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Formal problem statement

H is an unknown linear operator (e.g., system or channel)

H
x(t) r(t)

Determine H from response r(t) to known probing signal x(t)
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Is this always possible?


r1
r2
...
rN

 =


h1,1 h1,2 . . . h1,N
h2,1 h2,2 . . . h2,N

...
...

...
hN,1 hN,2 . . . hN,N



x1
x2
...
xN



Cannot extract N2 coefficients from N observations
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The aim of this talk

Review the fundamental limits of system identification

Show how we can “break” these limits when H is “sparse”
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Identification of linear operators

All “reasonable” bounded, linear operators can be represented as
[Gröchenig, 2001]:

r(t) = (Hx)(t) =

∫∫
SH(τ, ν)x(t− τ)ej2πνtdνdτ

=

∫
h(t, τ)x(t− τ)dτ

h(t, τ)︸ ︷︷ ︸
kernel

=

∫
SH(τ, ν)︸ ︷︷ ︸

spreading function

ej2πνtdν

Determine h(t, τ) (or SH(τ, ν)) from r(t) and knowledge of x(t)
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Identification of LTI systems

For LTI systems:

r(t) =

∫
g(τ)x(t− τ)dτ

Identification:

x(t) = δ(t) =⇒ r(t) = g(t)

LTI systems are always identifiable
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Why it always works in the LTI-case


r1
r2
...

rN−1
rN

 =


g1 g2 . . . gN−1 gN
g2 . . . . . . gN g1
... . . . . . .

gN−1 gN g1
gN g1 g2 . . . gN−1




1
0
0
...
0



TheN×N Toeplitz (or circulant) system matrixH is fully
specified by N parameters
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The general case
Identification in the linear time-varying (LTV) case:

x(t) = δ(t) ⇒ r(t) =

∫
h(t, τ)δ(t− τ)dτ = h(t, t)

Not sufficient to identify the system

h(t, τ)

h(t, t)

t

τ
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Identification by using a Dirac train

Track evolution of LTV system by transmitting a Dirac train

x(t) =

∞∑
`=−∞

δ(t− `t0)

Corresponding output signal is

r(t) =
∞∑

`=−∞
h(t, t− `t0)
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Identification by using a Dirac train cont’d

t

τ

τ0

h(t, t)
h(t, t− t0)

h(t, t− 2t0)

τ0

−τ0
t0 2t0 ν

τ
SH(τ, ν)

τ0

−τ0

tt0−τ0
τ0

no overlap if
t0 ≥ 2τ0

h(t, t) h(t, t− t0) h(t, t− 2t0)
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t

τ

τ0
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t0 2t0

+ + +

+ + +

Assume that h(t, τ) is band-limited to [−ν0, ν0] with respect to t

ν
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Sufficient condition for identifiability

To recover h(t, τ) from r(t) it is sufficient to have

2τ0 ≤ t0
no overlap
betweenh(t, t−lt0)

≤ 1
2ν0

sampling theorem

H is identifiable if

4τ0ν0 ≤ 1

A(supp(SH))

SH(τ, ν)

ν0

τ0

−ν0

−τ0
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Underspread property and channel identification

Theorem [Kailath, 1963]
The setH , {H : supp(SH)⊆ [−τ0, τ0]× [−ν0, ν0]} is identifiable
if and only if

4τ0ν0 ≤ 1.

Underspread channels ⇒ A(supp(SH)) ≤ 1

Overspread channels ⇒ A(supp(SH)) > 1
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Practical systems are often “sparse”

Underwater acoustic communication channels [Eggen, 1997]

ν[Hz]

τ
[m

se
c]

−5 10
0

30

ν[Hz]
τ

[m
se

c]

−0.5 0.5
4

12

14 / 31



Sparse spreading function in mobile communications
O

ν

τ SH(τ, ν)
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General support area for SH

support area
may be� 1

ν

τ

General support area [Bello 1969; Pfander & Walnut 2006]
HM ,{H : supp(SH)⊆M} is identifiable if and only ifA(M) ≤ 1.

But support area needs to be known!
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Counting signal space dimensions [Kailath, 1963]

Input signal has bandwidth 2W

Output signal observed over an interval of length 2D

Use the 2WT -Theorem [Landau, Pollak, Slepian, 1961-62]
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Counting signal space dimensions cont’d

=r(t)
{
x
(
t− m

2W

)
ej2π

l
2D

t
}

SH
(
m
2W

, l
2D

)

4WD

4WD · 4τ0ν0 0
0
0
∗
∗
∗
0
0
0
∗
∗
∗

=

4WD {
x
(
t− m

2W

)
ej2π

l
2D

t
}

4WD · A(supp(SH))

∗
∗
∗
∗
∗
∗

ν0

τ0

−ν0

−τ0

Identification: 4WD ≥ 4WD · A(supp(SH)) ⇒ A(supp(SH)) ≤ 1
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Unknown support in ν direction only

t

τ

τ0

h(t, t) h(t, t− t0)h(t, t− 2t0)

τ0

−τ0
t0 2t0ν

τ supp(SH)

SH(τ, ν) is a “sparse” multi-band signal as a function of ν
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An excursion into sampling of
(sparse) multi-band signals



Sampling of multi-band signals
Spectrum has sparse support in [−f0, f0]

−f0 f0

2-fold undersampling: fs = f0

−f0 f0

4-fold undersampling: fs = f0/2

−f0 f0
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Landau’s multi-band sampling theorem

Spectral occupancy T ∈ [−f0, f0]

Sampling set
P = {tn} → {x(tn)} −f0 f0

[Landau, 1967]: To reconstruct stably need

D−(P) = lim
r→∞

inf
t∈R

|P ∩ [t, t+ r]|
r

≥ |T |

D−(P): lower Beurling density

There exists a stable universal sampling set P with
D−(P) = |T | [Venkataramani & Bresler, 2001]
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Unknown spectral support set

Consider the set of all signals with |spectral support| ≤ C

f

X(f)

1
T

1
TL

Multicoset sampling [Bresler, Feng, 1996,...]

x(t) T
2T
...

KT

TL

y1[m]

y2[m]

yK [m]

Overall sampling
rate:

D−(P) =
K

TL
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A stable universal sampling set

Yk(f) = F{yk[m]} =
∑
m∈Z

X
(
f +

m

TL

)
ej2π

mk
L , f ∈ [0, 1/(TL))

Y1(f)
...

YK(f)

 =

 FH


︸ ︷︷ ︸

K×L, K≤L


...



X(f)

f1
T

1
TL

23 / 31



A stable universal sampling set P with D−(P) = 2C

Y1(f)
...

YK(f)


︸ ︷︷ ︸

y(f)

=

 FH


︸ ︷︷ ︸

K×L, K≤L


...


︸ ︷︷ ︸
x(f)

EveryK ×K submatrix of FH has full rank

No two different x(f) can map to the same y(f) if
D−(P) ≥ 2×(Landau rate)

Spectrum-blind sampling entails a factor-of-two penalty in the
sampling rate
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Back to operator identification



Unknown support in τ or ν direction only

Unknown support in
ν-direction only

ν

τ supp(SH)

Unknown support in
τ -direction only

supp(SH)

ν

τ

How do we account for unknown support in τ and ν
concurrently?
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Main results [Heckel and HB, 2011]

X (∆) = {H : A(supp(SH)) ≤ ∆}

Example: H1,H2 ∈ X (∆)

ν

τ
supp(SH1)

supp(SH2)

A � 1

The set X (∆) is identifiable if and only if ∆ ≤ 1/2.

Almost all H ∈ X (∆) can be identified if ∆ < 1.

⇒ There is no penalty for not knowing supp(SH) upfront!
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Sufficiency of ∆ ≤ 1/2

Probing signal: Periodic weighted Dirac train

x(t) =

t0

c0

T

c1

TL

c0

c1

· · ·

Reduce problem to solution of (continuum of) linear system
of equations where SH is the unknown
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Sufficiency of ∆ ≤ 1/2

Approximate supp(SH) by rect-
angles of area 1/L:

ν

τ

1
TL

T

νmax

τmax

ν

τ

Zak transform [Janssen, 1988] of r(t) = (Hx)(t):

Zr(t, f) ,
∑
m∈Z

r(t−mTL)ej2πmTLf
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Sufficiency of ∆ ≤ 1/2 cont’d

Zr(t, f)
t

f
1
TL

TL

T

z1(t, f)
...

zL(t, f)

 =

 Ac


︸ ︷︷ ︸

L×L2


...



ν

τ

1
TL

T

1
T

TL

Ac: Time-frequency translates of weighting sequence c
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A continuum of compressed sensing problems

z1(t, f)
...

zL(t, f)


︸ ︷︷ ︸

z(t,f)

=

 Ac


︸ ︷︷ ︸

L×L2


...


︸ ︷︷ ︸
s(t,f)

, (t, f) ∈ U
f

t

1
TL

T
U

By [Lawrence et al. 2005], there exists {c0, ..., cL−1} such that
every L× L submatrix of Ac has full rank

No two different s(t, f) can map to the same z(t, f) if
‖s(t, f)‖0 ≤ L

2 , i.e., if ∆ ≤ L
2

1
L = 1

2

30 / 31



A continuum of compressed sensing problems

z1(t, f)
...

zL(t, f)


︸ ︷︷ ︸

z(t,f)

=

 Ac


︸ ︷︷ ︸

L×L2


...


︸ ︷︷ ︸
s(t,f)

, (t, f) ∈ U
f

t

1
TL

T
U

By [Lawrence et al. 2005], there exists {c0, ..., cL−1} such that
every L× L submatrix of Ac has full rank

No two different s(t, f) can map to the same z(t, f) if
‖s(t, f)‖0 ≤ L

2 , i.e., if ∆ ≤ L
2

1
L = 1

2

30 / 31



A continuum of compressed sensing problems

z1(t, f)
...

zL(t, f)


︸ ︷︷ ︸

z(t,f)

=

 Ac


︸ ︷︷ ︸

L×L2


...


︸ ︷︷ ︸
s(t,f)

, (t, f) ∈ U
f

t

1
TL

T
U

By [Lawrence et al. 2005], there exists {c0, ..., cL−1} such that
every L× L submatrix of Ac has full rank

No two different s(t, f) can map to the same z(t, f) if
‖s(t, f)‖0 ≤ L

2 , i.e., if ∆ ≤ L
2

1
L = 1

2

30 / 31



Eliminating the factor of two penalty

There is no penalty for not knowing supp(SH) upfront

z1(t, f)
...

zL(t, f)

 =

 Ac




...



Can identify supp(SH) if dimension of subspace spanned by
s(t1, f1), s(t2, f2), ... is sufficiently large

MUSIC [Schmidt, 1986] or ESPRIT [Paulraj et al., 1985] provably
recover SH whenA(supp(SH)) < 1
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Thank you


