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Abstract—In this paper, we address the energy efficiency
maximization problem for a distributed passive radar system,
with application in signal classification. Two energy efficiency
maximization strategies are studied. Firstly, the total power
consumption of the network is minimized, while maintaining
a required classification quality. We show that the resulting
optimization problem has a similar solution structure to the
famous water-filling algorithm and can be obtained analytically.
Secondly, the energy efficiency of the network is viewed as the
ratio of the observed useful information to the total energy
consumption of the network for each estimation process. The
optimal solution for the latter case is achieved by converting
the original problem into an iterative convex feasibility check
with a guaranteed convergence to optimality. Finally, the optimal
behavior of the defined system in terms of energy efficiency is
examined with respect to different system parameters and design
approaches by performing extensive numerical simulations.

I. INTRODUCTION

Sensor networks are nowadays more and more applied in
various fields. Their importance is growing since the tech-
nological proceedings permit the development of evermore
smaller sized sensor nodes (SNs). A decreased size of SNs
enables in turn the realization of high-density sensor networks
with a large number of nodes. This is associated with more
demand for electrical energy, which is consumed by all SNs.
In this way, a smart power allocation in sensor networks
receives more attention than ever. Many different approaches
are proposed by scientists for special use cases. For the
‘IceCube Neutrino Observatory’, see [1], the publications [2]
and [3] provide an optimal solution for the power allocation
problem in closed-form. This solution is afterwards extended
with a fast algorithm in [4]. In case of active radars, the power
allocation in sensor networks is investigated for the region of
high signal-to-noise ratio in [5] and then in [6], for the general
noise conditions. Other approaches like [7] explicitly try to
maximize the lifetime of a battery powered sensor network
while in [8] the complexity of algorithms for an optimal sensor
selection is studied.

Contribution: As the first contribution, we apply an accu-
rate model for the network power consumption which incorpo-
rates important parts of power loss in our system. Afterwards
the corresponding optimization problem, to minimize the total
power consumption while fulfilling a given estimation quality,
is formulated and converted into a convex form using the re-
sults of [2], and [4]. We then show that the KarushKuhnTucker
(KKT) conditions of optimality results in a solution algorithm
with water-filling (WF) structure which provides an analytic
optimal solution. In the next step, as another energy-efficiency

maximization approach, the ratio of the observed useful in-
formation to the total energy consumption in the network is
maximized following a convex optimization framework. In the
end, numerical simulations reveal important characteristics of
the system behavior in the sense of energy efficiency.

Paper Organization: The remaining parts of the paper
is organized as follows. In Section II, the system model is
defined. Our energy efficiency maximization approaches are
then presented in Sections III and IV. In Section V we present
the numerical simulation results. We conclude this paper by
summarizing the main results in Section VI.

II. SYSTEM MODEL

We investigate a network of K amplify-and-forward (AF)
passive sensor nodes (SNs), cooperating to achieve a single
global observation via a fusion center (FC). Both communi-
cation and sensing channels (Rayleigh frequency-flat fading)
are assumed to be wireless and static during the observation
process. The final goal of each observation process is to
classify (or detect) a target signal r ∈ C. Each observation
process can be segmented into three parts: sensing process,
communication process and information fusion. The detailed
description of the system function is presented in [2, Section
II].

A. Operation of SNs

If a target signal r ∈ C is present, each SN receives and
amplifies the incoming signal using an amplification coefficient
uk ∈ C. The communication with FC is performed by using
orthogonal waveforms for each SN so that data from different
SNs can be separated and processed in FC. The process of
each SN can be described as

xk := (r · gk +mk)uk (1)

and

Xk := E{|xk|2} = |uk|2
(
R|gk|2 +Mk

)
, R := E{|r|2},

(2)

where E{·} represents mathematical expectation. The sensing
channel coefficient, communication signal and its power from
the SN with index k is respectively denoted by gk ∈ C, xk ∈ C

and Xk. The additive white Gaussian noise (AWGN) on the
sensing process and its variance are respectively denoted as
mk ∈ C and Mk. The function of each SN is limited by a
maximum allowed individual average power consumption. The
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power consumption model of each SN as well as the corre-
sponding limit will be discussed in more details in Subsection
II.C.

B. Fusion Center

The transmitted signal from each SN passes through the
communication channel, with coefficients hk ∈ C, and arrives
at the FC combined with an AWGN component nk ∈ C, with
variance Nk. A linear combination rule with weights vk ∈ C

is then applied at the FC to achieve an estimation, r̃, from the
observed target signal. This is described as

yk := (hkxk + nk) vk, (3)

and results in

r̃ :=
K∑

k=1

yk = r
K∑

k=1

gkukhkvk +
K∑

k=1

(mkukhk + nk) vk.

(4)

Although linear processing and fusion strategies are not nec-
essarily optimal, they are very simple and facilitate an analytic
solution approach.

C. Power Consumption

In reality, the desired transmit power of each SN, is not
the only part of the consumed power. For realistic modeling
of the consumed power in each node, we should as well
incorporate the dissipation power, and the operating power of
the transmit and receiver chains. A detailed elaboration on the
consumption of the involved elements can be found in [9].
The consumed power at each SN can be hence modeled with
a good approximation as

Pk = Pk,min + Pk,diss +Xk, Pk,diss ≈ ηkXk,

⇒ Pk ≈ Pk,min + ηk
′ ·Xk, ηk

′ := 1 + ηk, (5)

where Pk represents the total consumed power in the node k
and Pk,min represents the minimum required power to keep the
node alive. The dissipation power (mainly at power amplifiers),
which is proportional to the actual transmit power is denoted
as Pk,diss where ηk ∈ R

+ is the loss factor, relating the
dissipation power to the actual transmit power from the SN.
In order to limit the average power consumption of each node,
we define

Pk ≤ Pk,max ⇔ Xk ≤ Xk,max, (6)

where Pk,max represents the maximum average
power consumption for SN with index k, and
Xk,max := (Pk,max − Pk,min) /η

′
k.

D. Remarks

In the present work, we assume the availability of perfect
channel information for both sensing and communication chan-
nels. In general, it is rather difficult to estimate the sensing
channel in an accurate way unless the channel has a highly
stationary nature (e.g., [1]). Hence, for scenarios where the
sensing channel is not stationary, the results of this paper can
be treated as theoretical limits. In the following parts of this
paper, we aim at providing energy-efficient designs of the
system parameters. Table 1 presents the used notations for
different signals and system parameters.

TABLE I: Used symbols and notations

Notation Description

K number of all SNs

r, R target (reference) signal and its power

r̃ the estimate of r

gk, hk complex-valued sensing and communication channel coefficients

mk, nk complex-valued zero-mean AWGN at each SN and at FC

Mk , Nk variances of mk and nk

uk, vk complex-valued amplification factors and fusion weights

Xk communication power of kth SN

Pk, Pk,max consumed power in a SN and its maximum allowed value

Pk,min minimum required power to keep the SN in its operational region

Pk,diss dissipated power

ηk the loss factor, relating the actual transmit power to Pk,diss

FK the index-set of all K nodes

K0 the index-set of all inactive nodes

Ksat the index-set of all nodes operating with maximum power

K the index-set of all active nodes (not saturated and not inactive)

III. MINIMUM POWER CONSUMPTION DESIGN FOR A

REQUIRED ESTIMATION QUALITY

In this section we provide an optimal analytic design
with minimum power consumption while a required estimation
quality is fulfilled.

A. Optimization problem

Our goal is to minimize the total power consumption of the
network, while satisfying an application-dependent required
estimation quality. In order to evaluate the estimation quality,
we choose the mean squared error (MSE) for the unbiased
class of estimators as our criteria which can be defined as

V := E{|r̃ − r|2} =
K∑

k=1

|vk|2
(
Mk|uk|2|hk|2 +Nk

)
, (7)

where the unbiased estimation condition, recalling (4), can be
formulated as

K∑
k=1

gkhkukvk = 1. (8)

By incorporating the defined constraint on the average power
consumption for each SN, we formulate our optimization
problem as

min
uk,vk, k∈FK

∑
k∈FK

Pk

s.t.
∑
k∈FK

gkhkukvk = 1, V ≤ Vmax,

Pk ≤ Pk,max, ∀k ∈ Fk, (9)

where Vmax is the maximum tolerable MSE in our estimation
process, corresponding to a required estimation quality.

B. Minimum Power Consumption Design

An optimization problem to maximize the estimation qual-
ity with simplified power consumption models is studied in
[2] and [4], with constraints on total and individual transmit
power at the SNs. We should note that in the special case
where ηk = 0, ∀k ∈ FK , our problem can be converted into
an equivalent form of the studied MSE minimization problem.
Nevertheless, the more accurate power consumption model (5),
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changes the nature of our problem in the general case. In the
first step, we summarize useful results from [2] and [4] in the
following lemma, which reveals a direct relation between the
transmit power at SNs and the achievable estimation quality
at the FC.

Lemma 1: Let X1, X2, · · · , XK ∈ R
+ be the transmit

power values from the SNs. The minimum achievable MSE,
corresponding to the highest estimation quality, for the defined
system (1)-(8) is

Vmin =

( ∑
k∈FK

Jk (Xk) ,

)−1

, Jk (Xk) :=
Xkα

2
k

Xk + β2
k

, (10)

where αk :=
√

|gk|2
Mk

and βk :=
√

Nk(R|gk|2+Mk)
Mk|hk|2 . The

corresponding values for uk, vk, k ∈ FK that achieve this
quality can be obtained as

uk =

√
Xk

R|gk|2 +M
, (11)

vk = Vmin
(gkhk)

∗ · uk

Mku2
k|hk|2 +Nk

, (12)

where (·)∗ represents mathematical conjugation, Vmin is the
minimum achievable MSE for the given transmit power values,
and Jk(Xk) can be interpreted as the contribution function of
each SN to the resulting estimation quality.

Proof: Please see [4, eq. (11)-(21)].

The importance of the above Lemma lies in the fact that it
provides a direct relation between the consumed power at the
SNs, and the minimum achievable MSE (estimation quality).
This simplifies our problem into finding a set of transmit
powers that result in minimum total consumed power, while
the estimation quality constraint is fulfilled:

min
Xk∈R,k∈FK

∑
k∈FK

Pk,min +
∑
k∈FK

ηk
′Xk, (13a)

s.t.
∑
k∈FK

Jk(Xk) ≥ V −1
max, (13b)

0 ≤ Xk ≤ Xk,max, k ∈ FK , (13c)

where (13b) represents a sub-set of transmit power values that
can achieve the required estimation quality according to (10).

Lemma 2: The optimization problem (13) is convex.

Proof: It can be easily verified that all contribution
functions, Jk(Xk), k ∈ FK , are increasing and concave with
respect to Xk as it is shown in [4, eq. (39)-(40)]. As a result,
(13b) constitutes a convex feasible set over Xk, k ∈ FK , while
the objective function is affine and the power constraint (13c)
is the intersection of 2K half-spaces, and hence convex [10].
This concludes the convex nature of our problem.

It is worth mentioning that for the special case
ηk

′ = 1, ∀ k ∈ FK , above problem is convertible into an
equivalent form of the previously investigated problem [4,
eq. (22)]. Nevertheless, in the general case the problem holds
a different structure and the arguments in [4, Lemma. 3-5] do
not hold. In order to provide a general solution, we study the

well-known KKT conditions of optimality, see [10], for (13).
The corresponding Lagrangian function can be written as

L (Xk, λ, γk, ζk) :=
∑
k∈FK

(Pk,min + ηk
′Xk)−

∑
k∈FK

γkXk

+ λ

(
V −1
max −

∑
k∈FK

Jk(Xk)

)
+

∑
k∈FK

ζk (Xk −Xk,max) ,

(14)

where λ, γk, and ζk represent slack variables. The KKT
optimality conditions can be subsequently expressed as

γ�
k ≥ 0, k ∈ FK , (15a)

ζ�k ≥ 0, k ∈ FK , (15b)

γ�
kX

�
k = 0, k ∈ FK , (15c)

ζ�k (X
�
k −Xk,max) = 0, k ∈ FK , (15d)

λ�

(
V −1
max −

∑
k∈FK

Jk(X
�
k)

)
= 0, λ� ≥ 0, (15e)

0 ≤ X�
k ≤ Xk,max, k ∈ FK , (15f)∑
k∈FK

Jk(X
�
k) ≥ V −1

max, (15g)

and
∂

∂Xk
L
(
X�

k , λ
�, γ�

k , ζ
�
k

)
= 0 ⇔

ηk
′ − λ�J

′
k(X

�
k)− γ�

k + ζ�k = 0 ⇔
J

′
k(X

�
k)

ηk′
=

1

λ�

(
1 +

ζ�k − γ�
k

ηk′

)
, (15h)

where Jk
′(Xk) :=

∂
∂Xk

Jk(Xk), and (·)� indicates optimality. It
is important to note that due to the convex nature of (13) the
KKT conditions are the necessary and sufficient conditions for
the global optimality of X�

k , k ∈ FK , and the slack variables
λ� and γ�

k , ζ
�
k k ∈ FK . In the following, we provide few

observations on the conditions (15a)-(15h) which lead us to
the final solution.

Lemma 3: The MSE constraint (13b) is active in the
optimality.

Proof: It is easy to verify that J
′
k(Xk) is continuous and

bounded within the feasible region of Xk as

J
′
k(Xk) =

∂

∂Xk
Jk(Xk) =

α2
kβ

2
k

(Xk + β2
k)

2 , (16)

due to (10). As the result we have λ� 	= 0 from (15h)
which leads to an active MSE constraint according to the
complementary slackness condition (15e).

As it is apparent from (15h), (15c) and (15d), the optimality
conditions can be separately studied for three possibilities
regarding the optimal allocated power at each SN. At the
optimality, a SN can be allocated either with no power (inactive
status, X�

k = 0), with maximum allowed power (saturated
status, X�

k = Xk,max) or with a power between these two
extreme cases (active status, 0 < X�

k < Xk,max). The
explicit optimality conditions for the aforementioned cases are
discussed in the following lemma. We respectively denote the
index set of all nodes with active, inactive, and saturated status
by K,K0 and Ksat hereinafter.
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Lemma 4: The following conditional arguments hold at the
optimality:

X�
k = 0 ⇔ J

′
k(0)/ηk

′ ≤ 1/λ�, (17a)

X�
k = Xk,max ⇔ J

′
k(Xk,max)/ηk

′ ≥ 1/λ�, (17b)

0 < X�
k < Xk,max ⇒ J

′
k(X

�
k)/ηk

′ = 1/λ�. (17c)

In order to emphasize the special role of 1/λ� in (17a)-(17c)
we name it as water-level hereinafter.

Proof: The proof is achieved by studying the derived KKT
conditions for each of the (17a), (17b), and (17c), individually.

Proof to (17a): If X�
k = 0 then we have ζ�k = 0

due to (15d) and γ�
k ≥ 0 due to (15a). This concludes

J
′
k(0)/ηk

′ = 1
λ� (1− γ�

k/ηk
′) ≤ 1/λ� according to (15h). The

proof for the reverse direction is achieved via contradiction: If
J

′
k(0)/ηk

′ ≤ 1/λ� and X�
k 	= 0, then X�

k > 0 due to (15f).

Then we have J
′
k(X

�
k)/ηk

′ < 1/λ� and hence ζ�k − γ�
k < 0

due to the decreasing nature of J
′
k(Xk) in Xk, see (16). This

concludes γ�
k > 0 and consequently X�

k = 0 from (15c).

Proof to (17b): Similar to that of (17a), by exchanging the
role of (15a) with (15b) and the role of (15c) with (15d).

Proof to (17c): If 0 < X�
k < Xk,max we have ζ�k = γ�

k = 0
from (15c) and (15d). The identity J

′
k(X

�
k)/ηk

′ = 1/λ� can
be then concluded from (15h).

The importance of Lemma 4 lies in the fact that it defines
clear borders, on how the water-level, i.e., value of 1

λ� , is
related to the classification of the node as active, inactive, or
saturated. As a result, for a correct classification of the nodes,
the water-level is positioned such that

max
l∈K0

{
J

′
l (0)

η
′
l

}
≤ 1

λ�
≤ min

k∈Ksat

{
J

′
k(Xk,max)

ηk′

}
. (18)

As it reasonably arises, our solution strategy is to choose
1
λ� as a search variable, and use the results of Lemma 4 to
identify the correct status for all SNs. By obtaining the defined
borders in (17a) and (17b) and sorting them as an increasing
sequence, see Fig.1, we obtain 2K +1 incremental regions to
look for the optimal water-level value. Nevertheless in order to
construct our search procedure, we still need an explicit criteria
to determine if a value of 1

λ� fits into a selected region. By
incorporating the results of the Lemma 3 and 4 we formulate
the active MSE constraint as∑

k∈K0

Jk(0)

︸ ︷︷ ︸
=0

+
∑

k∈Ksat

Jk(Xk,max) +
∑
k∈K

Jk(X
�
k) = V −1

max.

(19)

On the other hand using the identities (10) and (16) we obtain

Jk(X
�
k) = α2

k − α2
kβ

2
k

X�
k + β2

k

= α2
k −

√
J

′
k(X

�
k)

ηk′
·
√
ηk′ · αkβk,

(20)

Fig. 1: We obtain 2K + 1 incremental regions in order
to search for the value of water-level, i.e., 1

λ� , where

b1 ≤ · · · ≤ b2K ← sort
{
J

′
k(0)/ηk

′, J
′
k(Xk,max)/ηk

′, ∀k ∈ FK

}
.

which due to (17c), for the nodes with active status results in

Jk(X
�
k) = α2

k − αkβk

√
ηk′ ·

√
1

λ�
, k ∈ K,

X�
k = αkβk

√
λ�

ηk′
− β2

k, k ∈ K. (21)

From (21) together with (19) we conclude

1√
λ�

=

∑
k∈K

α2
k +

∑
k∈Ksat

Jk(Xk,max)− V −1
max∑

k∈K
αkβk

√
ηk′

. (22)

It is worth mentioning that the nominator in (22) is always
positive for any V −1

max ≤ ∑
k∈FK

Jk(Xk,max) which is the

feasibility condition for a required estimation quality, V −1
max.

The significance of (22) is the fact that it provides an explicit
relation between the status of the nodes (active, inactive, and
saturated) and the resulting value for 1

λ� . Algorithm 1 defines
a procedure which finally provides optimal transmit power
values, and consequently, the optimal system parameters,
uk, vk, k ∈ FK , see (11) and (12).

C. Algorithm description

The procedure in Algorithm 1 is based on a bi-section
search on the obtained incremental regions for the position
of 1

λ� , see Fig. 1. For any selected region, the correct status
of all nodes are determined according to Lemma 4. On the
other hand, for the obtained status of SNs we achieve the
corresponding value of water-level, i.e., 1

λ� , via (22) which
indicates whether the selected region is correct, too big or
too small. The number of required iterations for obtaining
the correct region is upper-bounded by log2 (2K + 1) + 1,
following the bi-section search steps. At the end, the optimal
value of water-level, along with the optimal transmit power
values and the subsets K,K0 and Ksat are determined.

IV. OPTIMAL ENERGY EFFICIENT DESIGN

In the last Section, we have proposed a minimum energy
consumption design for scenarios, where a required minimum
estimation quality is compulsory. In this part, we investigate
a more general energy efficiency criterion and focus on the
maximum network throughput per energy unit. Since the
behavior of the target and the properties of its signal r are
fixed and not adjustable, we aim at maximizing the ratio of
the theoretical channel capacity of this specific sensor network
to its corresponding power consumption. This idea helps the
network to operate at the highest possible observation rate
with minimum energy. Since the received signal at the FC
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is determined with (4) and (8) by

r̃ = r +
K∑

k=1

(mkukhk + nk)vk = r + e , (23)

we can model the whole estimation process and the en-
tire sensor network by a discrete-time additive white noise
channel, where e ∼ N (0, V ) is the equivalent zero-mean
Gaussian noise. The Gaussian nature of e results from the
linear combination of multiple Gaussian random variables,
nk,mk, k ∈ FK with an overall effective variance of V ,
see (1)-(8). The minimum achievable variance of e has been
presented in connection with the average transmit power values
in Lemma 1, (10). The mutual information for such a channel
is obtained as

MI (r, r̃) = W log2

(
1 +

R

V

)
, (24)

where the values R, V are defined in (2) and (7), and W :=
1

Tob
, where Tob is the time period between two consequent

observation cycles in the network. It is important to note
that the above identity can be only achieved for a Gaussian
distribution of signal and error. In our scenario, while the
error is zero mean and Gaussian distributed for a given set
of channel coefficients, this is not generally the case for the
reference signal r. Hence we treat (24) as an approximation
and express our energy efficiency criteria as

EE : =
MI (r, r̃)∑

∈FK
Pk

=
W log2

(
1 +R · V −1

)∑
∈FK

Pk

=
W log2

(
1 +R ·∑k∈FK

Xkα
2
k

Xk+β2
k

)
∑

k∈FK
Pk,min +

∑
k∈FK

ηk′ ·Xk
(25)

where EE is the defined energy-efficiency metric which should
be maximized. The corresponding optimization problem can be
hence formulated as

max
Xk∈R,k∈FK

EE, s.t. 0 ≤ Xk ≤ Xk,max, k ∈ FK , (26)

or equivalently as

max
τ∈R, Xk∈R,k∈FK

τ

s.t. EE ≥ τ,

0 ≤ Xk ≤ Xk,max, k ∈ FK . (27)

By applying a bi-section search on the values of τ , our problem
turns into the following convex feasibility check for each value
of τ

find Xk, k ∈ FK ,

s.t. W log2
(
1 +R · V −1

)
− τ ·

∑
k∈FK

Pk ≥ 0, (28a)

0 ≤ Xk ≤ Xk,max, k ∈ FK . (28b)

This problem can be determined with certainty, and within a
polynomial time, using powerful numerical solvers [10]. To
observe the convex nature of (28) we note that the mutual in-
formation function, is a concave (logarithmic) composition of

the concave and non-decreasing function, i.e.,
∑

k∈FK

Xkα
2
k

Xk+β2
k

,

with respect to Xk, k ∈ FK . This concludes the concavity
of MI(·) function with respect to Xk, k ∈ FK according

to [10, Section 3.2.4], and consequently the convexity of the
feasible set corresponding to (28a). Furthermore, the total
power consumption of the network is an affine combination
of Xk, k ∈ FK . This results in the convexity of the feasible
set of (28), as an intersection of multiple convex sets defined
by (28a) and (28b). The feasibility of (28) determines in
each step whether the chosen τ is too large, corresponding
to a non-achievable energy-efficiency value, or too small. In
order to confine the bi-section search region, we observe that
EE is necessarily non-negative on the feasible domain of
Xk, k ∈ FK . Furthermore, due to the increasing nature of
the Jk(·) function, we achieve the following bounds for the
value of EE

0 ≤ EE ≤
W log2

(
1 +R ·

(∑
k∈FK

Xk,maxα
2
k

Xk,max+β2
k
,
))

∑
k∈FK

Pk,min
. (29)

Both bounds will be later used as the high and low ends of
our bi-section search. The iterations of bi-section search over
τ in (28) must be continued until a desired solution accuracy
is achieved. In the next section we study the behavior of the
defined optimal energy efficient design with respect to different
system variables via numerical simulations.

Algorithm 1 A water-filling algorithm to achieve an optimal energy-
efficient design for a required estimation quality.

1: b1 ≤ · · · ≤ b2K ← sort
{
J

′
k(0)/ηk

′, J
′
k(Xk,max)/ηk

′, ∀k ∈ FK

}

� see (16)
2: imin ← 1, imax ← 2K + 1
3: repeat
4: i ← � imin+imax

2
�

5: K0 ←
{
k ∈ FK | bi ≥ J

′
k(0)/ηk

′
}

� see (17a)

6: Ksat ←
{
k ∈ FK | bi+1 ≤ J

′
k(Xk,max)/ηk

′
}

� see (17b)

7: K ← FK \ (Ksat ∪K0)
8: Ṽremain ← V −1

max −∑
k∈Ksat

Jk(Xk,max)
9: if K = ∅ then

10: if Ṽremain = 0 then
11: break
12: else if Ṽremain < 0 then
13: imin ← i
14: else if Ṽremain > 0 then
15: imax ← i
16: end if
17: else

18: λ� ←
⎛
⎝ ∑

k∈K
αkβk

√
ηk

′

V −1
max−

∑

k∈Ksat

Jk(Xk,max)−
∑

k∈K

α2
k

⎞
⎠

2

� see (22)

19: if 1
λ� > bi+1 or V −1

max <
∑

k∈Ksat
Jk(Xk,max) then

20: imin ← i
21: else
22: imax ← i
23: end if
24: end if
25: until

(
1
λ� > bi and 1

λ� < bi+1

)

26: X�
k ← αkβk

√
λ�

ηk
′ − β2

k, k ∈ K � see (21)

27: return (Ksat,K0, X
�
k , k ∈ K)

V. SIMULATION RESULTS

In this part we investigate the optimal behavior of the
proposed energy efficient designs via Monte-Carlo simula-
tions. We assume that all channels are accurately known
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Fig. 2: The optimal energy efficiency, EE� [bits/Joule] and the
corresponding power consumption with respect to Pmin [Watt] and η.
Significant effect of the power loss parameters on EE� is observable.
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Fig. 3: EE [bits/Joule] vs. maximum tolerable MSE, Vmax, using
the minimum power consumption design. The single points represent
the maximum achievable EE for the system, see Section IV. Different
required estimation qualities result in significantly different EE.

and follow the uncorrelated Rayleigh flat-fading model. We
apply the proposed designs in Section III, regarding the power
minimization with a given estimation quality constraint, and
the energy efficiency (EE) maximization in Section IV, and
average our results over several channel realizations. Unless
stated otherwise, we use the following values as the default
system parameters: Nk = N = 1 [Watt], Mk = M =
1 [Watt], ηk = η = 1, Pk,max = Pmax = +∞, Pk,min =
Pmin = 1 [Watt], K = 10, E{|gk|2} = E{|hk|2} =
1, ∀k ∈ FK , Tob = 1 [sec]. In Fig. 2 the result of the energy
efficient design in Section IV is illustrated while in Fig. 4 the
minimum system power consumption is depicted for different
estimation qualities and system noise levels. As it is clear from
Fig. 2, the power loss parameter plays a significant role on the
optimal EE of the system and the corresponding total power
consumption at the optimum point. In Fig. 3, ’EE−Opt’ and
’Ptot−Min’ represent the proposed method in Section IV and
the minimum power consumption design, respectively. While
the proposed method in Section IV provides a single optimal
operational point for the system, the resulting EE of the power
minimization method in Section III is significantly variable
for different required Vmax. It is clear that the two methods
converge for an optimal single point of Vmax, as it can be
observed from Fig. 3.

VI. CONCLUSION

In order to achieve an energy efficient function in a
distributed passive radar system, nodes with smaller power

100 101 102
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Fig. 4: The minimum required power consumption Ptot [Watt],
Ptot :=

∑
Pk, for different required estimation qualities, Vmax.

K = 15, Pmin = 0 [Watt].

loss and better communication and sensing channel should be
allocated with more power. In this work we have studied the
optimal power allocation in such a system, concerning energy
efficiency. Two separated approaches are considered. Firstly,
the total power consumption of the network is minimized
while satisfying a given estimation quality. In the second
approach, the efficiency of the system is maximized with no
constraint on the estimation quality. While both of the methods
aim at providing an energy efficient system operation, it is
shown that the solution has a different nature in each case.
The first approach, answers the question how can we fulfill
our requirements most energy-efficiently, while the second
approach studies what is the highest efficiency that can be
obtained for a given system.
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