Web pages are part of the content. Moreover, these are
very small areas.

Figure 3.5: Exemplary Web cleaning results for different approaches, red: our ap-
proach, dotted black: article extractor, black: default extractor.
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Micro-average CRF (k=3) SVM (k=3) LCExtractor AExtractor NCleaner
Mean F1-Score 0.84 0.90 0.69 0.81 0.90
Mean Precison 0.95 0.93 0.97 0.96 0.90

Mean Recall 0.75 0.86 0.54 0.70 0.90

Table 3.10: Evaluation of different methods applied to the CleanEval corpus.

Application to English Benchmark Corpus

It is important to us to show that the Web cleaning methods are portable to English
Web pages and to test the domain-independence of the classifiers. In the previous
section the English Web cleaning benchmark corpus CleanEval has already been in-
troduced. For the benchmark, we train the same classifiers on our manually annotated
English Web page corpus EWebTrain. We use the same set of features, but adapt the
calculation of language-dependent features. In particular, calculations of token- and
POS-based features are adapted by using English word lists and integrating a POS
tagger for English.

We evaluate the 2-class problem CONTENT vs. BOILERPLATE on the CleanEval
test set for two different classifiers that have been trained on the EWebTrain corpus and
for the ARTICLE and LARGEST CONTENT extractor proposed by Kohlschütter.
Exemplarily, we choose a CRF and a SVM classifier both with k = 3, i.e. considering
features of the k preceding and succeeding segment features. Note that the CleanEval
corpus only contains a few Web pages containing social media texts and no specific
annotation of the commented areas. Therefore, no explicit evaluation for such Web
page types is possible. Because the CleanEval corpus only provides content annotation
on a text-level, we cannot directly use the evaluation setup applied to the GWebTrain
corpus. In order to produce comparable results to existing approaches, we use the
python script cleaneval.py proposed in [18] and calculate mean precision, recall, and
F1-Score based on token level. Note that the accuracy measure is based on a weighted
Levenshtein distance at token-level proposed by the CleanEval initiative and, hence,
is not directly comparable to the results depicted in Table 3.9.

Results are depicted in Table 3.10 in the same form than published in [18]. For a direct
comparison, the published results of NCleaner, [18], trained on the CleanEval training
set are depicted in the right column of the table. Similarly to the cross-validation
results, the CRF and SVM based on article segments outperform the results achieved
with Kohlschütter’s extractors. However, in contrast to the previous results, the SVM
based on article segments significantly outperforms the CRF based on text blocks and
hence seems to be more robust against the data basis. Note that the EWebTrain corpus
is significantly smaller than the German GWebTrain corpus. According to the higher
complexity of the CRF model parameter estimates are less reliable. Experiments
on the GWebTrain corpus have shown that enlarging the amount of training Web
pages from 50 to 180 leads to a F1-Score increase of 1.5 and 4.2 percentage points for
SVM and CRF. Improvements are much more higher for the CRF classifier. Hence, a
significant improvement with the CRF classifier is expected, when an adequate amount
of training data is available. A final comparison of our classifiers to NCleaner shows
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that we can still compete with the results achieved by the NCleaner method, which has
specifically been trained for CleanEval. Overall, this shows that the classifiers trained
on the proposed Web page corpora can be applied to Web page corpora from other
domains without significant performance loss. Furthermore, the methods are portable
to English Web pages with little effort.

3.8 Conclusions

In this chapter, we have proposed methods for social media text classification and
detection, and methods for Web page cleaning designed for Web pages hosting so-
cial media platforms, where sequences of Web text segments are classified based on
a high-dimensional feature vector. Good classification performances for both tasks
are particularly achieved by providing a representative training corpus consisting of
Web pages from social media platforms and an adequate combination of token-, POS-
and HTML-based features. This is substantiated by the results of a detailed feature
analysis, where novel social media text related token- and HTML-based features yield
high information gain ratios.

First, an approach for social media text (comment) detection in Web pages has been
presented. In addition to the resulting 2-class problem a more fine-grained classification
problem considering seven classes comprising meta informations is introduced. Social
media texts which are of particular interest, are detected with highest precision rates
of 83%, when applying a SVM to the 2-class problem with a feature vector extended
by features of three preceding and succeeding text segments (k=3). For the more fine-
grained classification, where several meta informations such as the user names and
the posting times are considered as classes, mean F1-Scores up to 65.5% applying the
SVM classifier are achieved. This is significantly lower compared to the 2-class problem
with 89.1% mean F1-Scores, however this a biased comparison, since the differentiation
between seven classes is more complex. Reasoned by the relatively small training
corpus the SVM classifier outperforms the CRF (k=3) approach particularly for the
7-class problem. With the current training corpus size the SVM classifier should be
chosen. However, with a bigger training corpus we expect, that the CRF modeling
the dependencies between consecutive Web text segments would outperform the SVM
classifier.

Second, we have proposed an effective approach for Web cleaning applied to social
media text platforms, i.e., Web pages containing social media texts. Significant im-
provements compared to state-of-the-art approaches are achieved by providing a rep-
resentative training corpus and the usage of a combined feature set with token-, POS-
and HTML-based features comprising features related to social media text charac-
teristics. The proposed methods achieve mean F1-Scores up to 92.5% applied to our
Web page corpus hosting social media text platforms. This significantly outperforms
existing approaches by a minimum of 26 percentage points. Applying a Conditional
Random Field yields the highest recall of 95.1% on the COMMENT AREA, which is
of special interest in our task. Furthermore, we analyse our Web cleaning methods on
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the English benchmark corpus CleanEval. Results show that the extended feature sets
are domain-independent and can be transferred to other languages with little effort.
Satisfying results are achieved on the CleanEval evaluation corpus, even when trained
on small training corpora.
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In this chapter, we consider the problem of social media text Part-of-Speech(POS)
tagging, which is one of the most fundamental sequence labeling tasks in NLP. Besides
sentiment analysis, NLP methods such as syntactical parsing, machine translation or
text summarization require POS tag information for text to be processed. State-of-
the-art POS taggers are basically developed for tagging standardized texts such as
newspaper articles which are grammatically approved. Hence, parameter estimation is
usually performed on newspaper text corpora as training data. POS tag information
can be achieved by automatic taggers with accuracies up to 98% for such standardized
texts.

Social media texts, however, differ from standardized text since they are characterized
by a spoken language, a dialog and an informal writing style. Applying state-of-the-
art taggers to such non-standardized text types leads to a significant performance
loss. Developing automatic POS tagging for social media texts poses some special
challenges to deal with. In particular these are the treatment of unknown (out-of-
vocabulary) words and the different grammatical structure of social media texts in
contrast to newspaper text. Furthermore, manually annotated in-domain corpora,
i.e., social media texts are required for training and testing. Hence, the problem of
POS tagging of social media texts can not be solved adequately by standard methods
so that more sophisticated methods are needed.

This thesis proposes a Markov model tagger called WebTagger with parameter esti-
mation enhancements for the POS annotation of social media texts. We particularly
improve the parameter estimation for unknown tokens (words) in several ways. To en-
hance existing approaches, probability estimation methods are extended by mapping
unknown tokens to tokens known from training or to some token classes represented
by regular expressions. For still unknown tokens, we propose a semi-supervised verb
and domain specific auxiliary lexicon instead of information from automatically tagged
or unsupervised training data, beside different combination methods for tokens’ pre-
fix and suffix tag distributions. Furthermore, we consider the different grammatical
structure of social media and newspaper texts leading to diverse distributions of POS
tag sequences. In contrast to existing POS tagging approaches, we propose to combine
a social media training corpus and a newspaper corpus by an efficient oversampling
of the in-domain training data. We experimentally evaluate the proposed methods
for a German social media text corpus and different social media text types. Results
are compared to widely used state-of-the-art POS taggers. The proposed approach
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outperforms state-of-the-art POS taggers significantly for German social media texts.
We show that by applying our extended Markov model tagger to an existing social
media text corpus we are able to obtain accuracies of up to 95%, which comes close to
accuracies achieved on standardized newspaper texts. Even when applying WebTagger
to social media text types, where the tagger is not trained on the particular type, leads
to a significant performance increase. Finally, we show that including grammatically
non-standardized social media texts in the training data does not negatively affect
tagging accuracies of standardized texts by means of the proposed approach.

In addition to the WebTagger, a new social media text corpus for training and test
purposes is introduced. As a tag set we use the 54 Stuttgart Tübinger (STTS) tag
classes without any text genre specific extensions in order to make our method usable
for NLP methods requiring POS information without any adaptations. Hence, an
extended annotation guideline for social media text specific characteristics based on
the STTS tags is proposed. Furthermore, text tokenization as fundamental initial step
for POS tagging is addressed in this thesis. This is a non-trivial step in the context
of social media texts. However, since it is not the focus of our work it is only touched
upon briefly.

The outline of this chapter is as follows: Section 4.1 summarizes related work about
automatic POS tagging in general with a particular focus on approaches dealing with
non-standardized texts. In Section 4.2 we briefly discuss social media text tokenization
challenges and propose our rule based tokenization algorithm for adequate tokeniza-
tion. Section 4.3 suggests an extended annotation guideline for social media text
specific characteristics and introduces the used STTS tag set. In Section 4.4 we intro-
duce our basic tagger model and propose our adapted parameter estimation methods
for lexical probabilities in Subsection 4.4.1 and 4.4.2, as well as parameter estimation
methods for transition probabilities in Subsection 4.4.3. Furthermore, Subsection 4.4.4
introduces a joint-domain training approach applying oversampling to further improve
tagging results. In Section 4.5 we introduce the new social media text training corpus,
which is manually annotated according to the annotation rules outlined in Section 4.3.
In addition to our main corpus additional newspaper and social media text corpora
and their corpus statistics are proposed in this section. Section 4.6 presents exper-
imental results considering different aspects and particularly discusses the usability
for different social media text types. Section 4.7 covers the conclusion and discusses
future work.

4.1 Related Work

A variety of different approaches has been proposed to solve the task of automatic POS
tagging. Over the last years the majority of proposed methods are probabilistic ones.
However, a number of rule-based methods have been proposed in the early stages of
POS tagging research. In [35] the first rule-based approach is presented which is based
on a computation grammar coder for English POS tagging, differentiating between 30
POS classes. Rules are based on spelling, capitalization and specific tests on the words’
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prefixes and suffixes. One of the most recent rule-based methods is proposed in [9],
yielding similar accuracies as modern probabilistic methods. Nowadays, statistical
POS taggers utilize two different probabilistic models: A Maximum entropy model or
a Markov model capturing lexical and contextual information.

Common maximum entropy based taggers are proposed in [67, 83, 84, 24]. The pro-
posed methods use the same baseline maximum entropy model and adapt their ap-
proach by using different features in the model in order to enrich the information source
for tagging. Characteristic feature functions are binary valued and contain lexical in-
formation, e.g., a word’s capitalization, spelling, suffix/prefix, contained numerals or
hyphens. Toutanova et al. [84, 83] proposed the Stanford tagger, which is the most
popular maximum entropy model based tagger for German and English. It models
the sequence of words as bi-directional dependency network considering lexical and
tag context information. In addition to the lexical information based feature functions
mentioned before, feature functions of the two preceding and succeeding POS tags are
integrated into the model. Tagging accuracies of up to 97% are achieved on English
newspaper texts.

Markov model taggers are proposed in [74, 75, 8]. TreeTagger [75] and TnT [8] use
a 2-order Markov model and apply smoothing techniques for the estimation of lexical
probabilities in order to achieve reliable estimates for rarely seen words. TreeTagger
is the most commonly applied Markov model tagger for German language texts. It
distinguishes itself from other models by using a binary decision tree to estimate tag
transition probabilities reliably. Further extensions to the basic model from [74] consid-
ering letter capitalization are proposed in [75] for German texts. Applying TreeTagger
to German standardized newspaper texts leads to accuracies of up to 97.5%. Both
taggers are developed in a very general way so that they can be trained on corpora
of different languages. The German version of the taggers uses the STTS [72] tag set,
which is commonly used for NLP methods.

In addition to the approaches mentioned lately, some other machine learning techniques
such as Support Vector Machines (SVMs) [26] or Neural Networks [73] are applied to
the problem of automatic POS tagging. Gimenez et al. [26] train a SVM tagger based
on the same features used in the Stanford tagger. Competitive results are achieved for
English and Spanish texts. Based on the same lexical and transition features used by
Schmid [74], the author additionally trains a Neural Network tagger. Achieved results
are slightly worse compared to the Markov model approach.

Performance investigations of the discussed state-of-the-art newspaper text taggers
show that automatic POS tagging of non-standardized social media texts results in
significant accuracy drops. In [90, 25] different POS taggers are compared and eval-
uated for German texts. Schneider et al. [90] point out the performance loss of a
rule-based tagger for unknown words compared to a statistical tagger. Five state-of-
the-art taggers applied to Web texts are studied in [25]. Accuracy drops are shown to
be significant for various Web text genres, a result which serves as the main motivation
to develop a specialized POS tagger for Web texts such as social media texts in the
context of this thesis.
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In [47, 76] two approaches are developed which particularly deal with the annotation
of texts with a high number of unknown words, however no focus is put on social media
texts. They suggest to use prefix and suffix information as applied in many state-of-
the-art taggers recently used. However, they do not specifically address the task of
social media text tagging, where tokens are unknown not only due to small lexica but
rather due to a high degree of non-standardization. Recent, publications [24, 60, 61, 68]
address these problems and deal with non-standardized texts such as Twitter messages,
short message service (SMS) or online conversational texts. Most of the proposed
approaches use CRFs, with different feature functions related to social media text
characteristics. A variety of publications particularly deals with POS tagging for
Twitter messages which exhibit even more specific characteristics such as hashtags,
@-mentions or the fact that only a very limited number of characters (140) is used
compared to other social media texts.

In [24], one of the few approaches dealing with social media texts different from Twitter
messages is proposed. It introduces feature modifications to the Stanford maximum
entropy tagger to handle noisy English text. Results are evaluated based on an SMS
dataset. The following approaches all deal with Twitter messages. In [27] a Twitter
tagger based on a CRF with features adapted to Twitter characteristics is proposed.
The authors propose some additional word clustering and further improvement to their
method in [61] and evaluate their approach on different English Twitter data where
they achieve a maximal accuracy of 92.8%. Rehbein [68] proposes a CRF based POS
tagger for German Twitter messages based on the work proposed in [27]. Applying
word clustering with features extracted from an automatically created dictionary leads
to 89% tagging accuracy which is slightly lower then results achieved for English Twit-
ter data. In [14], one of the latest Twitter taggers is proposed. A vote-constrained
bootstrapping on a large corpus of unlabeled Twitter messages is performed to create
tweet-genre training data. By means of methods for handling the genre characteristic
errors and slang in addition to adjusting prior tag probabilities of unambiguous tokens,
tagging performance is further improved. All mentioned Twitter approaches make use
of the strong restrictions and specific characteristics of such texts in the way features
are constructed, e.g., the occurrence of hashtags (#) or @-mentions. Furthermore, the
tag sets used are extended by tags for these particular text phenomena. As a result, it
is not straightforward to transfer the proposed methods to general social media texts.
Hence, a more general method is needed in order to handle social media texts such
as blog comments, chat messages or any kind of Web comments. In order to develop
a POS tagger which is usable for subsequent NLP methods without adaptations, an
annotation guideline for social media text characteristics based on an existing tag set
needs to be defined.

Finally, we briefly address related work for tokenization. Adequate tokenization is
a fundamental step for automatic POS tagging. Typically, state-of-the-art taggers
provide a tokenizer which do not enable for adequate tokenization when applied to
non-standardized texts. Tokenization of non-standardized text in general is addressed
in [63, 38, 27]. Gimpel et al. [27] propose a Twitter tokenizer for the task of POS
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tagging. In [63] a sentiment tokenizer is developed which enables for adequate tok-
enization of emoticons.

4.2 Tokenization

Tokenization is a fundamental initializing step for POS tagging, where the text is di-
vided into coherent units (tokens). Each token is either a word or something else, e.g.,
a punctuation mark. For standardized grammatically approved text, tokenization can
be performed independently from POS tagging, since the tokenization is unambiguous.
Typically, a simple white space tokenizer considering the German punctuation rules
provides adequate text decomposition. In contrast to that, tokenizing social media
texts is a more challenging task. We aim at developing a tokenizer for social media
texts, which allows for adequate POS tagging annotation, i.e., STTS annotation. Par-
ticularly, phenomena from social media language and informal writing style categories,
such as emoticons, merged words, or multiple punctuations claim for a more sophis-
ticated tokenizer. For example, an emoticon at the end of a sentence without any
whitespace, e.g., ready;-), a cardinal number merged with a particular currency, e.g.,
3$, needs to be split to enable for assigning unique POS tags.

Two tokenization approaches can be differentiated: A statistical approach based on
classification and a rule-based approach. We choose a rule-based approach. Rules are
designed and adapted to the manually tokenized data. In total 32 criteria, realized by
regular expressions, are used to detect coherent tokens such as emoticons, URLs, dates
or filenames. Furthermore, we use additional lexical information in order to enhance
the tokenization performance. Moreover, we utilize an abbreviation list, introduced
in [75], containing approximately 6,700 typical German abbreviations, e.g., Dr. and
bzw., to detect coherent tokens. Additionally, a merged word list containing token
pairs, which are frequently merged to one word in social media language is generated.
A typical example is merging a verb with an pronoun, e.g., replacing geht es (does it)
by geht’s (does’t) or gehts (doest). The list is conducted based on the social media
text corpus WebTrain, see Table 4.3, by selecting the 90 most frequently merged token
pairs. In total all token pairs occur 11200 times, which illustrates the importance
to consider such token pairs in the process of tokenization. Merging both words is
grammatically incorrect. Hence, a set of rules is designed to split such tokens, which
enables for the assignment of the corresponding POS tag to each of the two tokens.
Since, the second part of the token is rather ambiguous in the word itself nor in its
POS tag, e.g., the origin of the merged word ob’s (if ’t) can be ob es (if it) or ob das
(if that), it can not be replaced by its original two words. Hence, for all merged words
we split the added letter with apostrophization, following the tokenization of English
texts, e.g., obs or ob’s is replace by the two tokens ob and ’s.

A description of the tokenization is given in Algorithms 2 and 3. Algorithm 2 splits the
text string t of a social media texts (SMT) at white spaces. Then, each substring st
is processed in ApplyCriteria(st) in order to split words which have been merged.
All of the resulting words ŵ are concatenated to a vector of words w and returned to
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the tagger which is discussed in Section 4.4. The principles of ApplyCriteria(st)

Algorithm 2 SMTTokenization(t)

Input: SMT text string t
Output: Token vector w

st ← SplitTextAtSpaces(t)
w ← ()
for each string st ∈ st do

ŵ ← ApplyCriteria(st)
w ← (w, ŵ) � Concatenate tokens

end for
return w

Algorithm 3 ApplyCriteria(st)

Input: SMT text substring st
Output: Tokens ŵ according to criteria

if ExactCriteriaFound(st) then
return st

else
if SplitCriteriaFound(st) then

(stl, str) ← GetSplits(st)
return
(ApplyCriteria(stl) , ApplyCriteria(str) )

else
return st

end if
end if

shall be illustrated by the exemplary input st =Hello;-)). This example is merged
from the word Hello and the emoticon ;-)) which shall be decomposed. First, with the
defined regular expressions it is tested if a known non-composed token, e.g., emoticon,
date or punctuation iteration is existent. For our example this is not the case. Thus,
it is checked if it is merged and, hence, may be split again. Obviously, this is the
case and it is split into stl =Hello and str =;-)). Both substrings are now processed
recursively and the return values are concatenated. The substring Hello has neither
an exact match nor is it identified as merged word such that this substring is returned
unmodified. The substring ;-)) is now recognized as emoticon, i.e., an exact criterion
has been found. Consequently, this substring is returned unmodified as well. Overall
(Hello,;-))) is returned for concatenation in Algorithm 2. The recursive nature of
ApplyCriteria() allows for splitting substrings with more than two tokens.
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4.3 Extended Annotation Rules

Before automatic POS tagging can be applied, the particular POS tags/classes need
to be defined, i.e., a particular tag set needs to be chosen. According to the part-of-
speech granularity different tag sets are available. For German the STTS tag set, [7],
is the most commonly used in the NLP community and hence is also used in our work.
It was developed 1999 in Stuttgart and has evolved over the years to the standard
tag set for the morphosyntactic annotation in German; it provides information about
the respective part of speech and its syntactic function and differentiates between
54 POS classes. The POS classes can be further differentiated into open and closed
classes, which becomes relevant in the later approach. Open classes are nouns, verbs,
adjectives and adverbs which do not consist of a finite number of words and acquire
new members constantly, while closed classes consisting of pronouns and conjunctions
are finite and well-established word sets.

The STTS tag set was developed for the annotation of standardized texts. Until now,
no extension for the annotation of the special characteristics of social media texts, e.g.,
emoticons, is present. Moreover, an extension of the existing tag set is problematic
from a technical perspective, since existing NLP methods, e.g., syntactical parsing, re-
quire STTS POS tag information. Thus, the existing STTS tag set is used and social
media text characteristics are tagged according to their syntactic function in our ap-
proach. For instance, emoticons are either at the end of a sentence or at intermediate
positions. Therefore, they obtain the tag for sentence final $. and sentence internal
$( character. Contrarily, special characters and enumerations are only annotated with
the internal character tag. Separated particles of apostrophization, e.g., ([hab]’s - have
it), are tagged for verbs, conjunctions, and interrogative pronouns as irreflexive per-
sonal pronoun (PPER), substituting demonstrative pronoun (PDS), or article (ART).
Numbers replaced by the corresponding digit in a word are annotated as attributive
adjective (ADJA) or proper noun (NE), depending on the context. The overall anno-
tation rules for particular social media characteristics are given in Table 4.1. All tags
from the first column can be assigned according to the given grammatical context.
Exemplary tokens are given in the last column. Note, that the text is manually tok-

Tag Description Example

$. , $( Emoticons :-) , (* *)

NE File names, URLs test.jpg , www.test.de

ITJ , PTKANT Interaction words, inflectives lol , seufz , yep

$( Special characters #, @, *, i. ii., a) b)

$( , $. Multiple punctuations ... , !?!

PPER , ART , PDS Apostrophization [geht]′s , [wer]′s , [ob]′s

ADJA , NE Number replacement 10er , 500er

Table 4.1: Annotation rules for social media texts.
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enized such that adequate POS annotation can be performed according to the given
rules. A more detailed explanation of the extended annotation scheme can be found
in [86, 85].

4.4 Markov-Model Tagger

As a basic tagger model we use a Markov model. Our proposed WebTagger has
much in common with the TreeTagger, [75], however is adapted to social media text
POS tagging. The taggers mainly differ in the way lexical (emission) probabilities are
estimated. particularly for unknown words.

In general the aim of the tagger is to predict the associated POS tag sequence
t1, . . . , tn, . . . , tN with tn ∈ T (STTS) for a given sequence of tokens w1, . . . , wn, . . . , wN

with wn ∈ W , where W contains all possible tokens. In order to achieve that the
Bayesian decision rule is applied, resulting in the optimization problem

t̂N1 = argmax
tN1

P
(
tN1 , w

N
1

)
using the notation tnl for a sequence of POS tags

tnl =

{
(tl, . . . , tn) 1 ≤ l ≤ n ≤ N
(t1, . . . , tn) l ≤ 0

with l ∈ Z, n ∈ N, and l ≤ n ≤ N is solved. The sequence of tokens wn
l is defined

analogously. This optimization problem is simplified by the following approach. First,
the probability chain rule for wN and tN to describe the joint probability by conditional
probabilities is applied:

P
(
wN

1 , t
N
1

)
= (4.1)

P (wN | w1
N−1, tN1 )P

(
tN | wN−1

1 , tN−1
1

)
P
(
wN−1

1 , tN−1
1

)
.

Furthermore we use the assumptions

P
(
wn | wn−1

1 , tn1
)
= P (wn | tn) ,

P
(
tn | wn−1

1 , tn−1
1

)
= P

(
tn | tn−1

n−k

)
with k ∈ N. Applying those assumptions, a simple law of conditional probability, and
iterating the procedure described in (4.1) leads to the equation:

P
(
wN

1 , t
N
1

)
=

N∏
n=1

1

P (tn)
P (tn | wn)︸ ︷︷ ︸
Lexical Prob.

P (wn)P
(
tn | tn−1

n−k

)︸ ︷︷ ︸
Transition Prob.

.

The assumptions are also referred to as k-order Markov model for transition probabil-
ities and zero-order Markov model for the emission probabilities. Moreover, the token
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probabilities P (wn) do not change with the tag sequences, and hence, may be omitted.
Overall, this allows to model transition and lexical probabilities independently and the
optimization task is rephrased as

t̂N1 = argmax
tN1

N∏
n=1

P (tn | wn)

P (tn)
P
(
tn | tn−1

n−k

)
.

Before the tagger can be used for predicting POS tag sequences, i.e., solving the
optimization problem given in equation (4.4), probabilities have to be estimated from
a manually annotated training corpus

T R =
{
(w̃n, t̃n) | 1 ≤ n ≤ Ñ

}
, (4.2)

where for each word w̃n the correct tag t̃n is known. In other words, T R represents a
training text where the tag sequence is known for each sequence of words. Generally,
this training text can additionally be given in the form of a full form lexicon. The
lexicon is given as

L =
{
w̃i | 1 ≤ i ≤ Ñ

}
where |L|  Ñ holds, due to the characteristics of constantly repeating words in writ-
ten texts. Full form means that for each word w̃i ∈ L in the lexicon the corresponding
set of possible tags Ti is known.

Probability estimation is performed based on the training corpus. This comprises
the estimation of lexical probabilities as explained in Section 4.4.2 and the estima-
tion of transition probabilities, see Section 4.4.3. We basically use supervised learning
methods, but extend them by some semi-supervised techniques. Before the differ-
ent estimation methods are explained token preprocessing is described which aims at
normalization of the non-standardized social media training and test corpus.

4.4.1 Token Normalization

Applying token preprocessing basically aims at achieving more reliable probability
estimates by a normalization of the text. Considering, e.g., the token überrascht
(surprised), which might occur in non-standardized forms in social media texts, e.g.,
as überraaaaascht or ueberrascht. For this example without a normalization for the
non-standardized forms, lexical probabilities are estimated separately or if one of the
forms is only present in the test data it would be treated as unknown. Normalizing all
forms to one unique form would obviously lead to more reliable estimates and better
tagging accuracies. This normalization would be ideal if performed manually and it
would include proper spelling corrections. However, the training data should comprise
the same characteristics as the test data. Since manual corrections of the test data
before tagging is no adequate solution, an automatic preprocessing step is suggested in
this work. We expect best tagging accuracies when token preprocessing is performed
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4 POS Tagging for Social Media Texts

on both training and test data and no further manual corrections of the training data
are performed.

Before describing the preprocessing in more detail we give a short note on case sensi-
tivity in the data. On the one hand side in social media texts capitalization is rarely
complied, on the other side using upper case letters for the whole word, e.g., TOLL
(NICE), is a frequently used tool to emphasize someone’s sentiment. Both phenomena
lead to a higher variety in a similar token sequence when considering case sensitivity.
Therefore, a mapping to a unique version is reasonable. However, in contrast to the
approach in [75], we believe that considering case sensitivity at the beginning of a
token leads more reliable lexical probability estimates. For that reason, we convert all
upper case letters to lower case ones except at the beginning of a sentence.

In general, the preprocessing aims at mapping non-standardized tokens to related
known tokens if there exists an appropriate one. Related tokens can be obtained
by some transformation steps described by s(wn). These steps contain cross-language
transformations, as well as some transformations specific to the German language, and
basically treat tokens of the category Informal writing style. Among others, character
iteration corrections, e.g., Helloooooo → Hello, or Umlaut correction, e.g., Huette →
Hütte (cottage), character corrections, e.g., Kuss → Kuß (kiss) or compound words,
which are simply mapped to their second part token, e.g., Heise-Daten → Daten
(Heise data). Such transformations may be interpreted as substituting tokens by their
normalized version. Therefore, we refer to this kind of transformation as normalization.
Furthermore, there are language independent word classes which are easily recognized
and anticipated using regular expressions. Some examples include emoticons, e.g., :-)
and :(, and URLs, e.g., http://www.test.de, xy.ch, multiple punctuation marks, e.g.,
.... and !!! and number replacements, e.g., 50er (fiftieths). The set of possible POS
tags for each word class differs from one to three.

In summary, our preprocessing step substitutes unknown tokens by its transformation
if it is within the training set returns the regular expression r if the word is described
by it, or returns the marker for unknown tokens ε. This procedure is described by the
mapping function m : W → X ∪ {ε} which is defined as

m(wn) =

⎧⎪⎪⎨
⎪⎪⎩

/r/ wn ∈ Wr,
wn wn ∈ L \ R
s(wn) s(wn) ∈ L \ R ∧ wn /∈ L \ R
ε otherwise.

An overview of the corresponding word sets is given in Table 4.2. The word set X
contains all tokens given by the full form lexicon L created from supervised training
data, extended by the set of words R created by all regular expressions r ∈ R as
follows.

Wr = {w ∈ W | w ∼ /r/}

indicates all tokens covered by a regular expression r ∈ R, thus R =
.⋃
r∈RWr.
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Word Set Description

R Tokens covered by regular expressions
L Full form lexicon created from training data

X = L ∪R Full form lexicon extended by regular expressions
W All possible tokens

Table 4.2: Word Sets.

4.4.2 Lexical Probability Estimation

By applying the described preprocessing, a satisfying amount of unknown tokens can
be mapped to known tokens. However, the number of unknown tokens is still higher
compared to standardized texts. Therefore, adapting estimation methods for lexi-
cal probabilities of unknown tokens (words), enables improvements for tagging social
media texts. In this section, we consider several cases and propose a corresponding
estimation method.

First, we assume lexical probabilities to be position independent. For brevity, we
therefore write P (tn | wn) = P (t | w) in the following. If the word m(w) is known,
i.e., it occurs in the training set T R, the estimation is given by

P̂L (t | w) =
∣∣{i | (t̃i, w̃i

)
= (t, w)

}∣∣
|{i | w̃i = w}| ,

where the index L indicates that the word w is in the lexicon L. Note that we
generally distinguish between the same word uncapitalized vs. capitalized and hence
the P̂ (t | w) are also different. However, if w /∈ L holds for the original word, but by
swapping the first letter from upper/lower to lower/upper wswapped ∈ L holds, then

the lexical probability distribution P̂L (t | wswapped) is used.

In the following the estimates if the word m(w) is not in the lexicon L are described.
First, we explain the estimation of the probabilities if the unknown word is represented
by a regular expression. The probabilities are given as

P̂R (t | r) =
∣∣{i | t̃i = t ∧ w̃i ∈ Wr)

}∣∣
|{i | w̃i ∈ Wr}|

. (4.3)

Using these estimates for regular expressions allows assigning reliable tag distributions
even to previously unseen tokens from training.

Now we deal with (still) unknown tokens. Previous work has shown that a word’s
prefix and suffix can successfully be used to determine the word’s POS tag. Based
on the set of training tokens L we determine each prefix pl ∈ P and suffix sl ∈ S of
maximal length β with l = 1, . . . , β and store them in form of a letter tree. The set of
considered prefixes/suffixes is further restricted by pruning this letter tree considering
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the frequency and POS tag related entropy of a particular prefix/suffix. Therefore, we
introduce random prefix variables Tpl ∼

(
P̂pl (t)

)
t∈T for l = 1, . . . , β with

P̂pl (t) =

∣∣{i | t̃i = t ∧ p (w̃i) = pl
}∣∣

|{i | p (w̃i) = pl}|
.

Considering the decision tree, beginning from each terminal node l = β we recursively
calculate

I
(
Tpl , Tpl−1

)
= |{i | p (w̃i) = pl (w)}|

(
H

(
Tpl−1

)
−H (Tpl)

)
with

H (Tpl) = −
∑
t∈T

P̂pl (t) log P̂pl (t).

A terminal node pl is deleted if

I(Tpl , Tpl−1
) < γ

for a given threshold γ. The tag frequencies of all deleted child nodes of a parent
node are collected at a default node of the parent node. If the default node is the only
remaining child node it is deleted, too. In this case the parent node becomes a new
terminal node and is also checked whether it is deletable. The same pruning procedure
is performed for suffixes. Note, that pl−1 is a substring from pl.

We assess the lexical probabilities for a given word w by

P̂p (t | w) =
∣∣{i | t̃i = t ∧ p (w̃i) = p (w)

}∣∣
|{i | p (w̃i) = p (w)}|

where p (w) returns the maximum prefix of a given word w seen in the training data,
reduced by the pruned set or limited by β. Lexical probabilities P̂s (t | w) are defined
equivalently. An open question is how to combine prefix and suffix tag distributions.
In our approach, we propose four different combination methods and discuss and com-
pare them in Section 4.6. First, we assume prefix and suffix tag distributions to be
independent and hence use the joint probability distribution

P̂ g
ps (t | w) =

P̂p (t | w) P̂s (t | w)∑
t P̂p (t | w) P̂s (t | w)

later referred to as geometric mean. Combining prefix and suffix distributions in
that way has been successfully be applied to POS tagging performed on newspaper
texts in [75]. This approach is adequate for POS tagging of standardized texts where
unknown words occur only if they belong to the open class category and by, implication,
the closed POS class can be excluded as possible predictions. In contrast, all POS
classes need to be considered in social media texts where, e.g., a misspelled pronoun
might lead to be unknown in the process of tagging. Hence, a more complex distinction
needs to be made by the prefix and suffix information.
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Furthermore, a more robust combination method for uncommon prefix and/or suffix
due to informal writing style characteristics, e.g., word shortenings or typing errors, is
needed. Therefore, in a second step we combine prefix and suffix tag distributions by
taking the arithmetic mean for each tag probability:

P̂ a
ps (t | w) =

P̂p (t | w) + P̂s (t | w)∑
t

(
P̂p (t | w) + P̂s (t | w)

) . (4.4)

In a third step, we define an approach aiming at choosing the most reliable tag dis-
tribution between P̂p (t | w) and P̂s (t | w). Therefore, the entropy of prefix and suf-
fix tag distributions is used as a criterion. We introduce random variables Tp(w) ∼(
P̂p (t | w)

)
t∈T and Ts(w) analogously. The idea is to minimize the conditional entropy

and hence choose the tag distributions which contain less uncertainty about the tag t
to predict:

X̂ = argminX∈{Tp(w),Ts(w)}H (X) (4.5)

with
H

(
Tp(w)

)
= −

∑
t∈T

P̂p (t | w) log P̂p (t | w).

However, the significance of the empirical prefix/suffix POS tag distribution strongly
depends on the frequency of prefixes/suffixes. A prefix, which has been seen once,
leads to no uncertainty about the tag and will fulfill the minimum criterion. Hence,
we apply some simple tests on the frequencies before applying the minimum entropy
approach (4.5). The first test checks whether the frequencies of both prefix and suffix
exceed a predefined threshold α, i.e.,

P̂p(w) > α ∧ P̂s(w) > α

In that case, the distribution given by X̂ in (4.5) is used. As optional tests we check
if exactly one of the thresholds is exceeded and use the corresponding probability
distribution. If all these tests fail the distribution from (4.4) is used. We will evaluate
this strategy later on, with and without the optional tests, referred as Rule-based-2-case
and Rule-based-4-case.

Summarizing all cases with different estimation methods, the lexical probability is
given as

P (t | w) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P̂L (t | m(w)) m(w) ∈ L,
P̂R (t | m(w)) m(w) ∈ R \ L,
P̂PS (t | w) w ∈ (P ∪ S) \ X ,
P̂S (t | w) otherwise,

(4.6)
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where P/S describes all tokens with known prefixes (suffixes). The last case in the
description is by default given by the empirical tag distribution over the whole set of
training tokens:

P̂S (t | w) =
∣∣{i | t̃i = t

}∣∣
Ñ

,

which is independently calculated of the token w.

In the previous part of this section, we have described different modifications of esti-
mation techniques. In the following, we will introduce two semi-supervised learning
techniques which aim at extending the training lexicon L by some lexica which are
not available in fully annotated text form, but provide information for semi-supervised
learning methods.

Semi-supervised Verb Auxiliary Lexicon

Generally speaking, POS taggers for social media texts regularly deal with a frequent
number of unknown verbs. This can be explained by the different dialog style of
social media texts where different verb conjugations occur. Even a tagger trained
on social media data only contains a small amount of such verbs due to the small
corpus size. Hence, lexical probabilities can not be reliably estimated from prefix
and suffix tag distributions for such verbs. However, preparing a fully-supervised
social media training text with adequate corpus size is extremely time-consuming and
requires expert knowledge from the annotator. We therefore propose an alternative
approach which reduces annotation effort significantly.

The basic idea is to create a verb auxiliary lexicon with corresponding tag sets for
each token. For approximately 14,000 verbs, a conjugation table including indicative
and subjunctive forms for different tenses, as well as imperative forms, participle and
infinitive is extracted from www.verbformen.de. In particular, the conjunction table
contains two imperative forms, the general form of an imperative and first person
singular, as well as a shortened form of both forms which frequently appears in so-
cial media texts. For an exemplary conjugation table, the corresponding POS tag
is assigned manually to each verb form. Corresponding POS tags are automatically
transferred to all other conjugation tables. Based on that conjugation tables all pos-
sible tokens, with their corresponding tag set denoted by Tw, are combined in a verb
auxiliary lexicon V+ containing 115,000 entries. If there is more than one possible
tag, an adequate tag distribution needs to be assigned. Therefore, two approaches are
utilized. First, all words w̃i of the manually annotated training corpus with the same
POS tag set Tw are determined and the cumulated tag distribution of those words is
used. Hence, the lexical probability is refined as

P̂V+ (t | w) =
∣∣{i | t̃i = t ∧ Tw̃i

= Tw

}∣∣
|{i | Tw̃i

= Tw}|
.

where Tw̃i
= {t̃l | w̃l = w̃i}. We assume all t ∈ Tw to be equally distributed if no word

with the same POS tag set Tw exists.
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The following example illustrates a particular case of a shortened verb. Consider the
word benutz (use), which in a standardized text is just used as an imperative content
word (VVIMP) and hence P (V V IMP | benutz) = 1. Informally, however the word is
also used as short form for the verb inflections of the first person singular benutze ([I]
use, VVFIN ). This form is also contained in the conjunction table contained in the
verb auxiliary lexicon V+. Hence, the cumulated tag distribution from the training
corpus results in PV+(V V FIN | benutz) = 0.62 and PV+(V V IMP | benutz) = 0.38.

Semi-supervised Domain Specific Learning

In addition to a verb auxiliary lexicon we propose a lexicon developed for the social
media text domain. The lexicon is annotated with a considerable reduction in annota-
tion effort and is used for semi-supervised learning. The basic idea is as follows. The
tagger is used for automatic tagging of a large social media text corpus.

SL = {(wo, to) | 1 ≤ o ≤ O}

The most frequent unknown tokens, m(wo) = ε, are determined. The resulting tokens
are added to an auxiliary lexicon L+ comprising 2,000 entries. In order to create a
domain-specific lexicon, which is topic-independent, topic related tokens are removed.
We do that to ensure that the auxiliary lexicon helps to improve tagging accuracies
for social media texts in general, independent of the topic they are dealing with. For
all tokens wo of the auxiliary lexicon the possible tags, i.e., the corresponding tag set,
is manually assigned and denoted by Tw. Tag distributions are assigned in the same
way as for the verb auxiliary lexicon, if at least one word w̃i of the manually annotated
training corpus has the same POS tag set as the manually assigned set Tw. Hence, the
lexical probability is refined as the cumulated tag distribution of those words:

P̂L+ (t | wo) =

∣∣{i | t̃i = t ∧ Tw̃i
= Two

}∣∣
|{k | Tw̃i

= Two}|
.

However, in contrast to the method used to construct the verb auxiliary lexicon, if
there is no word with the same set of possible tags in the training text, further manual
annotation is performed. A reliable amount of such tokens is manually annotated in
the large social media corpus SL. The resulting tag distribution is assigned to such
unknown tokens. Integrating the semi-supervised learning techniques, formula (4.6) is
adapted to

P (t | w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

P̂L(t | m(w)) m(w) ∈ L,
P̂R(t | m(w)) m(w) ∈ R \ L,
P̂V+(t | m(w)) m(w) ∈ V+ \ {L ∪ R} ,
P̂L+(t | m(w)) m(w) ∈ L+ \ {L ∪ R ∪ V+}
P̂PS(t | w) w ∈ (P ∪ S) \ X ,
P̂S(t | w) elsewise,

(4.7)
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Note that prefix and suffix estimations are applied after all auxiliary lexicon lookups
have been performed.

4.4.3 Transition Probability Estimation

Estimating transition probabilities in a k-order Markov model, particularly for high
values of k and sparse training data is problematic. Since many frequencies are small,
probability estimates are often not reliable. Particularly, in the context of social media
texts the variability of k-tuple sequences of POS tags is higher compared to standard-
ized texts, due to missing articles or personal pronouns, which makes it even more
challenging.

To counteract this problem the proposed tagger estimates transition probabilities by
treating the prediction of the next words POS tag based on a sequence of preceding
POS tags as simple classification problem. The k preceding POS tags are considered
to be the features, which serve to predict the next words POS tag, considered as class.
Hence, a simple classification problem has to be solved, e.g., with a decision tree.
The main advantage is that the preceding tags are treated position independent for
prediction and estimates are more reliable for small training corpora. Additionally,
a feature selection can be performed in order to reduce the complexity of the model,
particularly for higher k-order models. In this work we spend special effort on solving
this problem using a decision tree, as proposed in [75]. As in [75] we use the ID3
algorithm, [65], and adapt parameter settings to the characteristics of social media
texts. In a classification tree each non-terminal node corresponds to the test of a
feature, while the terminal nodes contains the class distribution. The ID3 algorithm
choses recursively at each node the test on a feature, which leads to the maximal
information gain, see equation (2.7), with respect to the considered classes. According
to the tested feature it splits the training data and invokes itself recursively at the
child nodes based on the subsets of training items.

We consider the set of k-grams
{
t̃n−1
n−k | n = k + 1, . . . , Ñ

}
to be extracted from a train-

ing text. In the following we describe how the decision tree is built recursively based
on the set of k-grams. First a binary discretization of the features, i.e., k-grams, as
proposed in [75] is applied, in order to avoid overfitting. Instead of differentiating
between each POS tag t ∈ T at a position i = n− k, . . . , n− 1 a simple binary feature
is used in the form of the two cases that t̃i = t or t̃i �= t. Consequently, a binary
decision tree is built up, where each node represents a test (new binary feature), if at a
particular position (n−k) ≤ i < n in its history a particular POS tag t has been seen.
In order to choose the test for a node l and a t′ ∈ T the information gain criteria, see
equation (2.7), is applied by(

î, t̂
)
= argmax

i:|T (l)
i |>1,t∈T (l)

i
−∑

t′ P̃l (t
′) log P̃l (t

′)

+P̃l(t̃k+1−i = t)
∑

t′ P̃l(t
′ | t̃k+1−i = t) log P̃l(t

′ | t̃k+1−i = t)

+P̃l(t̃k+1−i �= t)
∑

t′ P̃l(t
′ | t̃k+1−i �= t) log P̃l(t

′ | t̃k+1−i �= t)
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where T (l)
i is the set of possible tests at position i for a node l. Note that

−∑
t′ Pl(t

′) log P̃l(t
′) is a constant here and can be neglected for maximization. In

the beginning at the root node l = 1 we initialize

T (1)
i = T , ∀i = 1, . . . , k

since all tests are still possible. After determining (t̂, î) for a node l the corresponding
set of POS tags is updated by

T (l0)

î
= T (l)

î
\
{
t̂
}

for the child node l0 with the subset of k-grams where t̃k+1−î �= t̂ holds and by

T (l1)

î
=

{
t̂
}

for the child node l1 with the subset of k-grams where t̃k+1−î = t̂ holds. Conditional
probabilities are given by the empirical distributions based on the training data, which
pass the tree until they reach node l by

P̃l(t
′ | tk+1−i = t) =

∑N
n=k+1 I{t′}

(
t̃n
)
I{tk1∈T (l)|tk+1−i=t}

(
t̃n−1
n−k

)
∑N

n=k+1 I{t′}
(
t̃n
)
I{tk1∈T (l)}

(
t̃n−1
n−k

)
and

P̃l(t
′ | tk+1−i �= t) =

∑N
n=k+1 I{t′}

(
t̃n
)
I{tk1∈T (l)|tk+1−i �=t}

(
t̃n−1
n−k

)
∑N

n=k+1 I{t′}
(
t̃n
)
I{tk1∈T (l)}

(
t̃n−1
n−k

)
with

T (l) = T (l)
1 × T (l)

2 × · · · × T (l)
k

Tag probabilities are calculated equivalently by

P̃l(tk+1−i = t) =

∑N
n=k+1 I{tk1∈T (l)|tk+1−i=t}

(
t̃n−1
n−k

)
∑N

n=k+1 I{tk1∈T (l)}
(
t̃n−1
n−k

)
and

P̃l(tk+1−i �= t) =

∑N
n=k+1 I{tk1∈T (l)|tk+1−i �=t}

(
t̃n−1
n−k

)
∑N

n=k+1 I{tk1∈T (l)}
(
t̃n−1
n−k

) .

The recursive expansion of the decision tree stops if the next test would generate at
least one subset of k-grams whose size is below a threshold α. Since full disambiguation
of the tag tn based on the proceeding tags is in general not possible, the resulting
terminal nodes contain probability distributions which reflect the tag distribution of
the training data at that node.
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Even with the given α this algorithm may still lead to an overfitted tree by splitting
a training set too far. Therefore, the decision tree is pruned by the information gain
criteria weighted with the frequency of the k-grams at the certain terminal node in
a postprocessing. The weighted information gain at the terminal node has to exceed
some threshold σ. Hence, the threshold σ can be adapted so that nodes, which do not
contain enough training k-grams, are pruned to avoid overfitting.

In the previous part the construction of the decision tree, i.e., estimation of transition
probabilities, has been explained. In order to use the decision tree for calculating
P (t′|t1k), the tree simply needs to be passed through with the given tag history t1k ∈ T k

and the probabilities P (t′|t1k) for all t′ ∈ T can be taken from the terminal node.
Estimating the transition probabilities in that way still leads to many zero transition
probabilities. To counteract the labeling bias problem, zero transition probabilities
are replaced by an ε probability. This is particularly motivated by the fact that social
media texts are non-standardized so that new k-tuples of POS tags might occur in the
test data, e.g., due to missing articles or personal pronouns in a sentence.

Furthermore, we suggest to complement the social media text corpus by some out-
domain training data to compensate the size of the relatively small corpus and reduce
the number of zero transition probabilities, see the following Section.

4.4.4 Learning from Out-Domain Data

In this section, the term domain is associated with a text corpus characterized by a par-
ticular style. A social media text corpus is mentioned as in-domain corpus, whereas all
texts with different characterization are out-domain texts. We define the combination
of in- and out-domain training data as joint-domain training. Different experimental
studies, e.g., [68, 52], have shown that out-domain training data can improve tagging
accuracies. Particularly, the influence by adding newspaper training corpora for the
task of tagging Twitter micro texts has been studied. A typical approach is to step-
wise increase the amount of out-domain training and retrain the tagger on such data.
Then the amount of out-domain training data achieving best results is determined.
The literature reports consistently a significant performance increase by adding out-
domain training data, particularly if only a small amount of in-domain training data is
available. However, when the amount of out-domain training data exceeds the amount
of in-domain training data significantly, accuracy drops again.

In contrast to existing approaches, we suggest an alternative method for combining
in- and out-domain training data. The basic idea is a weighted joint-domain training.
A manually annotated newspaper training corpus

T ROD =
{
(ẇn, ṫn) | 1 ≤ n ≤ O

}
is added to our social media text corpus, see equation (4.2). In contrast to other
approaches information from the whole available out-domain training corpus is used,
no matter about corpus size. To cope with the different corpora sizes, we apply
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oversampling to the in-domain social media text corpus. Therefore, we multiply the
social media corpus T R β ∈ N times, while combining it with the newspaper corpus
T ROD. We use a set of combined training pairs

T R+ =
{
(ẘn, t̊n) | 1 ≤ n ≤ N̊ = O + βI

}
with

(ẘn, t̊n) =

{
(ẇn, ṫn) 1 ≤ n ≤ O

(w̃i, t̃i) n > O , i = 1 + (n−O − 1) mod (Ñ).

The method of oversampling, see ,e.g., [62], has originally been proposed to handle
the class imbalance problem in a training corpus. However, in this approach the
oversampling technique is used to compensate the imbalance between in- and out-
domain training data corpora. This plays a particular role in the task of POS tagging
and has not yet been performed.

4.5 Text Corpora

In total three corpora are used in our experiments. Two corpora are used for training
purposes, our social media corpus and an out-domain newspaper corpus. Furthermore,
we introduce a third social media text corpus, which is used as additional test corpus.

First, we introduce WebCom a new corpus that contains social media texts in form of
comments collected from Heise.de, which is a popular German newsticker site treating
different technological topics. The corpus contains comments posted 2008 to 2009.
The comments for the manual POS annotation are selected from this underlying cor-
pus. In order to obtain a corpus where many kinds of social media characteristics are
represented, we select comments from different users. The selection of comments is
carried out randomly over different users according to their posting frequencies.

Each token is annotated with manually validated STTS POS tags. Annotation rules,
particularly for social media text characteristics, are given in Section 4.3. A detailed
annotation guideline as well as Inter-Annotator Agreement (IAA) studies can be found
in [86]. As an annotation tool EXMARaLDA is used, which stores information in form
of a xml structure. The EXMARaLDA editor allows for arbitrary annotation in texts
on different levels. We call the resulting corpus WebTrain because it provides super-
vised data for training purposes. To the best of our knowledge, WebTrain is currently
the largest social media text corpus enriched with POS information. However, aiming
at training a POS tagger, approximately 36,000 tokens is a relatively small number.

Therefore, we additionally introduce the TIGER treebank [7] text corpus. It is the
largest manually POS annotated German corpus and contains about 900,000 tokens
of German newspaper text, taken from the Frankfurter Rundschau. The corpus anno-
tation provides manually validated POS tags, lemmas, morphosyntactic features, and
parse trees. For our purposes, only the STTS POS tag information is used.
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WebCom WebTrain WebTypes TIGER

Text length, Ñ : 15,080,976 36,284 4,006 888,973
#Words |L|: 360,177 7,830 1,637 89,417
#Sentences: 1,124,649 2,817 361 45,707
#Comments: 153,740 429 - -

#Users: 15,007 183 - -

Table 4.3: Corpus Statistics.

To have a deeper look in the general applicability of the retrained taggers for social
media texts, we create an additional corpus WebTypes. It is composed of roughly
4,000 tokens, where comments from different Web sites and a corpus extract from the
Dortmunder chat corpus BalaCK 1-b [5] are annotated in the same way thanWebTrain.
Three different types of social media texts are represented, YouTube comments, blog
comments, and chat messages.

In order to give a first impression of the different requirements in POS tagging social
media texts compared to newspaper texts, we determine some corpus statistics. First
we determine the average POS tag ambiguity (size of the POS tag set Tw) of tokens
contained in the resulting lexicon of each corpus. For the WebTrain corpus we achieve
a value of 2. This is significantly higher as the ambiguity in German newspaper texts,
e.g., 1 for the TIGER corpus and is an intensified clue for the difficulty of POS tagging
of social media texts. Table 4.3 gives further statistical corpus information, i.e., the
text length Ñ , the size of the resulting lexicon |L| for all corpora, the number of
sentences and partly the number of comments and users contained in the corpus.

Spelling Correction

In Section 4.4.1 we have described the token preprocessing in form of a normalization,
which can be automatically applied to any social media text, training as well as test
text. This normalization includes basically the correction of tokens assigned to the
category Informal Writing Style, see Chapter 1.1, but correction of, e.g., spelling, typ-
ing errors, or phenomena from one of the other categories is not included. Particularly,
the correction of spelling errors is a challenging task and is not the focus of this work.

However, for experimental results it would be interesting to see how much non-
standardized tokens/words from different categories influence on one hand the training
process and on the other hand the performance of tagging previously unseen test data.
For future experiments, we perform a manual correction of the WebTrain corpus in a
two-level approach. The corrected texts on each level are stored and can later be used
for evaluations. On a first level, called SpellCorrected, we correct spelling errors, typing
errors and capitalization errors (category Informal Writing Style). Spoken language
characteristics and Social media language phenomena, like, shorten words and word
transformations, e.g., nix -nothing are corrected on the second correction level, called
WordCorrected. The two level correction allows for a detailed analysis of the different
types of characteristics inherent in social media texts.
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Synthetic Data Creation

In Chapter 1.1 we have introduced the different characteristic categories of social
media texts. Generally, a majority of non-standardized tokens belongs to the class
Informal writing style. Hence, our particular interest goes to that category, most
notably containing spelling and typing errors. However, the ratio between the number
of misspelled tokens and the number of all tokens in a text is still pretty low. This
makes it a challenging task to perform a reasonable comparison of different methods
developed for such characteristics.

In order to perform a more detailed analysis of the different parameter estimation meth-
ods proposed, some synthetic data are generated. First, we assemble a list of typical
spelling and typing errors from different resources discovered from the Web. As Web
resources we use the following Web sites, Rotkel.de, Korrekturen.de and Wikipedia.de,
which provide several types of such errors in alphabetic order. For our purposes we
consider only one word errors based on one single token and resulting in one single
token, in order to let the number of tokens unchanged. After eliminating multiple
token errors and double entries from the different sources, the resulting manipulation
list contains 1,900 entries. Each entry consists of the correctly spelled word and one up
to three entries how it is frequently misspelled, i.e. non-standardized forms. Further-
more, we use our WebTrain corpus to extract non-standardized words/tokens inherent
in social media texts. The list is created by comparing our original text with the second
level text correction, WordCorrected, described in the previous section and extract all
tokens that differ. Note that this list not only contains typing and spelling errors but
all kinds of word transformations, particularly errors in capitalization. Adding these
entries to the manipulation list ignoring double entries results in a total list of 2,700
word entries.

Based on the manipulation list we synthetically incorporate non-standardized tokens
into our corpus. Each token of theWebTrain text, which is found in the list, is replaced
by the non-standardized/misspelled form. In case of multiple non-standardized forms,
we perform a random choice. Applying these modifications leads to 32% manipulated
tokens. The synthetic data are exclusively used for testing.

4.6 Evaluation

The following section presents a detailed evaluation of the proposed Markov model
tagger in many different ways. We particularly evaluate the impact of the proposed
estimation methods for lexical and transition probabilities, the influence of the semi-
supervised learning techniques enabled by the developed auxiliary lexica and finally
the performance with different combinations and amounts of in- and out-domain train-
ing data. For the purpose of testing, we evaluate results achieved on the WebTrain
test sets and the synthetically manipulated WebTrain test sets, but additionally study
the results achieved on theWebTypes and TIGER newspaper corpus. By doing so the
transferability to different social media text types is studied. Furthermore, we show
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that using non-standardized texts for training does not lead to performance degrada-
tion on standardized newspaper texts. In addition to opposing the different methods
proposed, WebTagger is compared to two state-of-the-art POS taggers throughout the
evaluation. Finally, we give a short comment on the transferability of the proposed
methods to other languages, especially to English.

Most evaluations are performed in a cross validation way performed on our WebTrain
corpus. In order to achieve reliable statistics, we repeat ten times a 10-fold cross val-
idation. For each of these cross validations, the WebTrain corpus is divided into ten
equally sized subsets which are created by randomly selected sentences. In most evalu-
ations, the taggers are trained in a joint-domain way on a combination of nine subsets
and the first 700, 000 tokens of the TIGER data in each validation step. However,
some evaluations are performed without additional TIGER data on the sparse Web-
Train corpus. The remaining WebTrain subset and TIGER subset is used for testing.
In general, mean results over all cross validations are given in different contexts. As
already mentioned in Section 2.7, mean values are calculated by macro-averaging.

For the following evaluations, we fix a standard parameter setting of the proposed
Markov model tagger. This means that if no explicit changes are mentioned in the
particular subsection, the fixed setup is used. Depending on the evaluation, the influ-
ence of one of these parameters is analysed and not fixed anymore. This setup is fixed
as follows: We use a 2-order Markov model (k = 2), where transition probabilities
are estimated with a decision tree pruned with a threshold of σ = 50. Zero transition
probabilities are set to ε = 0.13. Note, that the influence of choosing different values
for k is not analyzed in detail in this thesis. Experimental results have shown that by
choosing σ and ε adequately, tagging accuracies are not influenced significantly when
varying k. Lexical probabilities are estimated by means of the three proposed adapta-
tions, i.e., token normalization, token mapping to word classes and the auxiliary lexica
lookups. For all remaining unknown tokens, information of the word’s prefix and suffix
is used to estimate lexical probabilities. The prefix and suffix lexicon is combined by
means of the arithmetic mean for estimating lexical probabilities of unknown words.
Suffix and prefix lexica are created based on a maximum length of 5 with a pruning
threshold of 2. Furthermore, all parameter evaluations are performed on joint-domain
training data without oversampling the WebTrain corpus, i.e., β = 1. The influence
of oversampling is investigated separately at the end of this chapter.

4.6.1 Impact of Enhanced Parameter Estimation

First, the impact of each parameter estimation adaptation for the given Markov model
is analyzed. The main goal of the proposed lexical probability estimation methods
is to improve tagging accuracies of unknown tokens. In order to get an idea, with
which ratio the particular methods contribute to the performance increase a stepwise
analysis is performed. We particularly consider the interplay of the three methods,
token normalization, token mapping to word classes and the auxiliary lexicon lookup.
A detailed analysis of lexical probability estimation by prefix and suffix information
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for tokens which are still unknown is performed in an additional step. Furthermore,
we analyze the interaction between the three proposed methods in dependence of the
in-domain training corpus size in more detail in Section 4.6.2.

The three parameter estimation adaptations are analyzed in the same order then they
are used in the algorithm. Therefore, we train the tagger on the described ten times 10-
fold cross validation in each step and add the different methods incrementally. Results
for 2-order Markov model taggers are depicted in Table 4.4 when trained on sparse
WebTrain data and Table 4.5 when trained on joint-domain training. In addition to
total accuracies (ACC), the ratio of unknown words (#Unknown) and accuracies (ACC
Unkn. ε) achieved on tokens treated by the normalization (ACC m(w)), mapped to
word classes (ACC Wr) or found in the auxiliary lexica (ACC L+,V+) are depicted.
Standard deviations are depicted for the single evaluation measures by ±. For all cross
validations tests are performed and results are depicted for WebTrain, manipulated
WebTrain, WebTypes and TIGER texts.

For all stepwise adaptations unknown word ratios can significantly be reduced and
at the same time a performance increase is achieved on all text types except for the
TIGER test. As expected the normalization function is not applied to any token in the
TIGER test, hence no changes in tagging accuracy are achieved by this adaptation.
Due to the fact that the text is standardized normalization is not needed. Notable is
that the remaining adaptations lead to a performance increase of 1.19 percentage points
when applied to the TIGER newspaper data. This shows that the proposed methods
are also useful for standardized texts, when only sparse training data is available.

The introduction of text normalization leads to a relatively small improvement of 0.26
percentage points, when trained and tested on the WebTrain data. However, text
normalization is only applied to relatively few tokens, but tagging accuracies on such
tokens reach up to 89.42%. Improvements are much more higher with 1.18 percentage
points, when applied to the WebTypes texts. This is due to the higher noise level in
the data, so that text normalization is applied to more tokens. It is also reflected in the
successful reduction of unknown words from 27.10% to 23.46%. Normalization becomes
more important in the case of less text standardization. Mapping to word classes by
regular expressions is applied to a relatively small number of tokens consistently for
all test types. Nevertheless lexical probability estimates are reliable for such tokens so
that tagging accuracies for such tokens are always over 90%. Unknown word reductions
lead from 0.64 to 1.56 percentage points and are very similar for all text types except
for the TIGER test. Results confirm that the mapping to word classes is an adequate
method for all text types considered in our evaluation. Additional usage of the two
semi-supervised auxiliary lexica, further increases accuracy between 1.25 and 0.31
percentage points, when trained on the WebTrain corpus only. The lexica L+,V+

achieve about 83% accuracy, which is significantly higher compared to prefix/suffix
methods. It proofs that knowing the correct tag set for a given word can already
improve results significantly. Notable is that the performance of the auxiliary lexica
drops about 30 percentage points, when applied to manipulated WebTrain data. This
can be explained by a high number of verbs, where no known word with the same POS
tagset Tw exists and hence estimates are less reliable, due to the equal tag distribution.
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Furthermore, it has to be considered that accuracies are averaged over 100 different
trainings but the WebTypes and TIGER test set are fixed in contrast to WebTrain
test sets, and hence not exactly comparable.

Comparing the results of Table 4.4 and 4.5 shows that the proposed adpations are
particularly suitable when only sparse training data is available. However, the com-
bination of all adaptations trained joint-domainly still leads to an improvement up
to 2.91 percentage points for the WebTypes test set. Differences in results achieved
by the semi-supervised auxiliary lexica are particularly interesting. On one side the
effect of using the lexica is significantly higher when trained on sparse training data.
Knowing the correct tag set from such lexica results in more reliable lexical probability
estimates instead of estimating lexical probability by means of the prefix and suffix
lexica. On the other side auxiliary lexica achieve consistently higher accuracies for all
test types for joint-domain training data, except for the manipulated WebTrain test
texts. This confirms that even enriching the training by out-domain newspaper train-
ing data, does not help to learn dialog specific verb forms and there is still need for
adaptation. But applying the proposed lexica to such verbs leads high tagging accu-
racies. Tagging accuracies for the manipulated WebTrain data particularly drop due
to a high number of synthetically generated capitalization errors, which are unrealistic
in real social media texts.

WebTagger WebTagger

(1) + Normalization (m(w)) (2)

Test sample #Unknown ACC Unkn. ε ACC #Unknown ACC m(w) ACC

WebTrain 14.44± 0.65 65.61± 2.22 91.28± 0.55 14.01± 0.64 89.21± 2.39 91.54± 0.53

WebTr. Mani. 27.07± 0.84 57.28± 1.91 82.76± 0.75 26.89± 0.84 72.96± 0.95 82.92± 0.76
WebTypes 27.10± 0.13 55.81± 0, 76 83, 09± 0.29 23.46± 0.13 84.22± 0.09 84.27± 0.28

TIGER 35.81± 0.07 64.51± 0.21 83.88± 0.09 35.81± 0.07 — 83.88± 0.09

WebTagger (2) WebTagger (3)

+ word classes (Wr) (3) + auxiliary lexica (L+ and V+)

#Unknown ACC Wr ACC #Unknown ACC L+,V+ ACC

WebTrain 12.49± 0.65 97.22± 2.03 92.25± 0.51 8.84± 0.60 82.73± 3.39 92.84± 0.48

WebTr. Mani. 25.33± 0.89 94.72± 2.64 83.64± 0.79 20.85± 0.84 51.54± 3.45 83.95± 0.80
WebTypes 22.27± 0.14 91.45± 0, 39 84, 89± 0.28 17.05± 0.12 75.37± 1, 14 86, 15± 0.27

TIGER 34.72± 0.08 97.04± 0.14 84.62± 0.09 29.56± 0.07 81.54± 0.39 85.78± 0.08

Table 4.4: Stepwise evaluation of different parameter adaptations for different text
types trained on WebTrain data.

For unknown tokens, which are not treated by any of the later discussed adaptations,
lexical probabilities are determined by a tokens prefix and suffix. Different combina-
tion of prefix and suffix probability distributions are discussed in the following. Cross
validation results for the different methods applied to different test types are depicted
in Table 4.6. Additionally we depict results achieved with suffix and prefix distribu-
tion solely. Furthermore, the overall POS tag distribution P̃ (t) without using any
knowledge about the token is performed and depicted. On average each WebTrain
test set contains about 4.22% tokens, where prefix/suffix estimation is applied, see
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WebTagger WebTagger

(1) + Normalization (t(w)) (2)

Test sample #Unknown ACC Unkn. ACC #Unknown ACC t(w) ACC

WebTrain 7.77± 0.51 71.14± 2.98 93.55± 0.51 7.51± 0.49 89.42± 1.98 93.72± 0.50

WebTr. Mani. 22.08± 0.69 56.23± 2.12 83.35± 0.96 22.00± 0.72 68.61± 1.19 83.41± 0.91
WebTypes 17.53± 0.05 58.81± 0.40 87.19± 0.10 12.28± 0.06 88.70± 0.05 88.73± 0.13

TIGER 5.96± 0.00 87.53± 0.06 97.07± 0.01 5.96± 0.00 — 97.07± 0.01

WebTagger (2) WebTagger (3)

+ word classes (Wr) (3) + auxiliary lexica (L+ and V+)

#Unknown ACC Wr ACC #Unknown ACC L+,V+ ACC

WebTrain 5.98± 0.42 94.62± 2.93 94.06± 0.48 4.22± 0.39 86.40± 4.33 94.29± 0.46

WebTr. Mani. 20.48± 0.70 93.05± 3.63 83.70± 0.91 17.26± 0.67 44.06± 4.33 83.99± 0.90
WebTypes 10.95± 0.06 99.66± 0.45 89.29± 0.13 8.44± 0.05 81.69± 0.72 90.10± 0.11

TIGER 5.22± 0.00 93.76± 0.04 97.13± 0.01 4.75± 0.00 91.06± 0.24 97.20± 0.01

Table 4.5: Stepwise evaluation of different parameter adaptations for different text
types trained on joint-domain data.

the upper table. Corresponding numbers for the different test types and standard
deviations (±) are given in the particular parts of the table. Note the WebTypes and
TIGER test sets are fixed and only the training data vary, hence mean and standard
deviation values can not directly be compared to the other results. We calculate mean
class precision and recall rates and the total accuracies for the whole test text (Total)
and for the tokens, where prefix/suffix estimation is applied (Pref/Suf), i.e., unknown
tokens. Experimentally we determine α = 50 to be the best threshold for the Rule-
based-2-case (R-b2c) and Rule-based-4-case (R-b4c) method and results for that value
are depicted. The arithmetic mean method results in the best tagging accuracies with
94.29% when tested on the WebTrain test set. It particularly outperforms tagging
accuracies achieved on unknown tokens. Nevertheless, this is not confirmed when ap-
plying the tagger to the manipulated WebTrain and WebTypes test sets. Here, the
tagger slightly outperforms the arithmetic mean by using the R-b2c and R-b4c method.
The entropy rule based approach leads to a more robust approach against high noise
level in the text. Furthermore, it is more robust in the application to texts different
from the training texts. Comparing the results of the different methods evaluated on
manipulated WebTrain and WebTypes texts show, that tagging accuracies differ more
than on the WebTrain corpus itself. This confirms that for social media texts with
a low standardization appropriate selection of these methods is important. Consider-
ing the mean class precision, the geometric mean method significantly outperforms the
other methods with 65.73% accuracy achieved on prefix/suffix tokens. Results are con-
firmed, when comparing the mean class precisions for all other text types. The R-b4c
approach reaches slightly better mean class recall results compared to the arithmetic
mean.

Previous studies have shown, that adding prefix information for automatic tagging of
newspaper texts only leads to little improvement of 0.05 percentage points, see [75]. In
our approach running the tagger only with a suffix lexicon results in 0.15 and only with
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a prefix lexicon in 0.35 percentage points performance loss compared to the arithmetic
mean method applied to the TIGER newspaper test. Comparing the results to those
achieved on different social media texts shows, that performance loss reaches up to
0.94 percentage points, when only using a prefix lexicon.

Depending on the later application, requiring POS tag information, different methods
should be chosen. One might be interested in a high per class precision rather than
total accuracy. Furthermore, the goal might be to choose the method, which achieves
best results on the particular training text type or a method which is robust against
a high noise level in the test texts. When, dealing with standardized newspaper texts
one should stick to the geometric mean method, however would not suffer from a
huge performance loss, when using any of the other proposed methods. For further
evaluations in this thesis, the arithmetic mean method is used as standard method.

Mean Precision Mean Recall Mean Accuracy

Pref/Suf Total Pref/Suf Total Pref/Suf Total

WebTrain Test (4.22± 0.39%)
Prefix 35.00 83.48 38.55 87.57 60.22 93.77
Suffix 36.35 82.27 34.02 87.03 69.18 94.16

Arithmetic 45.63 82.22 48.53 87.43 72.05 94.29
Geometric 65.73 84.14 39.58 87.19 71.72 94.27

Rule-base 2-case 46.25 82.14 49.86 87.35 71.78 94.27
Rule-base 4-case 41.37 82.22 47.27 87.60 69.38 94.17

P̃ (t) 16.98 82.98 17.61 86.23 45.99 93.17
WebTrain Manipulated Test (16.94 ± 0.68%)

Prefix 38.91 70.17 41.79 74.96 53.94 83.27
Suffix 27.27 68.41 23.89 68.10 44.99 81.54

Arithmetic 41.62 72.84 43.42 75.14 58.97 84.21
Geometric 56.78 75.33 34.54 71.09 57.95 83.92

Rule-base 2-case 43.30 72.10 44.85 75.63 60.26 84.41
Rule-base 4-case 41.38 71.54 47.05 76.46 60.94 84.51

P̃ (t) 19.63 69.96 15.45 64.99 34.82 79.98
WebTypes Test (8.44 ± 0.05%)

Prefix 30.44 76.70 30.56 83.07 47.45 89.26
Suffix 31.13 80.98 25.52 83.01 57.50 89.90

Arithmetic 33.72 79.58 33.12 83.51 57.86 90.10
Geometric 48.93 81.53 29.13 83.33 56.98 89.91

Rule-base 2-case 35.13 79.62 36.35 83.71 58.22 90.12
Rule-base 4-case 31.00 79.30 36.37 83.56 56.69 89.97

P̃ (t) 9.96 78.25 13.52 81.76 34.56 88.05
TIGER Test (4.75 ± 0.0%)

Prefix 23.65 87.27 39.44 89.58 82.63 96.86
Suffix 25.65 87.93 42.60 89.67 86.75 97.06

Arithmetic 33.09 87.80 52.80 89.86 89.50 97.20
Geometric 55.80 89.05 49.73 89.69 89.58 97.21

Rule-base 2-case 32.05 87.78 51.11 89.83 89.50 97.20
Rule-base 4-case 26.85 88.06 47.90 89.75 88.43 97.15

P̃ (t) 14.87 88.61 19.34 89.29 66.36 96.07

Table 4.6: Influence of different prefix/suffix combination estimation methods trained
on joint-domain training evaluated on different test types.

Finally, we investigate different maximum length of prefixes and suffixes for
β = 1, . . . , 10. The interplay of the different β values for prefix and suffixes in a
2-order Markov model with respect to the total tagging accuracy is depicted in Fig-
ure 4.1. Results are mean accuracies over the ten cross validations performed on the
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Figure 4.1: Accuracies with different prefix/suffix maximal length combined with the
arithmetic mean.

WebTrain corpus. The 3-dimensional plot clearly illustrates the importance of suffix
information. This, corresponds to the fact that the words suffix varies according to
the particular POS class, e.g., the conjugation for verbs. Using a length of more than
five does not lead to a significant performance increase rather for the suffix nor prefix
lexicon. This is assumed, since most of the tokens are not much longer in their total
length, hence the resulting prefix/suffix tree does not change much. At the same time,
prefix and suffix information are overlapping with growing length and no additional
information about the words POS class is gained by combining them. Note that
different pruning thresholds for prefix and suffix lexica do not influence accuracies
significantly. Experimentally, we determine γ = 2 for the prefix tree and the suffix
tree.

4.6.2 Impact of In- and Out-domain Training Data

In this section we investigate the proposed tagger trained on numerous training data
combinations composed of in- and out-domain data. On one hand we point out the
importance of using in-domain training data for the purpose of tagging social media
texts and investigate the results achieved by stepwise increasing the amount of such
data. We additionally show that using non-standardized social media texts for training
does not lead to a significant degradation when applying WebTagger to standardized
newspaper texts.

On the other hand the way to combine the two corpora WebTrain (in-domain) and
TIGER (out-domain) to reach maximum accuracy is analyzed. We particularly com-
pare the proposed linear combination of joint-domain training by oversampling the
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smaller in-domain WebTrain corpus to existing approaches, where the ratio between
in- and out-domain training is adjusted by the out-domain corpus size.

Importance of in-domain training data

To further investigate the influence of using in-domain training data, i.e., social media
texts for training, we train our model based on different training corpora. Note, that
all trained models in this section are trained without replacing transition probabilities
by a small epsilon. First, we train our model exclusively on newspaper TIGER texts.
We stepwise increase the amount of training data from 100,000 to 700,000 tokens.
In each step we randomly choose sentences comprising 100,000 tokens. This is per-
formed 100 times and data is added to the data selected in the previous step. Hence,
the model is trained on 100 different samples in each step. Second, in twenty steps
1,000 up to 20,000 tokens of the WebTrain corpus are combined with a sample set of
700,000 newspaper training tokens. Here, we choose the newspaper training sample
(700,000 tokens) achieving mean tagging accuracy, when tested on WebTrain test set.
Additional WebTrain tokens are chosen randomly, sentence wise. Again we select 100
sample sets, in the same way as for the newspaper training and train our model on
such data for each iteration step. Testing is performed on the remaining data, a fixed
test set of WebTrain with approximately 6,000 tokens. Mean results over 100 different
trainings per point are depicted in the curve marked with � in Figure 4.2. The plot
contains different x-axis scalings for the left and right area next to the black vertical
line to better illustrate the results. Significant slope increase can be observed in this
point, which proves the success by using in-domain text specific training data for the
task of POS tagging. Using 20,000 social media text tokens results in approximately
2.4 percentage points performance improvement on average. Hence, little effort of man-
ual annotation leads to a significant performance improvement. Increase of 600,000
newspaper training tokens results in approximately 5.8 percentage points improvement
solely. Furthermore, we show that including grammatically non-standardized texts as
training data does not negatively effect the annotation of standardized text by means
of the proposed approach. Random sentences are chosen from the newspaper TIGER
corpus to create a test set of 90,000 newspaper tokens. We use WebTagger trained on
the different training corpora to tag the newspaper data. The curve marked with ◦ in
Figure 4.2 illustrates the results. Results proof that adding 20,000 social media text
tokens for training do not affect tagging accuracy for standardized texts essentially.

Comparison of tagging accuracies for social media texts and newspaper texts states
that the tagging accuracy on standardized text can not be achieved when applying our
approach to social media texts. However, the performance difference can be reduced
from approximately 10 percentage points to 4 percentage points by increasing the
amount of training data from 100,000 tokens to 720,000 tokens in total. Furthermore,
matching the slope of both curves for the left area, states that increasing the amount
of newspaper training data is more substantial for the application to social media texts
compared to the application to newspaper texts. Tagging accuracy can be improved
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Figure 4.2: Influence of additional newspaper/social media training texts, tested on
social media and newspaper texts.

by 2 percentage points for newspaper data and 5.8 percentage points tested on social
media texts by adding the same amount of newspaper training data.

Training our model on 700,000 TIGER tokens leads to similar results, when tested on
newspaper data compared to TreeTagger results reported in [25]. For 90,000 randomly
selected testing sentences chosen from the TIGER corpus, WebTagger achieves 96.9%
accuracy on average.

Following this evaluation, we study the influence of additional WebTrain training data
to the different social media text types depicted in Figure 4.3. The accuracy im-
provements over the different training data amounts are depicted in the corresponding
curves. For all social media types the stepwise addition of WebTrain training data
leads to a consistent accuracy increase. For WebTypes related text types, which show
more social media text characteristics, the slope of the curves is higher compared to the
particular training data type WebTrain (test, 6,000 tokens). Increasing the amount
of WebTrain training data leads to a significant performance increase, particularly for
blog comments and YouTube comments. Results approve that general social media
text characteristics can be learned from comments present in the WebTrain corpus.
In summary, the results from Table 4.10 and Figure 4.3 show that the adapted pa-
rameter estimation methods combined with a sufficient amount of WebTrain training
data leads to adequate tagging accuracies for social media texts in general. Results
clearly demonstrate that the proposed tagger can successfully be applied to other texts
belonging to the social media text genre.
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Figure 4.3: Influence of additional WebTrain training for different social media texts.

Note that we exclude Twitter messages from this scope, since this subset can not
be addressed suitably with the presently developed method. Due to their special
characteristic given by hard distractions to 140 characters, the proposed method needs
to be further adapted.

Finally, the interaction between the amount of training data and the different adapta-
tion methods for lexical probability estimation is illustrated in Figure 4.4. For testing
the same 6,000 test tokens like in Figure 4.2 are used. We stepwise adapt the lexical
parameter estimation method by our proposed methods, similarly to the procedure
performed in Table 4.5. Significant impact of introducing text normalization and word
classes is observed over the whole training data range. Using auxiliary lexica leads to
a significant performance increase, particularly for a small amount of training data.
Comparing the slopes of the curves marked with ∇ and � illustrates that the suffi-
cient training data amount is much higher to compensate the improvement achieved
by normalization and word classes methods. In total, all estimation adaptations can
be partially compensated by adding additional social media training texts at least for
this test sample. This has to be studied in more detail for different test samples.
However, manual annotation of complete texts for fully supervised training is a very
time consuming step. Creating an auxiliary lexicon with our proposed methods shows
a better trade-off between time for annotation and improvement in tagging accuracy.

Joint-Domain Training With Oversampling

In this section we investigate the influence of out-domain training data in more detail.
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Figure 4.4: Stepwise parameter estimation adaptations for increasing social media
training texts.

We particularly compare our proposed linear combination of joint-domain training to
existing approaches, where the ratio between in- and out-domain training is adjusted by
the out-domain corpus size. First we stepwise increase the amount of TIGER training
data. Starting with a size equal toWebTrain corpus size, we randomly choose sentences
in each step. This is performed 100 times and data is added to the data selected
in the previous step. Each of these out-domain training samples is combined with
each training of a 10-fold WebTrain cross validation (3,600 tokens each part). Mean
accuracies of cross validation tagging over all 1000 training samples are depicted for
different in-/out domain ratios in the curve marked with (�) in Figure 4.5. Additionally
the minimum and maximum accuracy of the 100 TIGER training samples is depicted
in the curve marked with (�) and curve marked with (∇). We further investigate the
influence of different join-domain training methods to different social media text types,
where the tagger is not trained on that particular type. Therefore, we exemplarily
evaluate tagging accuracies achieved on the YouTube data. Results are depicted in
the same way in Figure 4.6.

In order to give some reference values, we train our tagger exclusively on the
TIGER/WebTrain corpus. Accuracies are depicted by the dotted line in both figures.
Second we apply our linear combination approach with oversampling and combine the
TIGER and WebTrain corpus in the same cross validation for different β values. Cross
validation results and test results achieved are depicted in the curve marked with (◦).
First, we compare the accuracies achieved with our approach (◦) to those achieved
with the best TIGER training part (∇). The black curve (◦) stays above the red
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Figure 4.5: Influence of different joint-domain trainings evaluated on WebTrain.
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curve (∇) over all in-/out-domain ratios. The curve (∇) represents the optimum re-
sult for the given number of out-domain tokens. The plot indicates that exploiting this
degree of freedom the performance of our approach is hardly reached. Determining
the optimum training corpus results in a huge evaluation effort, which is very time
consuming. If the TIGER training part is not determined properly and, e.g., chosen
randomly, tagging accuracies can be significantly lower. In the worst case minimum
accuracies depicted in the curve (�) are achieved. Applying our method with β = 10
results in a maximum cross validation accuracy of 94.74%. Determining the best β
is considerably faster compared to identifying the best TIGER training part. Even if
no effort is spent on determining the best β, accuracies are only slightly lower than
optimum.

Moreover, we want to discuss how our approach performs on text types for which
the tagger is not particularly trained. Therefore, we discuss the results achieved for
YouTube data depicted in Figure 4.6. The maximum tagging accuracy of 87% is
achieved with a standardized approach. This is slightly higher compared to the maxi-
mum of 86.7% achieved with our approach. However, comparing the mean, max and
min curves shows that it is crucial, which out-domain data part is used as additional
training. This requires a time-consuming study. Furthermore, the correct decision
in practice is hard to achieve, since maximum values are located at different ratios
compared to the cross validation results. For both evaluations it is obvious that our
approach is robust in the sense that the performance slightly changes, if the ratio of
tokens is changed. This is similar to the result depicted in Figure 4.5 and hence shows
the robustness of the method, no matter what β value we choose.

Finally, we compare the results achieved for exclusively trained taggers on
TIGER/WebTrain corpus. All combination methods significantly exceed accura-
cies achieved for single training over all in-/out domain ratios. This states that a
joint-domain training approach is always reasonable. Note that for all following tagger
evaluations training is performed on joint-domain training, where WebTrain data are
oversampled with a factor β = 10.

Impact of Newly Seen Trigrams

In order to expand how different the grammatical structure in social media texts is
compared to newspaper texts, STTS tag trigram frequencies are calculated for both
corpora TIGER and WebTrain. The overall results are depicted in Table 4.7. The

Trigrams Trigram frequencies Ratio

Total WebTrain 7,215 36,282 0.20

Total TIGER 16,563 888,982 0.02

Only in WebTrain 1,290 2,120 0.61

Table 4.7: Trigram comparison for TIGER and WebTrain corpora.

third column shows the ratio between different trigrams and their frequencies for the
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different corpora. Results illustrate the higher variability in social media texts, which
is ten times higher than in newspaper texts. Particularly, we compare statistics for tag
trigrams that occur in WebTrain texts but are unknown from the TIGER corpus. The
statistics are given in the last row. WebTrain texts contain 18% new trigrams, that
never occur in the newspaper corpus TIGER. Those trigrams constitute 6% frequency
of all WebTrain trigram counts. Particularly, for those trigrams the ratio/variability
is increasing by a factor of three. Both results motivate the need of in-domain training
data for reliable estimation of transition probabilities, e.g., for trigrams.

4.6.3 POS Tag Confusion and Category Specific Evaluation

In this section, some more detailed analysis on the types of tagging errors and their
reduction by the proposed methods is performed. Apart from different POS tag con-
fusion error types, we analyse tagging errors made in different social media text xchar-
acteristic categories. By considering these two points, it is shown in more detail which
problems are addressed by the proposed methods, leading to enhanced accuracies.

First, the ten most frequently confused tag pairs, i.e., error types, for our approach
are further investigated. Frequencies achieved with WebTagger and its standard setup
plus oversampled joint-domain training are used for determining the ten tag pairs. Re-
sults achieved by this setup are compared to the Markov model tagger without any of
the proposed adaptations (Table 4.5 WebTagger (1)). Tagging errors are represented
by absolute frequencies and ratios of confused tag pairs for both tagger approaches.
Results are depicted in Table 4.8. The left part of the table shows the confusion rates
achieved with WebTagger (1) whereas the middle part of the table depicts confusion
with the final adapted model. The right part of the table shows the error reduction
in percent achieved for each type of confusion. Ratios/Relative errors are calculated
between the sum of all confused tag pairs over all ten WebTrain cross validations and
the total number of test tokens (362,800). The top two confusion pairs noun (NN) and
named entity (NE) account for 10% of the errors when applying WebTagger. This ef-
fect is not unique to social media texts as it also occurs when tagging newspaper texts.
Distinguishing proper nouns from named entities is done by named entity recognition
which cannot be solved by general POS taggers. Nevertheless, with 34% and 24%,
significant reduction of this error types is achieved. A detailed analysis shows that
improvements are made over all adaptation steps integrated in WebTagger. Notable
improvements are achieved for still unknown tokens where prefix and suffix lexica are
applied. Lexical probabilities are more reliably estimated based on the oversampled
training. Furthermore, improved tagging accuracies achieved on compound words such
as Heise-Seiten fall into this error type reduction. Interchanging a finite verb (VVFIN)
and a non-finite verb (VVINF) is caused by a non-local dependency particularly in
German. This is also reported for state-of-the-art taggers and illustrated in [75]. Im-
provements on these confusion types are particularly made by more reliable estimates
based on prefix and suffix estimation but at the same time improvements are achieved
by applying the verb lexicon. Noticeable is the occurrence of tag confusion between
foreign language (FM) and named entity (NE). Social media texts are often multilin-
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gual and contain text parts written in different languages, e.g., a German comment
contains English text parts (FM). The tokens of such text segments are annotated as
foreign language (FM). Due to missing prefix/suffix information of such tokens, this
leads to tagging errors. Tagging accuracies are slightly improved by more reliable suf-
fix and prefix estimates. Frequent tag confusion between noun (NN) and attributive
adjective (ADJA) results from missing noun capitalization which causes a valid adjec-
tive, from self created tokens or token transformations. For this error type, as well
as for the confusion pairs irreflexive personal pronoun (PPER) with reflexive personal
pronoun (PRF) and substituting demonstrative pronoun (PDS) with article (ART)
significant tagging improvements are achieved by the proposed parameter estimation
adaptations. Tokens which fall into one of these error categories are frequently known
tokens where enhanced lexical probability estimates due to the oversampling of social
media texts in the training lead to higher tagging accuracies.

Note that for all error types some improvements are achieved on known words. This
can be explained by changed transition probabilities due to the fact that surrounding
words are tagged correctly.

WebTagger (1) WebTagger (3) + Oversampling

Correct Predicted Absolute Relative Correct Predicted Absolute Relative Error Reduc.

NE NN 1542 0.43 NE NN 1025 0.28 33.53
NN NE 1229 0.34 NN NE 936 0.26 23.84
VVFIN VVINF 941 0.26 VVFIN VVINF 880 0.24 6.48
FM NE 655 0.18 FM NE 695 0.19 6.11
VVINF VVFIN 465 0.13 VVINF VVFIN 486 0.13 4.52
PPER PRF 351 0.10 PPER PRF 485 0.13 27.63
PDS ART 686 0.19 PDS ART 435 0.12 36.59
VVFIN VVPP 490 0.14 VVFIN VVPP 402 0.11 17.96
KON ADV 616 0.17 KON ADV 340 0.09 44.81
NN ADJA 485 0.13 NN ADJA 322 0.09 33.61

Table 4.8: Most frequently confused tag classes on WebTrain test before and after
adaptations (total number of test tokens: 362,800).

Finally, we evaluate the result for all social media text types with respect to the four
different characterization categories introduced in Section 1.1. The goal is to show
which characterizations of particular categories can be handled successfully and which
are still a problematic task. In order to show how strong the described adaptations
improve accuracies in each category, we filter and classify all words which are not cor-
rectly tagged by using WebTagger with the fixed setup plus oversampled joint-domain
training (WebTagger (3)+Oversampling) and the Markov model tagger without any
adaptations (WebTagger (1)). For a detailed evaluation, the tagging errors are con-
sistently classified into one of the four categories in a manual process by one person.
Note that the resulting classification does not serve for training but rather for evalua-
tion purposes. Figure 4.7 exemplarily depicts absolute errors for each category when
tested on WebTypes. The shaded areas illustrate the absolute error reduction for each
particular category evaluated on a sample 10-fold cross validation. Hence, errors are
summed up over ten tests performed on 4,006 tokens each.
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Figure 4.7: Error categorization evaluated on a sample cross validation performed on
WebTypes (40,060 test tokens).

Applying WebTagger (3) trained with oversampling, the overall error rate for all four
social media categories compared to WebTagger (1) without adaptations is reduced by
27%. The highest error reduction is achieved for the social media language category
where errors can be reduced by more than a third. The combination of oversam-
pling and adequate token handling by the auxiliary lexica leads to improved results.
By introducing the verb auxiliary lexicon, tagging errors can be reduced by 30% in
the category dialog form. In the informal writing style category, error reduction is
achieved by applying token preprocessing where tokens are normalized and mapped to
known tokens. The handling of spelling errors, which fall into this category, are still
problematic. The lowest error reduction is achieved in the category spoken language
with 17%. It is achieved by providing adequate oversampled in-domain training data.
In total, adequate unknown word treatment plus oversampling the in-domain training
data enables for the special handling of social media text characteristics, particularly
for social media language and dialog form categories. However, a significant error
reduction can be achieved over all categories.

4.6.4 Comparison to State-of-the-Art Taggers

Finally, we compare the adapted WebTagger to two state-of-the-art taggers, TreeTag-
ger [75] and Stanford [83], see Table 4.9. Both state-of-the-art taggers, using their
standard parameters, are trained and tested on the same ten cross validation sam-
ples based on a joint-domain training as described at the beginning of this chapter.
Therefore, a fair comparison between the different tagger models can be performed.
However, it still has to be kept in mind that state-of-the-art taggers benefit from the
social media text corpus developed in this thesis.
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WebTagger TreeTagger Stanford

WebTrain Test (3,628± 33.07)

Total 94.74± 0.43 93.84± 0.54 93.50± 0.56

Known 95.89± 0.38 95.87± 0.46 95.76± 0.44

Unknown 80.57± 2.43 68.70± 3.10 69.68± 2.76

Percentage unknowns 7.51± 0.49

WebTypes Test (4,006)

Total 90.81± 0.14 88.02± 0.13 86.27± 0.09

Known 93.97± 0.14 93.98± 0.11 93.44± 0.08

Unknown 68.23± 0.54 52.39± 0.64 49.32± 0.40

Percentage unknowns 12.28± 0.06

Table 4.9: Tagger comparison for different text types trained on joint-domain training
data evaluated for 10x10-fold cross validation.

Total tagging accuracies and accuracy rates achieved for known tokens and unknown
tokens are determined. Mean accuracies and their standard deviation (±) as well as
unknown token ratios are depicted in Table 4.9. In order to make results compara-
ble, unknown token ratios are calculated differently compared to those in Table 4.5.
Unknown tokens are tokens, which are not known from the training text corpus in
their original form and therefore have the same ratios for all taggers. WebTagger sig-
nificantly exceeds the mean tagging accuracy compared to all state-of-the-art taggers.
During the ten test runs for the first cross validation we perform 30 single comparisons
between WebTagger and the other two. WebTagger performs better in 28 of 30 cases.
Differences between the taggers are statistically significant according to a corrected
resampled paired t-test [48] applied to all cross validations with a significance level
of p = 0.001. Particularly, the accuracy on unknown tokens can be improved by our
approach. This is mainly due to the adaptation of how lexical probabilities of unknown
tokens are estimated. Furthermore, combining prefix and suffix lexical probabilities
by the arithmetic mean makes the method robust for unknown tokens. Overall, con-
sidering the noisy characteristics of social media texts, a considerable enhancement is
achieved by WebTagger.

Finally, we compare the performance of WebTagger to state-of-the-art taggers on dif-
ferent social media text types, where the tagger is not trained on the particular type.
To illustrate the improvements, Table 4.10 shows tagging accuracies and standard de-
viations for WebTagger and the four selected state-of-the-art taggers. We compare
the results for the combined WebTypes test data to results achieved for single types,
blog comments, chat messages and YouTube comments, introduced in Section 4.5.
Application of WebTagger leads to a consistent performance increase between approx-
imately 2 and 7 percentage points for different social media text types. Best improve-
ments can be observed for YouTube comments, which are highly characterized by a
dialog form and social media text characteristics such as emoticons, word shortenings
or letter iterations. Even though considerable improvements are achieved, the tagging
accuracy of 88.16% is the lowest compared to all other types due to the low text stan-
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#Tokens WebTagger TreeTagger Stanford

WebTypes test 4,006 90.81± 0.14 88.02± 0.13 86.09± 0.12

Chat messages 1,728 91.70± 0.17 89.63± 0.27 87.81± 0.16
YouTube comments 1,463 88.16± 0.28 84.41± 0.41 81.23± 0.16

Blog comments 815 93.58± 0.24 91.61± 0.25 91.35± 0.17

Table 4.10: Tagger evaluation for different text types trained on joint-domain data.

dardization. Overall, WebTagger outperforms the state-of-the-art taggers for all social
media text types.

4.6.5 Portability to Other Languages

The basic model and parameter estimation enhancements of the proposed WebTagger
are language independent. It is adapted to the social media text characteristics in
general, e.g., emoticons or character repetitions. However, considering all minor effects
that depend on language specific properties requires some additional effort. E.g. , the
principal word normalization can be adopted for other languages, but must be adapted
to particular language effects or typical verb transformations need to be covered by a
language dependent verb auxiliary lexicon. Moreover, language specific training would
require an additional supervised social media text corpus in the particular language.
For the corpus annotation the extended annotation rules can be used analogously.
Evidently, POS tags need to be mapped to the language specific tag set.

Furthermore, we consider the generality of the proposed tokenizer. In total, 30 of the
32 criteria used to detect coherent tokens cover social media text characteristics and,
hence can be transferred to other languages without any adaptation. The remaining 2
criteria as well as the merged word list are language specific adaptations to German.

4.7 Conclusions

A new POS tagger calledWebTagger, designed for the annotation of social media texts,
has been presented. WebTagger achieves an average accuracy of 94.7% evaluated in
ten cross validation experiments on a German social media text corpus consisting of
comments extracted from a news site. It outperforms state-of-the-art taggers consid-
erably with about 1 percentage point accuracy improvement. Additionally, it yields a
minimum improvement compared to state-of-the-art taggers of 2.8 percentage points
for a social media text type corpus different from the training corpus type.

Our approach differs fundamentally from other statistical Markov model taggers in
estimation of lexical probabilities for unknown tokens. A novel approach mapping
unknown tokens to tokens either known from training or tokens which fall into a class
represented by regular expressions has been presented. For remaining unknown tokens
semi-supervised domain-specific and verb auxiliary lexica and an adequate combination
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of tag distributions derived from prefix and suffix information are applied. By doing
so, unknown word frequencies can be reduced up to a factor of two and accuracies on
such tokens are improved. Altogether, lexical probability distributions are estimated
more accurately for social media texts.

Furthermore, the interplay between in-domain, i.e., social media texts, and out-
domain, i.e., newspaper texts, training data is investigated from different perspectives.
First, the importance of manually annotated in-domain training data is investigated.
Considerable improvements are achieved by using only a small amount of 20,000 tokens
as additional data for supervised training. Using such training data allows for reliable
transition probability estimation by learning the different grammatical structure of
social media texts. At the same time, the enrichment by non-standardized training
texts does not negatively affect tagging accuracies of standardized texts. Second, we
have enriched the social media text corpus by a linear combination following an over-
sampling technique with a newspaper training corpus. Tagging accuracies for different
social media text types can be further improved by 0.5 up to 0.7 percentage points.

In our approach, we exemplarily use German social media texts. Even though WebTag-
ger’s basic model and parameter estimation enhancements are language independent,
we recommend a language specific training which requires an additional supervised
social media text corpus.
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In this chapter, application examples of the proposed social media text related methods
in the context of information retrieval are presented. We particularly concentrate
our view on the advantages in different scenarios, when a Web crawler is utilized in
order to set up a Web page corpus. Note, that we do not explicitly consider the
usage of the proposed WebTagger, however, the usage of the tagger is implicitly given
by calculating POS-based features for any of the considered Web page classification
problems. Achieving better POS tagging accuracies on social media texts leads to more
reliable POS-based features and implicitly improves Web page classification results.

Two scenarios are considered: (1) The Web page cleaning classifier, proposed in Sec-
tion 3.7.2, is used in order to achieve a topic relevant Web page corpus. Therefore,
a Web crawler starting from topic-relevant seed pages is applied and topic detection
based on the cleaned Web pages is performed offline in a postprocessing step to refine
the corpus. It is shown that Web page cleaning significantly improves topic classifica-
tion results for Web pages. (2) In the same way social media text detection proposed
in Section 3.7.1 is used in order to set up a social media text corpus, i.e., a corpus
of Web pages containing social media texts. A Web crawler starting from different
blogs, forums and news sites with posted comments is applied and in a postprocessing
step Web pages containing comments are selected from a sample set of resulting Web
pages. This results in a social media text corpus, with a high precision rate. For our
experiments, we use the open-source crawler Nutch.

5.1 Topic Detection

A wide range of information retrieval tasks incorporate the detection of a given topic
in a document. Nowadays, the World Wide Web serves as data source in many appli-
cations, hence topic detection in Web pages is indispensable. In general a Web page
topic is defined by the topic of its main content, e.g., a posted article about pollution
on a newspaper Web page. The goal of the following experiments is to show the im-
proved topic detection in a Web page, when first applying the proposed Web cleaning
to the Web pages as a preprocessing step. Therefore, we compare two classifiers, one
classifying the topic based on the whole Web page content without any preprocessing
and one which classifies the topic only based on the main content of the Web page
detected by the proposed Web cleaning method. In particular, we perform a detailed
per page analysis of such Web pages, which differ in their classification results.
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As an exemplary topic, we choose fracking, which is a controversially discussed tech-
nology. At present, it is easy to find topic-relevant articles and at the same time many
topic-related user discussions in the Web, e.g., on news sites or in blogs. For our exper-
iments, we collect a Web page corpus of 100 pages which are all from different domains.
The Web page contains, fracking-relevant articles or any kind of fracking-relevant so-
cial media texts, e.g., user comments, or a combination of both articles and comments.
At the same time, off-topic Web pages are needed to train the classifier. Therefore, we
combine the fracking corpus with the 350 off-topic Web pages from different domains,
which are not related to the topic fracking.

Based on the combined corpus, two SVM classifiers (Section 2.6.3) are trained for topic
detection. A simple bag-of-words model is used to represent a Web page. Bag-of-word
models are a common approach in topic classification and they lead to satisfying results
for our purposes. In this model, the text of the Web page is represented as the bag of
its words, ignoring grammar, POS information or any word orders. However, in order
to achieve better keyword matches, we apply word stemming as a preprocessing step
and we separate compound words, e.g., Fracking-Pumpe (fracking-pump). For each
Web page p a feature vector xp ∈ N

d
0 is calculated, where the vector component xi

corresponds to the frequency of a token i in the Web page. The vector dimension d
is predefined by the stemmed lexicon size, created from the training Web pages. The
lexicon contains all stemmed tokens occurring in any of the training samples, that are
in total about 10,000 entries.

5.1.1 Experimental Results

To solve the topic detection problem we use a SVM classifier with a polynomial kernel.
Table 5.1 depicts 10-fold cross validation results achieved on the training samples for
the two approaches, (1) on the whole Web page and (2) on the identified main content
of the Web page. Classification accuracies vary only slightly, when applied to the

Precision Recall Accuracy

FRACKING OFF-TOPIC FRACKING OFF-TOPIC

Web page topic detection 96.2 95.6 82.4 99.1 95.7
Web page topic detection on content 100.0 96.2 84.6 100.0 96.8

Table 5.1: Cross validation results achieved for topic detection on the whole Web page
and the identified main Web page content.

training corpus. This agrees with our expectations. Due to the fact, that all off-topic
Web pages do not contain any topic relevant keywords, even not in the surrounding
areas of the main content of Web pages. However, that is not always the case in real
applications as the following experiments show. We point out that, in the context of
topic-specific Web page corpus construction, the corpus quality can significantly be
improved.

Thirteen Web pages of the fracking corpus serve as seed pages for the crawlers search.
A crawl with a maximum width of 2,000 pages per layer and a maximum layer depth of
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10 is performed. The idea is to access a fracking relevant Web page corpus and achieve
an assessable corpus size, which can be analysed manually without to much manual
effort. The resulting corpus contains 14,500 fetched Web pages from 285 different
domains.

In a post processing step, the resulting corpus is filtered in two steps by applying the
topic detection methods. In a first step, the whole Web page content is represented by
the bag-of-words feature vector and classified by the corresponding topic classifier into
FRACKING or OFF-TOPIC. Overall, 274 Web pages out of the 14,500 are classified
as FRACKING. In a second step, these 274 Web pages are further filtered by applying
topic detection only on the identified main content of the Web page. Overall, for 55
of such Web pages the classification result differs, where the Web pages are classified
as OFF-TOPIC. These Web pages are analysed manually in more detail. Resulting
Web pages can be split into two types of Web pages. First, 35% of the analyzed Web
pages exhibit a number of topic related links in surrounding areas of the main content
of the Web page. An exemplary Web page of this type is shown in Figure 5.1. The
black frame marks the main content detected by our Web cleaning method. In the
left area of the Web page frame, the topic related terms are marked in gray. It is easy
to see, that all topic relevant keywords are outboard of the marked Web page content
and hence the Web page is correctly identified as OFF-TOPIC. Second, for 65% of the
resulting 55 Web pages no elements are identified as main content and hence are not
classified as FRACKING relevant. Such pages are characterized by the fact that the
pages are so called hub pages, where a collection of links to the topic, i.e., fracking,
related Web pages and no article or any comment is contained. Our Web page cleaning
tool is particularly trained for Web pages, where the main content is characterized by
an article or listed comments. However, in order to create a corpus comprising topic
related articles and social media texts, filtering out such Web pages of the corpus
has a positive effect and leads to higher corpus quality. Overall results show that by
applying the second filter corpus the FRACKING precision, can be increased by 20
percentage points.

5.2 Social Media Text Corpus Construction

In the previous section topic-relevant texts have been discussed. However, recently the
interest in automatic evaluation of social media texts is growing. Particularly, in the
context of marketing studies and technology acceptance such texts contain valuable
information. However, social media text corpora need to be acquired regularly, in
order to perform evaluations on up to date data. Hence, automatic acquisition from
the World Wide Web is indispensable. The goal of this experiments is to show that
with the proposed social media text classifier from Section 3.7.1 a Web page corpus
with posted social media texts can be build. A Web search by means of a Web crawler
is applied and Web pages containing social media texts are detected in a postprocessing
step from a sample set of Web pages. Therefore, in a first step Web pages from the
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Figure 5.1: Exemplary Web page with different topic classification results with and
without Web cleaning.

sample set are segmented and each segment is classified as COMMENT or NON-
COMMENT by applying the classifier.

Additionally, a Web page relevance criteria depending on the segments classification
results is defined. Exemplarily, a brute force method is implemented, where Web pages
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are considered to be RELEVANT, if at least one segment is classified as COMMENT.
Hence, the condition for the relevance classification in the second step is

Np∑
i=1

1{COM} (ĉ
p
i ) ≥ 1, with 1A (x) =

{
1, x ∈ A
0, otherwise

(5.1)

representing the indicator function for any set A. However, the criteria can be more
complex depending on the requirements. For example a minimum threshold for the
estimated probability for the COMMENT class can be set or the number of segments
classified as COMMENT could be increased in order to achieve higher corpus quality.
All NON-RELEVANT Web pages are filtered out of the Web page corpus.

The Web page corpus is acquired by starting a crawl process from 112 seed pages,
which results in 72,000 Web pages from 1,400 different Web domains. The seed pages
have been selected manually from 78 different domains, fulfilling one of the two criteria:
The Web page is a blog, forum or news site, which contains at least one comment.
The Web page is a so called hub page, which contains a high number of links to
Web pages, which fulfill the first requirement. For the sample corpus WPCrawl 830
Web pages are selected randomly from the larger crawl. The crawl corpus results in
a power-law distributed Web page domain ranking (maximum number of Web pages
per domain: 18,915, average: 51.26, median: 1). Top-5 hosts are www.androidpit.de,
forum.spiegel.de, www.focus.de, www.macuser.de and www.sueddeutsche.de. Hence,
the same holds for the selected sample of 829 Web pages from 104 different domains
(maximum number of Web pages per domain: 257, average: 12.75 , median: 1). For
the evaluation of our classifier the Web page corpus is manually annotated. In contrast
to the GWebTrain corpus, see Section 3.6 the annotation is performed on Web page
level rather than Web segment level. Web pages are labeled by two human annotators
as RELEVANT, if it contains at least one social media text. All remaining Web pages
are marked as NON-RELEVANT. In total 57% of the Web pages are RELEVANT,
which leads to a useful sample set to validate the proposed classifiers.

5.2.1 Experimental Results

For our experiments, we apply the same four classifiers evaluated in Section 3.7.1. Re-
sults, achieved with the different classifiers using a model based on k = 3 proceeding
and succeeding Web text segments, are depicted in Table 5.2 and Table 5.3. RELE-
VANT precision PREL and total accuracy ACCPAGE are given on the Web page level
rather than a text segment. Hence, e.g., PREL is the number of RELEVANT Web
pages classified as RELEVANT divided by the total number of Web pages classified
as RELEVANT pages. Considering the task of building a social media text corpus
by selecting all RELEVANT classified pages, high PREL are particularly important.
Best PREL results are achieved with the SVM classifier. In this case 686 Web pages
are selected from the original WPCrawl corpus, where 77% would be RELEVANT
pages. By applying our classifiers combining token-, POS- and HTML-based features
the social media text corpus quality can significantly be improved. The amount of
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5 Information Retrieval Applications

KNN Classifier (k=3) Decision Tree (k=3) SVM Classifier (k=3)

PREL RREL ACCPAGE PREL RREL ACCPAGE PREL RREL ACCPAGE

75.78 94.82 79.53 66.67 99.44 70.89 76.82 97.41 81.56

Table 5.2: Social media text detection results validated on the WPCrawl corpus.

CRF Classifier (k=3)

PREL RREL ACCPAGE

73.52 93.90 77.00

Table 5.3: Social media text (RELEVANT) detection by applying a CRF validated
on WPCrawl corpus.

RELEVANT Web pages containing social media texts, could be improved from 57%
to 77%(76.82) using a KNN classifier.
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6 Conclusions and Future Work

This thesis contributes to sequence labeling tasks in the field of Natural Language
Processing by introducing novel concepts, models and algorithms for

• Social media text classification and detection in Web pages,

• Web page cleaning for pages containing social media texts, i.e., social media
platforms,

• Part-of-speech tagging for social media texts.

First, we propose social media text classification methods, where sequences of Web
text segments are classified in terms of a high-dimensional feature vector consisting
of token-, POS- and HTML-based features. New features taking various social media
text characteristics into account are proposed and investigated with respect to differ-
ent classification methods. Particularly, a Conditional Random Field approach with
specialized feature functions is implemented. Thereby, sequence labeling problems are
solved based on a model with relaxed independent assumptions. Apart from solving
the task of social media text classification and detection, we propose a method for
Web page cleaning designed for Web pages hosting social media platforms. Good
classification performances for both tasks are particularly achieved by providing a rep-
resentative training corpus consisting of Web pages from social media platforms and
an adequate combination of token-, POS- and HTML-based features. This is substan-
tiated by the results of a detailed per feature analysis, where novel social media text
related token- and HTML-based features yield high information gain ratios.

Social media texts are detected with precision rates up to 83%, when applying a SVM
to the 2-class problem with an extended feature vector by features of three preceding
and succeeding text segments (k=3). For the more fine-grained classification, where
several meta informations such as the user names and the posting times are considered
as classes, mean F1-Scores up to 65.5% applying the SVM classifier are achieved. This
is significantly lower compared to the 2-class problem with 89.1% mean F1-Scores,
however this a biased comparison, since the differentiation between seven classes is
more complex. Reasoned by the relatively small training corpus the SVM classifier
outperforms the CRF (k=3) approach particularly for the 7-class problem. With the
current training corpus size the SVM classifier should be chosen. However, with a
bigger training corpus we expect, that the CRF modeling the dependencies between
consecutive Web text segments would outperform the SVM classifier.

Web page cleaning methods achieve mean F1-Scores up to 92.5% applied to our Web
page corpus hosting social media text platforms. This significantly outperforms state-
of-the-art approaches by a minimum of 26 percentage points. Applying a Conditional
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Random Field model yields the highest recall of 95% on commented areas in Web
pages, which is of special interest in our task. Evaluations performed on the English
benchmark corpus CleanEval show that the trained classifiers are domain-independent
and can be transferred to other languages with little effort.

Second, based on a probabilistic Markov model, we have proposed a new POS tagger
called WebTagger, designed for the annotation of social media texts. The approach
mainly differs from other Markov model taggers in the estimation of lexical proba-
bilities for unknown tokens. Therefore, a novel approach mapping unknown tokens
to tokens either known from training or tokens which fall into a class represented by
regular expressions is presented. For tokens still unknown, we present semi-supervised
auxiliary lexica and adequate estimation from combined prefix and suffix information.
By doing so, unknown word frequencies are reduced up to a factor of two and tagging
accuracies on such tokens are improved. Altogether, lexical probability distributions
are estimated more accurately for social media texts. WebTagger achieves an aver-
age accuracy of 94.7% evaluated on a German social media text corpus consisting of
comments from a News site and outperforms state-of-the-art taggers significantly. Ad-
ditionally, it yields a minimum improvement compared to state-of-the-art taggers of
2.8 percentage points for a social media text type corpus different from the training
corpus type. We show that combining sparse in-domain social media training data and
a newspaper corpus by an oversampling technique improves POS tagging accuracies
significantly. Tagging accuracies can be further improved from 0.5 up to 0.7 percentage
points on social media text types.

Finally, it is shown that the proposed social media text detection and Web cleaning
methods, as well as the presented POS tagger, can be efficiently used in the context
of information retrieval for Web page corpus construction. By applying Web page
cleaning and social media text detection to Web page corpora obtained from Web
crawlers, the generated corpus can be further refined. Applying our social media text
classifier in combination with a simple relevance criteria to Web pages accessed by a
crawler, leads to a significant improvement in corpus quality. The amount of relevant
Web pages containing social media texts can be increased from 57% to 77% using a
SVM classifier.

Future Work

This thesis raises different aspects for future research.

As a first aspect we look at the application of the presented social media text classifier
for corpus construction. Very basic applications have been presented in the previous
chapter. Social media text detection has been applied as filter in a postprocessing step
to a Web page corpus acquired by a Web crawler. However, we assume that Web page
corpus results could be improved by integrating the classifier’s results in the process
of crawling. Considering the classifier’s result in the search algorithm could provide
better search directions and hence better Web page corpora.
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The second aspect is the generality of the proposed POS tagger. WebTagger’s basic
model and enhancements are language independent. For example, the approach could
be transferred to English social media texts. However, due to the lack of English social
media text corpora (except those provided by Twitter) the applicability to English
texts has not been evaluated in this thesis. Evaluation of the proposed tagger model on
English corpora therefore has high potential for future research. Even though several
characteristics such as emoticons (:-)) or letter iterations (Helllooo) are observed in
German and English social media texts alike, some characteristics are language specific.
Therefore, some modifications would be necessary to achieve similar improvements in
tagging accuracies.

In general, we believe that the models and methods developed in this thesis will provide
suitable methodologies for the acquisition and automatic processing of social media
texts in challenging future problems.
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Acronyms

ACC Accuracy

BFGS Broyden-Fletcher-Goldfarb-Shanno

CFS Correlation-based Feature Selection

CRF Conditional Random Field

CSS Cascading Style Sheets

DOM Document Object Model

HMM Hidden Markov Model

HTML Hypertext Markup Language

KNN K-Nearest Neighbor

L-BFGS Limited Memory BFGS

MDL Multi-Interval Discretization for Classification Learning

MEMM Maximum Entropy Markov Model

MLE Maximum Likelihood Estimation

NLP Natural Language Processing

PCA Prinicipal Component Analysis

POS Part-Of-Speech

STTS Stuttgart Tübingen Tagset

SVM Support Vector Machine

FN False Negative

FP False Positive

PR Precison

RE Recall

TN True Negative

TP True Positive

URL Uniform Resource Locator

WWW World Wide Web
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List of Symbols

⊆,⊂ Subset and proper subset, respectively.

∅ Empty set.

N,N0 Set of positive natural numbers and natural numbers (including
zero), respectively.

R,R≥0,R>0 Set of real numbers, non-negative real numbers, and positive
real numbers, respectively.

|·| Cardinality of a set.

cn Class label at position n.

cN1 Sequence of N class labels.

c′ Subsequence of class labels.

P (cN1 | xN
1 ) Conditional probability of the label sequence cN1 conditioned on

the sequence of observations xN
1 (Emission probability).

x,X Bold face lower case letters and upper case letters denote column
vectors and matrices, respectively.

xT,XT Transpose of a vector x and a matrix X, respectively.

d Feature vector dimension.

cstart Sequence of dummy labels cstart.

cstart Dummy label added to the set of classes C.
ĉn Estimated class label at position n.

ĉN1 Sequence of estimated class labels.

αk Step length in the Limited Memory BFGS algorithm.

∇ Gradient.

Hk Approximation of the Hesse Matrix in the k-th iteration.

H0
k Initial Hesse matrix approximation.

∇2 Hesse Matrix.

Ij Index set over feature realizations of feature j.

P (cN1 ,x
N
1 ) Joint probability of the label sequence cN1 and the sequence of

observations xN
1 .

λ Model parameter vector.

�(λ) Log-likelihood function.

L(λ) Likelihood function.

cpl Sequence of class labels from position l to p.

L Full form lexicon created from training data.
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List of Symbols

x̃max
j Maximum of feature j over training samples.

μ̃j Mean value of feature j over training samples.

x̃min
j Minimum of feature j over training samples.

n Position index in a sequence.

N, Ñ Length of a sequence/training sequence.

K Number of neighbors considered in K-Nearest Neighbor.

x
(1)
nj , x

(2)
nj Differently normalized feature values.

P (cN1 ) Probability of the class sequence cN1 .

P (xN
1 ) Probability of the observation sequence xN

1 .

C Random variable with C ∼ (P̃ (c))c∈C supported on the set of
classes C.

Sj Set of realizations of feature j.

R Tokens covered by regular expressions.

C Set of classes.

Cs Set of classes joint with dummy label cstart.

spn Feature vector at position n of Web page p.

spnk By k preceding and succeeding feature vectors extended feature
vector at position n of Web page p.

Sp Sequence of feature vectors of Web page p.

σ̃j Mean value of feature j over training samples.

c̃n Label of training observation at position n.

Ñ Length of the training sequence.

tn POS tag at position n.

P (cn | cn−1
1 ) Probability of the label cn conditioned on the sequence of labels

ci−1
1 (Transition probability).

P̃ (cN1 ) Empirical distribution of the label sequence cN1 over the training
samples.

P̃ (xN
1 ) Empirical distribution of the observation sequence xN

1 over the
training samples.

(x̃n, c̃n) Training data pair at position n.

T R Set of training data.

Tw POS tag set of the word w.

x̃n Feature vector of a training observation at position n.

L+ Semi-supervised domain-specific auxiliary lexicon.

V+ Semi-supervised verb auxiliary lexicon.

wn Token at position n.

W All possible tokens.

xn Feature vector of observation at position n.

Xj Random variable with Xj ∼ (P̃ (xi))i∈Ij supported on feature j.

xN
1 Sequence of N feature vectors.
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List of Symbols

X Full form lexicon extended by regular expressions.

O (·) Landau symbol, defining an upper bound for the computational
complexity.
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