Compressive System Identification

Helmut Bőlcskei

ETH Zurich

November 2011

Joint work with R. Heckel

Some applications of system identification

- Channel sounding

Some applications of system identification

- Channel sounding
- in wireless communications

Some applications of system identification

■ Channel sounding

- in wireless communications
- in underwater acoustic communications

Some applications of system identification

■ Channel sounding

- in wireless communications
- in underwater acoustic communications
- Control engineering

Some applications of system identification

■ Channel sounding

- in wireless communications
- in underwater acoustic communications

■ Control engineering

- Radar imaging

Some applications of system identification

■ Channel sounding

- in wireless communications
- in underwater acoustic communications

■ Control engineering

- Radar imaging
- in astronomy

Some applications of system identification

- Channel sounding
- in wireless communications
- in underwater acoustic communications

■ Control engineering

- Radar imaging
- in astronomy
- in air and on water

Formal problem statement

\mathbb{H} is an unknown linear operator (e.g., system or channel)

Formal problem statement

\mathbb{H} is an unknown linear operator (e.g., system or channel)

Determine \mathbb{H} from response $r(t)$ to known probing signal $x(t)$

Is this always possible?

$$
\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{N}
\end{array}\right]=\left[\begin{array}{cccc}
h_{1,1} & h_{1,2} & \ldots & h_{1, N} \\
h_{2,1} & h_{2,2} & \ldots & h_{2, N} \\
\vdots & \vdots & & \vdots \\
h_{N, 1} & h_{N, 2} & \ldots & h_{N, N}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array}\right]
$$

Cannot extract N^{2} coefficients from N observations

The aim of this talk

- Review the fundamental limits of system identification

The aim of this talk

- Review the fundamental limits of system identification

■ Show how we can "break" these limits when \mathbb{H} is "sparse"

Identification of linear operators

All "reasonable" bounded, linear operators can be represented as
[Gröchenig, 2001]:

$$
\begin{aligned}
r(t)=(\mathbb{H} x)(t) & =\iint S_{\mathbb{H}}(\tau, \nu) x(t-\tau) e^{j 2 \pi \nu t} d \nu d \tau \\
& =\int h(t, \tau) x(t-\tau) d \tau \\
\underbrace{h(t, \tau)}_{\text {kernel }} & =\underbrace{\int \underbrace{}_{\mathbb{H}}(\tau, \nu)}_{\text {spreading function }} e^{j 2 \pi \nu t} d \nu
\end{aligned}
$$

Identification of linear operators

All "reasonable" bounded, linear operators can be represented as [Gröchenig, 2001]:

$$
\begin{aligned}
r(t)=(\mathbb{H} x)(t) & =\iint S_{\mathbb{H}}(\tau, \nu) x(t-\tau) e^{j 2 \pi \nu t} d \nu d \tau \\
& =\int h(t, \tau) x(t-\tau) d \tau \\
\underbrace{h(t, \tau)}_{\text {kernel }} & =\underbrace{}_{\text {spreading function }} \underbrace{S_{\mathbb{H}}(\tau, \nu)} e^{j 2 \pi \nu t} d \nu
\end{aligned}
$$

Determine $h(t, \tau)$ (or $S_{\mathbb{H}}(\tau, \nu)$) from $r(t)$ and knowledge of $x(t)$

Identification of LTI systems

- For LTI systems:

$$
r(t)=\int g(\tau) x(t-\tau) d \tau
$$

Identification of LTI systems

- For LTI systems:

$$
r(t)=\int g(\tau) x(t-\tau) d \tau
$$

- Identification:

$$
x(t)=\delta(t) \Longrightarrow r(t)=g(t)
$$

Identification of LTI systems

- For LTI systems:

$$
r(t)=\int g(\tau) x(t-\tau) d \tau
$$

- Identification:

$$
x(t)=\delta(t) \Longrightarrow r(t)=g(t)
$$

LTI systems are always identifiable

Why it always works in the LTI-case

$$
\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{N-1} \\
r_{N}
\end{array}\right]=\left[\begin{array}{ccccc}
g_{1} & g_{2} & \cdots & g_{N-1} & g_{N} \\
g_{2} & \cdots & \cdots & g_{N} & g_{1} \\
\vdots & & . \cdot & . \cdot & \\
g_{N-1} & g_{N} & g_{1} & & \\
g_{N} & g_{1} & g_{2} & \cdots & g_{N-1}
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Why it always works in the LTI-case

$$
\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{N-1} \\
r_{N}
\end{array}\right]=\left[\begin{array}{ccccc}
g_{1} & g_{2} & \cdots & g_{N-1} & g_{N} \\
g_{2} & \cdots & \cdots & g_{N} & g_{1} \\
\vdots & & . \cdot & . \cdot & \\
g_{N-1} & g_{N} & g_{1} & & \\
g_{N} & g_{1} & g_{2} & \cdots & g_{N-1}
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

The $N \times N$ Toeplitz (or circulant) system matrix \mathbb{H} is fully specified by N parameters

The general case

Identification in the linear time-varying (LTV) case:

$$
x(t)=\delta(t) \Rightarrow r(t)=\int h(t, \tau) \delta(t-\tau) d \tau=h(t, t)
$$

The general case

Identification in the linear time-varying (LTV) case:

$$
x(t)=\delta(t) \Rightarrow r(t)=\int h(t, \tau) \delta(t-\tau) d \tau=h(t, t)
$$

Not sufficient to identify the system

Identification by using a Dirac train

Track evolution of LTV system by transmitting a Dirac train

$$
x(t)=\sum_{\ell=-\infty}^{\infty} \delta\left(t-\ell t_{0}\right)
$$

Identification by using a Dirac train

Track evolution of LTV system by transmitting a Dirac train

$$
x(t)=\sum_{\ell=-\infty}^{\infty} \delta\left(t-\ell t_{0}\right)
$$

Corresponding output signal is

$$
r(t)=\sum_{\ell=-\infty}^{\infty} h\left(t, t-\ell t_{0}\right)
$$

Identification by using a Dirac train cont'd

Identification by using a Dirac train cont'd

Identification by using a Dirac train cont'd

Identification by using a Dirac train cont'd

Assume that $h(t, \tau)$ is band-limited to $\left[-\nu_{0}, \nu_{0}\right]$ with respect to t

Identification by using a Dirac train cont'd

Assume that $h(t, \tau)$ is band-limited to $\left[-\nu_{0}, \nu_{0}\right]$ with respect to t

Sufficient condition for identifiability

■ To recover $h(t, \tau)$ from $r(t)$ it is sufficient to have

$$
\underbrace{2 \tau_{0} \leq t_{0} \leq \frac{1}{2 \nu_{0}}} \text { sampling theorem }
$$

no overlap
between $h\left(t, t-l t_{0}\right)$

Sufficient condition for identifiability

■ To recover $h(t, \tau)$ from $r(t)$ it is sufficient to have
sampling theorem

$$
\underbrace{2 \tau_{0} \leq t_{0}} \leq \frac{1}{2 \nu_{0}}
$$

no overlap
between $h\left(t, t-l t_{0}\right)$

■ \mathbb{H} is identifiable if

$$
\underbrace{4 \tau_{0} \nu_{0}}_{\mathcal{A}\left(\operatorname{supp}\left(S_{\mathbb{H}}\right)\right)} \leq 1
$$

Underspread property and channel identification

Theorem [Kailath, 1963]
The set $\mathcal{H} \triangleq\left\{\mathbb{H}: \operatorname{supp}\left(S_{\mathbb{H}}\right) \subseteq\left[-\tau_{0}, \tau_{0}\right] \times\left[-\nu_{0}, \nu_{0}\right]\right\}$ is identifiable if and only if

$$
4 \tau_{0} \nu_{0} \leq 1
$$

Underspread property and channel identification

Theorem [Kailath, 1963]
The set $\mathcal{H} \triangleq\left\{\mathbb{H}: \operatorname{supp}\left(S_{\mathbb{H}}\right) \subseteq\left[-\tau_{0}, \tau_{0}\right] \times\left[-\nu_{0}, \nu_{0}\right]\right\}$ is identifiable if and only if

$$
4 \tau_{0} \nu_{0} \leq 1 .
$$

■ Underspread channels $\Rightarrow \mathcal{A}\left(\operatorname{supp}\left(S_{\mathbb{H}}\right)\right) \leq 1$
■ Overspread channels $\Rightarrow \mathcal{A}\left(\operatorname{supp}\left(S_{\mathbb{H}}\right)\right)>1$

Practical systems are often "sparse"

Underwater acoustic communication channels [Eggen, 1997]

Sparse spreading function in mobile communications

General support area for $S_{\mathbb{H}}$

General support area for S_{H}

General support area [Bello 1969; Pfander \& Walnut 2006] $\mathcal{H}_{M} \triangleq\left\{\mathbb{H}: \operatorname{supp}\left(S_{\mathbb{H}}\right) \subseteq M\right\}$ is identifiable if and only if $\mathcal{A}(M) \leq 1$.

General support area for $S_{\text {H }}$

General support area [Bello 1969; Pfander \& Walnut 2006] $\mathcal{H}_{M} \triangleq\left\{\mathbb{H}: \operatorname{supp}\left(S_{\mathbb{H}}\right) \subseteq M\right\}$ is identifiable if and only if $\mathcal{A}(M) \leq 1$.

But support area needs to be known!

Counting signal space dimensions [Kailath, 1963]

- Input signal has bandwidth $2 W$
- Output signal observed over an interval of length $2 D$
- Use the 2WT-Theorem [Landau, Pollak, Slepian, 1961-62]

Counting signal space dimensions cont'd

Counting signal space dimensions cont'd

Counting signal space dimensions cont'd

Identification: $4 W D \geq 4 W D \cdot \mathcal{A}\left(\operatorname{supp}\left(S_{\mathbb{H}}\right)\right) \Rightarrow \mathcal{A}\left(\operatorname{supp}\left(S_{H H}\right)\right) \leq 1$

Unknown support in ν direction only

$S_{\mathbb{H}}(\tau, \nu)$ is a "sparse" multi-band signal as a function of ν

An excursion into sampling of (sparse) multi-band signals

Sampling of multi-band signals

Spectrum has sparse support in $\left[-f_{0}, f_{0}\right]$

Sampling of multi-band signals

Spectrum has sparse support in $\left[-f_{0}, f_{0}\right]$

2-fold undersampling: $f_{s}=f_{0}$

Sampling of multi-band signals

Spectrum has sparse support in $\left[-f_{0}, f_{0}\right]$

2 -fold undersampling: $f_{s}=f_{0}$

4-fold undersampling: $f_{s}=f_{0} / 2$

Landau's multi-band sampling theorem

- Spectral occupancy $\mathcal{T} \in\left[-f_{0}, f_{0}\right]$
- Sampling set

$$
\mathcal{P}=\left\{t_{n}\right\} \rightarrow\left\{x\left(t_{n}\right)\right\}
$$

Landau's multi-band sampling theorem

- Spectral occupancy $\mathcal{T} \in\left[-f_{0}, f_{0}\right]$
- Sampling set

$$
\mathcal{P}=\left\{t_{n}\right\} \rightarrow\left\{x\left(t_{n}\right)\right\}
$$

[Landau, 1967]: To reconstruct stably need

$$
D^{-}(\mathcal{P})=\lim _{r \rightarrow \infty} \inf _{t \in \mathbb{R}} \frac{|\mathcal{P} \cap[t, t+r]|}{r} \geq|\mathcal{T}|
$$

$D^{-}(\mathcal{P})$: lower Beurling density

Landau's multi-band sampling theorem

- Spectral occupancy $\mathcal{T} \in\left[-f_{0}, f_{0}\right]$
- Sampling set

$$
\mathcal{P}=\left\{t_{n}\right\} \rightarrow\left\{x\left(t_{n}\right)\right\}
$$

[Landau, 1967]: To reconstruct stably need

$$
D^{-}(\mathcal{P})=\lim _{r \rightarrow \infty} \inf _{t \in \mathbb{R}} \frac{|\mathcal{P} \cap[t, t+r]|}{r} \geq|\mathcal{T}|
$$

$D^{-}(\mathcal{P})$: lower Beurling density

- There exists a stable universal sampling set \mathcal{P} with $D^{-}(\mathcal{P})=|\mathcal{T}|$ [Venkataramani \& Bresler, 2001]

Unknown spectral support set

- Consider the set of all signals with |spectral support $\mid \leq C$

Unknown spectral support set

- Consider the set of all signals with \mid spectral support $\mid \leq C$

- Multicoset sampling [Bresler, Feng, 1996,...]

Overall sampling rate:

$$
D^{-}(\mathcal{P})=\frac{K}{T L}
$$

A stable universal sampling set

$$
Y_{k}(f)=\mathcal{F}\left\{y_{k}[m]\right\}=\sum_{m \in \mathbb{Z}} X\left(f+\frac{m}{T L}\right) e^{j 2 \pi \frac{m k}{L}}, \quad f \in[0,1 /(T L))
$$

A stable universal sampling set \mathcal{P} with $D^{-}(\mathcal{P})=2 C$

- Every $K \times K$ submatrix of \mathbf{F}^{H} has full rank

A stable universal sampling set \mathcal{P} with $D^{-}(\mathcal{P})=2 C$

- Every $K \times K$ submatrix of \mathbf{F}^{H} has full rank

■ No two different $\mathbf{x}(f)$ can map to the same $\mathbf{y}(f)$ if $D^{-}(\mathcal{P}) \geq 2 \times($ Landau rate $)$

A stable universal sampling set \mathcal{P} with $D^{-}(\mathcal{P})=2 C$

- Every $K \times K$ submatrix of \mathbf{F}^{H} has full rank
- No two different $\mathbf{x}(f)$ can map to the same $\mathbf{y}(f)$ if $D^{-}(\mathcal{P}) \geq 2 \times($ Landau rate $)$

Spectrum-blind sampling entails a factor-of-two penalty in the sampling rate

Back to operator identification

Unknown support in τ or ν direction only

Unknown support in ν-direction only

Unknown support in τ or ν direction only

Unknown support in ν-direction only

Unknown support in
τ-direction only

Unknown support in τ or ν direction only

Unknown support in ν-direction only

Unknown support in
τ-direction only

How do we account for unknown support in τ and ν concurrently?

Main results [Heckel and HB, 2011]

Example: $\mathbb{H}_{1}, \mathbb{H}_{2} \in \mathcal{X}(\Delta)$

The set $\mathcal{X}(\Delta)$ is identifiable if and only if $\Delta \leq 1 / 2$.

Main results [Heckel and HB, 2011]

Example: $\mathbb{H}_{1}, \mathbb{H}_{2} \in \mathcal{X}(\Delta)$

$$
\mathcal{X}(\Delta)=\left\{\mathbb{H}: \mathcal{A}\left(\operatorname{supp}\left(S_{\mathbb{H}}\right)\right) \leq \Delta\right\}
$$

The set $\mathcal{X}(\Delta)$ is identifiable if and only if $\Delta \leq 1 / 2$.

Almost all $\mathbb{H} \in \mathcal{X}(\Delta)$ can be identified if $\Delta<1$.

Main results [Heckel and HB, 2011]

Example: $\mathbb{H}_{1}, \mathbb{H}_{2} \in \mathcal{X}(\Delta)$

The set $\mathcal{X}(\Delta)$ is identifiable if and only if $\Delta \leq 1 / 2$.

Almost all $\mathbb{H} \in \mathcal{X}(\Delta)$ can be identified if $\Delta<1$.
\Rightarrow There is no penalty for not knowing $\operatorname{supp}\left(S_{H}\right)$ upfront!

Sufficiency of $\Delta \leq 1 / 2$

- Probing signal: Periodic weighted Dirac train

$$
x(t)=\frac{\wedge^{c_{0}{ }^{c_{1}}} \quad \ldots \wedge^{c_{0}{ }^{c_{1}}}}{0 \quad T}
$$

Sufficiency of $\Delta \leq 1 / 2$

- Probing signal: Periodic weighted Dirac train

- Reduce problem to solution of (continuum of) linear system of equations where $S_{\text {H }}$ is the unknown

Sufficiency of $\Delta \leq 1 / 2$

- Approximate $\operatorname{supp}\left(S_{\mathbb{H}}\right)$ by rectangles of area $1 / L$:

Sufficiency of $\Delta \leq 1 / 2$

- Approximate $\operatorname{supp}\left(S_{\mathbb{H}}\right)$ by rectangles of area $1 / L$:

■ Zak transform [Janssen, 1988] of $r(t)=(\mathbb{H} x)(t)$:

$$
\mathcal{Z}_{r}(t, f) \triangleq \sum_{m \in \mathbb{Z}} r(t-m T L) e^{j 2 \pi m T L f}
$$

Sufficiency of $\Delta \leq 1 / 2$ cont'd

$\mathbf{A}_{\mathbf{c}}$: Time-frequency translates of weighting sequence \mathbf{c}

A continuum of compressed sensing problems

$$
\begin{aligned}
& T \xlongequal{\substack{\frac{1}{T L}}} \stackrel{U}{\square}
\end{aligned}
$$

A continuum of compressed sensing problems

$$
\begin{aligned}
& \underbrace{\left[\begin{array}{c}
z_{1}(t, f) \\
\vdots \\
z_{L}(t, f)
\end{array}\right]}_{\mathbf{z}(t, f)}=\underbrace{\left[\begin{array}{l}
\mathbf{A}_{\mathbf{c}} \\
\end{array}\right]}_{L \times L^{2}} \\
& \underbrace{\left[\begin{array}{c}
\square \\
\hline
\end{array}\right]}_{\mathbf{s}(t, f)},(t, f) \in U \\
& T \xrightarrow[\frac{1}{T L}]{\square} \stackrel{t}{\square}
\end{aligned}
$$

- By [Lawrence et al. 2005], there exists $\left\{c_{0}, \ldots, c_{L-1}\right\}$ such that every $L \times L$ submatrix of $\mathbf{A}_{\mathbf{c}}$ has full rank

A continuum of compressed sensing problems

$$
\underbrace{\left[\begin{array}{c}
z_{1}(t, f) \\
\vdots \\
z_{L}(t, f)
\end{array}\right]}_{\mathbf{z}(t, f)}=\underbrace{\left[\begin{array}{c}
\mathbf{A}_{\mathbf{c}} \\
\square
\end{array}\right]}_{L \times L^{2}} \begin{gathered}
{\left[\begin{array}{c}
\square \\
\vdots
\end{array}\right]}
\end{gathered},(t, f) \in U \quad \begin{array}{cc}
T \nmid t, f) \\
\frac{1}{T L}
\end{array}
$$

- By [Lawrence et al. 2005], there exists $\left\{c_{0}, \ldots, c_{L-1}\right\}$ such that every $L \times L$ submatrix of $\mathbf{A}_{\mathbf{c}}$ has full rank
- No two different $\mathbf{s}(t, f)$ can map to the same $\mathbf{z}(t, f)$ if $\|\mathbf{s}(t, f)\|_{0} \leq \frac{L}{2}$, i.e., if $\Delta \leq \frac{L}{2} \frac{1}{L}=\frac{1}{2}$

Eliminating the factor of two penalty

There is no penalty for not knowing $\operatorname{supp}\left(S_{H}\right)$ upfront

$$
\left[\begin{array}{c}
z_{1}(t, f) \\
\vdots \\
z_{L}(t, f)
\end{array}\right]=\left[\begin{array}{ll}
\quad \mathbf{A}_{\mathbf{c}} & \\
\square \\
\vdots \\
\square \\
\square \\
\square \\
\square \\
\square
\end{array} \leftarrow\right.
$$

Eliminating the factor of two penalty

There is no penalty for not knowing $\operatorname{supp}\left(S_{H}\right)$ upfront

- Can identify $\operatorname{supp}\left(S_{\mathbb{H}}\right)$ if dimension of subspace spanned by $\mathbf{s}\left(t_{1}, f_{1}\right), \mathbf{s}\left(t_{2}, f_{2}\right), \ldots$ is sufficiently large

Eliminating the factor of two penalty

There is no penalty for not knowing $\operatorname{supp}\left(S_{H}\right)$ upfront

$$
\left[\begin{array}{c}
z_{1}(t, f) \\
\vdots \\
z_{L}(t, f)
\end{array}\right]=\left[\begin{array}{l}
\quad \mathbf{A}_{\mathbf{c}} \\
\square \\
\vdots \\
\square \\
\square \\
\square \\
\square \\
\square \\
\square \\
\square
\end{array} \leftarrow\right.
$$

- Can identify $\operatorname{supp}\left(S_{\mathbb{H}}\right)$ if dimension of subspace spanned by $\mathbf{s}\left(t_{1}, f_{1}\right), \mathbf{s}\left(t_{2}, f_{2}\right), \ldots$ is sufficiently large
- MUSIC [Schmidt, 1986] or ESPRIT [Paulraj et al., 1985] provably recover $S_{\mathbb{H}}$ when $\mathcal{A}\left(\operatorname{supp}\left(S_{\mathbb{H}}\right)\right)<1$

Thank you

