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Abstract—In this paper, we consider a channel which is linear
over the interval [0, 1] and is censored to the left by zero and
to the right by one. Examples of this channel type are radio
frequency amplifiers which amplify only up to certain thresholds.
In the baseband, this channel is a model for censoring symbols
whenever they exceed given thresholds. One-bit quantization may
be seen as an extreme case when the right censoring bound
converges to the left one. Determining mutual information and
capacity of this channel is a fundamental information theoretic
problem which seems to be unsolved in general. One reason
seems to be that the output distribution has two mass points at
the bounds of the censoring interval and can be continuous within
the linear region. In this paper, we provide a compact formula
for mutual information of this channel. Furthermore, an upper
bound for the capacity of this channel is given. Finally, selected
numerical results for additive uniformly distributed and Gaussian
noise are presented to evaluate the accuracy of the bound.

I. INTRODUCTION AND MOTIVATION

A channel is called censored if a noisy input signal is
transmitted unaltered within certain bounds, and is clipped
to a maximum or minimum value whenever the bounds are
exceeded.Truncation should not be confused with censoring
data or distribution. In the first case data outside a certain
interval never occur while in the latter case data exceeding an
interval are mapped onto the corresponding interval boundary,
cf. [1]. To keep the formal apparatus low, in this paper we
consider censoring at 0 and 1, respectively, leading to the
function Q(z), described in (1) and illustrated in Fig. 1.

This channel may serve as an approximate model for a
nonlinear amplifier which is unable to amplify beyond certain
boundaries and in this case simply generates maximum or min-
imum possible power. Moreover, the peak-to-average power
ratio (PAPR) problem for orthogonal frequency-division mul-
tiplexing (OFDM) symbols may be analyzed by this approach,
if clipping of the signal is applied not to exceed the limits
of the system. Furthermore, if baseband signals, exceeding a
certain threshold, cannot be properly decoded but are returned
as threshold values, this model seems to be an appropriate
description.

Mutual information and the capacity of this channel are of
high interest from a practical and theoretical point of view,
since the censored channel is a valuable member for the class
of nonlinear channels, cf. [2]. However, mutual information
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Fig. 1: The system model: some real input X is subject to
additive noise W and is censored at 0 and 1 to yield output Y .

is not easily accessible and to the best knowledge of the
authors, there is neither a closed-form formula nor a systematic
evaluation of the censored channel available in the literature.
It is the main purpose of this paper to contribute for closing
this gap.

We derive a closed-form compact formula for the mutual
information of the censored channel. Determining capacity is
identified as a convex optimization problem, however, because
of iterated integrals involved, an explicit solution seems to be
out of reach. We hence deduce an upper bound for the capacity
of this channel. Finally, for the cases of additive Gaussian
and uniformly distributed noise selected numerical results are
presented in order to evaluate the accuracy of the bound and
to provide more insight.

II. CHANNEL MODEL

We consider an additive noise channel, not necessarily
Gaussian, although our concrete computational examples refer
to the uniformly distributed and Gaussian cases. The input
random variable X is assumed to be real-valued and is
governed by the cumulative distribution function (CDF) F (x).
The input is subject to additive random noise W with density
ϕ(w) and corresponding CDF Φ(w). X and W are assumed
to be stochastically independent. The noisy signal Z = X+W
is then censored at 0 and 1 by the function

Q(z) =


0, if z ≤ 0,

z, if 0 < z ≤ 1,

1, if z > 1 .

(1)

Hence, the output signal is represented as

Y = Q(X +W ). (2)

This channel model is depicted in Fig. 1.



In the following we aim at determining mutual information
of this channel which may be written as

I(X;Y ) = H(Y )−H(Y | X). (3)

H(Y ) and H(Y | X) denote the entropy of random variable
Y and the conditional entropy of Y given X , respectively.
These entropies are hard to determine since Y may have mass
points with positive probabilities at 0 and 1.

We will also frequently use the weighted self-information

ρ(q) = −q log q , q ≥ 0 , (4)

and the binary entropy function

h(p) = −p log p− (1− p) log(1− p)
= ρ(p) + ρ(1− p) , 0 ≤ p ≤ 1 ,

(5)

where the logarithm is of a general base. It is well known
that both ρ(q) and h(p) are strictly concave functions of their
arguments q and p.

III. ENTROPY OF A MIXTURE DISTRIBUTION

In general the entropy of some random variable Y with den-
sity g and with respect to some dominating σ-finite measure
µ on the real line may be written as

H(Y ) = −
∫
g(y) log g(y) dµ(y), (6)

see [3]. In the present case (2), however, we encounter a
mixture of a two-point discrete and a continuous distribution,
for which more must be said about the corresponding entropy,
cf. [4].

To briefly discuss this case, random variables U , V and B
are introduced. U is assumed to be absolutely-continuous with
Lebesgue density fc(u), and V to be discrete with countably
many support points vi, probabilities pi and discrete density
fd(v) = pi, whenever v = vi and fd(v) = 0, otherwise. B is a
Bernoulli distributed random variabel with P (B = 1) = α and
P (B = 0) = 1 − α. Furthermore, U, V,B are assumed to be
jointly stochastically independent. Then the random variable

Y = BU + (1−B)V

has density

g(y) = αfc(y) + (1− α)fd(y)

with respect to the measure µ = λ+χ, the sum of the Lebesgue
measure λ and the counting measure χ on the support points
of V .

From (6) it follows the identity

H(Y ) = −α
∫
fc(y) log fc(y) dy − α logα

− (1− α)
∑
i

pi log pi − (1− α) log(1− α)

= H(B) + αH(U) + (1− α)H(V ). (7)

The entropy of Y is hence a convex combination of the entropy
of U and V with proportion α, plus the additional uncertainty
introduced by switching random variable B, cf. [5, Thm. 3].

IV. MUTUAL INFORMATION OF THE CENSORED CHANNEL

The censored channel Y = Q(X + W ) with Q defined
by (1) is a typical example for a mixture of a continuous and
a discrete distribution. Let Z = X+W . Then the distribution
function of Y = Q(Z) is given by

P
(
Q(Z) ≤ z

)
=


0, if z < 0,

P (Z ≤ z), if 0 ≤ z ≤ 1,

1, if z > 1 .

(8)

If Z is a continuous random variable, which is the case
whenever the noise is and the interval [0, 1] is a subset of
its support, then Y has two singleton mass points at 0 and 1.

Since X and W are stochastically independent, the condi-
tional distribution function reads as

P
(
Q(X +W ) ≤ z | X = x

)
=


0, if z < 0,

P (W ≤ z − x), if 0 ≤ z ≤ 1,

1, if z > 1 .

(9)

To achieve a compact form for the mutual information of
the censored channel the following notation is used. Let f be
a general (Lebesgue) density. For x ∈ R define

`(f, x) =

∫ −x
−∞

f(u)du

α(f, x) =

∫ 1−x

−x
f(u)du

r(f, x) =

∫ ∞
1−x

f(u)du

Furthermore, let
G(f, x) = h

(
α(f, x)

)
− α(f, x)

∫ 1−x

−x

f(u)

α(f, x)
log

f(u)

α(f, x)
du

+
(
1− α(f, x)

)
h
( `(f, x)

1− α(f, x)

)
,

(10)

where h(p) denotes the binary entropy function (5).
By formula (7), equation (10) represents the entropy of the

mixture of two distributions, namely one with the density
1

α(f, x)
f(u), −x < u < 1− x,

and the other one by a two-point discrete distribution with
support {0, 1} and corresponding probabilities

`(f, x)

1− α(f, x)
and

r(f, x)

1− α(f, x)
.

The mixing parameter is α(f, x).
After some algebra an elegant and intuitively evident rep-

resentation of G(f, x) is achieved

G(f, x) =−
∫ 1−x

−x
f(u) log f(u) du

− `(f, x) log `(f, x)− r(f, x) log r(f, x)

=

∫ 1−x

−x
ρ
(
f(u)

)
du+ ρ

(
`(f, x)

)
+ ρ
(
r(f, x)

)
.

(11)



Note that G(f, x) is a concave function of density f for any
x ∈ R. This can be seen as follows.

It is well known that ρ(p) is a concave function of p ≥ 0.
Furthermore, `(f, x), r(f, x) and α(f, x) are linear functions
of f . Hence, for any two densities f and g and any λ ∈ [0, 1]
it holds that

G
(
λf + (1− λ)g, x

)
=

∫ 1−x

−x
ρ
(
λf(u) + (1− λ)g(u)

)
du

+ ρ
(
`
(
λf + (1− λ)g, x

))
+ ρ
(
r
(
λf + (1− λ)g, x

))
≥
∫ 1−x

−x

[
λρ
(
f(u)

)
+ (1− λ)ρ

(
g(u)

)]
du

+ λρ
(
`(f, x)

)
+ (1− λ)ρ

(
`(g, x)

)
+ λρ

(
r(f, x)

)
+ (1− λ)ρ

(
r(g, x)

)
= λG(f, x) + (1− λ)G(g, x),

showing concavity of G(f, x) as a function of f .
Turning back to channel model (2) and assuming Lebesgue

densities

fZ for input plus noise Z = X +W and
fW for noise only,

with the help of (10) the entropy and conditional entropy of
Y = Q(X +W ) can be written as

H(Y ) = G(fZ , 0), (12)
H(Y | X = x) = G(fW , x), (13)

H(Y | X) =

∫
G(fW , x) dF (x) . (14)

In summary, we have achieved a compact formula for the
mutual information of the censored channel Y = Q(X +W )
from (2), setting Z = X +W , as

I(X;Y ) = G(fZ , 0)−
∫
G(fW , x) dF (x)

= ρ

(∫ ∫ 0

−∞
fW (u− x)du dF (x)

)
−
∫
ρ

(∫ 0

−∞
fW (u− x)du

)
dF (x)

+ ρ

(∫ ∫ ∞
1

fW (u− x)du dF (x)

)
−
∫
ρ

(∫ ∞
1

fW (u− x)du

)
dF (x)

+

∫ 1

0

ρ

(∫
fW (u− x)dF (x)

)
du

−
∫ 1

0

∫
ρ
(
fW (u− x)

)
dF (x) du .

(15)

Since fZ(z) =
∫
fW (z − x) dF (x) is linear in F and

G(fZ , 0) is a concave function of fZ , mutual information
I(X;Y ) in (15) is a concave function of F . Thus, maximizing
mutual information over F leads to a convex optimization

problem. Achieving some explicit representation of the ca-
pacity seems to be an extremely hard variational problem.
Deriving sharp bounds and accurate approximations might be
possible by applying techniques used in [6] and [7].

Our next goal is to evaluate this formula for certain con-
crete cases and find simple upper and lower bounds for the
corresponding capacity.

V. BOUNDS

In this section we will determine an upper bound on H(Y )
from (12) and a lower bound on (14) so that by merging
both an upper bound on the mutual information is achieved.
Thereafter, by maximizing over the input distribution an upper
bound on the capacity is achieved.

We start from (12) and employ (11) at x = 0 to obtain

H(Y ) =−
∫ 0

−∞
fZ(u)du · log

∫ 0

−∞
fZ(u)du

−
∫ ∞

1

fZ(u)du · log

∫ ∞
1

fZ(u)du

−
∫ 1

0

fZ(u) log fZ(u)du

= + ρ

(∫ 0

−∞
fZ(u)du

)
+ ρ

(∫ ∞
1

fZ(u)du

)
+

∫ 1

0

ρ
(
fZ(u)

)
du

≤+ ρ

(∫ 0

−∞
fZ(u)du

)
+ ρ

(∫ ∞
1

fZ(u)du

)
+ ρ

(∫ 1

0

fZ(u)du

)
= + ρ(p`) + ρ(pr) + ρ(pm),

(16)

say, with p` + pr + pm = 1. The inequality follows from the
concavity of ρ.

In order to find a global upper bound independent of fZ we
solve the optimization problem

max
p`,pr,pm

ρ(p`) + ρ(pr) + ρ(pm)

subject to p` + pr + pm = 1.
(17)

This is a convex optimization problem. The objective function
is even Schur-convex, cf. [8], such that the solution is given
by

p` = pr = pm =
1

3

Hence,

H(Y ) ≤ 3ρ(1/3) = log 3, (18)

with equality if and only if fZ(z) = 1/3 for z ∈ [0, 1] and∫ 0

−∞ fZ(z) dz =
∫∞

1
fZ(z) dz = 1/3.

Now for the conditional entropy (14) the following chain of



inequalities holds

H(Y | X)

=

∫ [
+ρ

(∫ −x
−∞

fW (u) du

)
+ ρ

(∫ ∞
1−x

fW (u) du

)
+

∫ 1−x

−x
ρ
(
fW (u)

)
du

]
dF (x)

≥
∫ ∫ 1−x

−x
ρ
(
fW (u)

)
du dF (x)

=

∫ ∫ 1

0

ρ
(
fW (v − x)

)
dv dF (x)

= −
∫ ∫ 1

0

fW (v − x) log fW (v − x) dv dF (x)

≥ −
∫ ∫ 1

0

fW (u− x)du log

[ ∫ 1

0
f2
W (v − x)dv∫ 1

0
fW (u− x)du

]
dF (x)

≥ −ρ
(
e−1
) ∫ ∫ 1

0

f2
W (v − x) dv dF (x),

(19)

where e denotes the Euler’s number. Equality in this chain can
never be achieved. The first inequality is due to the positivity
of the first two expressions, while the second inequality is a
consequence of the Jensen inequality [9]. The third inequality
is because of the relation p log q

p ≤ qρ(e−1) for any positive
numbers p and q.

In summary, we obtain the following upper bound for the
mutual information of the censored channel (2).

I(X;Y ) = H(Y )−H(Y | X)

≤ log 3 + ρ
(
e−1
) ∫ ∫ 1

0

f2
W (v − x) dv dF (x)

(20)

Equation (20) still depends on the input distribution F . An up-
per bound for the capacity of the censored channel with noise
density fW is obtained by maximizing over F as given by

C = max
F

I(X;Y )

≤ log 3 + ρ
(
e−1
)

max
F

∫ ∫ 1

0

f2
W (v − x) dv dF (x)

≤ log 3 + ρ
(
e−1
) ∫

max
x

{∫ 1

0

f2
W (v − x) dv

}
dF (x)

= log 3 + ρ
(
e−1
)

max
x

{∫ 1

0

f2
W (v − x) dv

}
.

(21)

The integral term in the last line above may be interpreted as
the maximum energy/power of the noise density that can be
found in a sliding window of length 1, or equivalently, the
maximum of the autocorrelation function of the censored noise
density at 0. An important insight revealed by this simple
upper bound is that the capacity of the censored channel
is limited for any signal energy (power)

∫
x2 dF (x). This

means that increasing signal energy increases the capacity
only up to a specific finite value. Furthermore, as is expected,
capacity decreases with increasing the noise variance.
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Fig. 2: Uniformly distributed noise.

VI. NUMERICAL INVESTIGATIONS

In order to provide more insight and verify the quality
of the upper bound (21), we numerically maximize mutual
information (15) over the input distribution F . Note that a
maximization of I(X;Y ) over specific classes of input distri-
butions only provides a lower bound for the capacity. Hence,
in all following results we will observe an upper bound (blue
lines) by evaluation of (21) and a lower bound (red curves) by
numerical maximization of (15) on the unknown capacity. It
should be mentioned that the numerical maximization of (15)
is computationally extremely demanding. Thus, only a few
important cases are discussed in the following. All results are
based on the binary logarithm.

A. Discrete Input with Uniformly Distributed Noise

We assume that the input distribution is a weighted dirac-
train which results in the discrete distribution F (x) =∑n
i=1 piε(x−xi), where ε(x) denotes the Heaviside (unit) step

function. The mass-points xi are equidistant on the interval
[a, b] = [− 1

28 , 1 + 1
28 ], i.e., xi = xi(n) = a + (b − a) i−1

n−1 .
This means that increasing the number n of signaling points,
will lead to a reduced distance between the mass-points.
For each maximization of I(X;Y ) the mass-points xi and
the number n are held fixed, while the probabilities pi are
numerically optimized. The number n is incremented for each
new maximization of I(X;Y ) in order to investigate its effect.
The noise is assumed to be uniformly distributed over the
interval [− 1

28 ,
1
28 ] such that the interval (support) length is

∆ = 1
14 .

The numerical solutions for this specific scenario are visual-
ized in Fig. 2. It is shown that mutual information is increasing
in n while n is an element of {1, 2, . . . , 16}. This behavior
occurs since for n ≤ 16 the shifted uniform distributions,
describing the distribution of X +W , are not overlapping. It
is easy to prove that mutual information for n ≤ 16 is given
by I(X,Y ) =

∑n
i=1 ρ(pi) ≤ log n, where the upper bound is

achieved for equal probabilities pi = 1
n . A maximum value of

I(X;Y ) = 4 is obtained at n = 16 which means that 4-bits
can error-free be communicated over the censored channel.
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Fig. 3: Gaussian noise with standard deviation σ = 1.

Hence, the maximum mutual information of the censored
channel, given a uniformly distributed noise, is achieved for a
discrete input distribution F when the distance between each
two mass-points equals the support length ∆ of the uniform
noise distribution. For all n > 16 the distribution of X + W
is a convex combination of overlapping uniform distributions
such that an error-free communication is not possible anymore.
Thus, a maximization of mutual information can never achieve
capacity and only provides a bad lower bound on the capacity.
The upper bound in (21) is also depicted in Fig. 2. It is
approximately equal to 9.02-bits which is much larger than
the maximum value of 4-bits. However, this gap is highly
dependent on the noise distribution and must specifically be
analyzed for each considered noise distribution.

In summary, for uniform noise distributions with support
lengths ∆ > 0, the number n of signaling points for achieving
maximum mutual information is the greatest integer number
for which the inequality n ≤ 2 + 1

∆ holds. The maximum
mutual information for this number of signaling points is
then equal to log n while the upper bound in (21) is equal
to log 3 + ρ(e−1)/∆ and log 3 + ρ(e−1)/∆2 for all ∆ > 1
and ∆ ≤ 1, respectively. Both upper bounds can properly be
lower bounded by the single expression log 3 +ρ(e−1)(n−2)
which grows linearly with n instead of logarithmically. The
maximum-achieving signaling points xi are distributed on the
interval [− (n−1)∆−1

2 , 1 + (n−1)∆−1
2 ] with equal distances ∆

and probabilities pi = 1
n . For example, the signal constellation

x1 = − 1
2 , x2 = 1

2 and x3 = 3
2 with equal probabilities and

a uniformly distributed noise with unit support length yield
the error-free rate log 3 while the corresponding upper bound
is 1 + log 3. Note that for this constellation, both expressions
H(Y ) = log 3 and H(Y | X) = 0 hold.

B. Discrete Input with Gaussian Noise

For the second case, we consider the same setup as de-
scribed in the last subsection with another type of noise
distributions. We now assume zero-mean Gaussian noise dis-
tributions with standard deviations σ ∈ { 1

30 ,
1
10 , 1}. We again

maximize I(X;Y ) over the probabilities pi while the mass-
points xi and the number n are kept fixed. The variation of n
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Fig. 4: Gaussian noise with standard deviation σ = 1
10 .

and σ yields the results which are shown in Fig. 3, 4 and 5. In
addition, the upper bound in (21) is determined and depicted.

For σ = 1 a maximum mutual information of I(X;Y ) =
0.158 is achieved with n = 2 signaling points, since the
overlap of two Gaussians in the distribution of X + W is
lower than for more Gaussians. However, the overlap of both
Gaussians is still too large such that only 0.158-bits can
be communicated instead of 1-bit. The effect of censoring
information is dominant and becomes even more distinct for
larger values of σ. The mutual information (and consequently
the capacity as well) of the censored channel behaves like the
mutual information (capacity) of a Gaussian channel with a
one-bit quantizer, cf. [10]. The value of the upper bound (21) is
equal to 1.663-bits which significantly exceeds the theoretical
value of log 2 =1-bit for two signaling points.

For σ = 1
10 a maximum mutual information of I(X;Y ) =

1.8248 is obtained with n = 5 signaling points. Moreover,
we observe the same maximum mutual information for all
n ∈ {5, 9, 13, 17, . . . }, however, only five signalling points
have positive and equal probabilities. Note that mutual in-
formation is increasing w.r.t. n only for all n ≤ 5. For this
choice of σ the effect of censoring becomes less important and
the mutual information behaves increasingly like a standard
Gaussian channel without censoring or quantization. The upper
bound (21) is equal to 3.082.

Finally, for σ = 1
30 a maximum mutual information of

I(X;Y ) = 3.114 is achieved with n = 14 signaling points.
The upper bound yields the value 6.076-bits. It should be noted
that for all n ≤ 8 the signalling points have nearly equal
probabilities while for all n > 8 the probability distribution is
far from being uniform. The optimal probability distribution
is shown in Fig. 6. Note that mutual information increases
w.r.t. n only for n ≤ 14.

In summary, the censored channel behaves like a one-bit
quantized channel for sufficiently large noise variances. For
sufficiently small variances, the censored channel behaves like
a standard noisy channel without censoring or quantization.
Furthermore, the optimal distribution of the input probabilities
for equidistant signalling points is not uniform, if the noise
variance is sufficiently small and the number of signalling
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Fig. 5: Gaussian noise with standard deviation σ = 1
30 .

points is sufficiently large.

C. Gaussian Input with Gaussian Noise

Again we assume a zero-mean Gaussian noise with standard
deviation σ = 1

30 and consider the convex combination of two
Gaussians

F (x) =
1

2
√

2πτ2

∫ x

−∞

(
e−

(t−1/2+∆)2

2τ2 + e−
(t−1/2−∆)2

2τ2

)
dt

for the input distribution. The variance of the input signal is
thus given by τ2 + ∆2 with τ > 0, where ∆ ≥ 0 describes
the deviation of each Gaussian from the mean 1/2. In order
to change only the shape of the input distribution F while
the energy (power) of the input signal is kept bounded for
any variation of τ and ∆, we maximize the mutual informa-
tion (15) over τ and ∆ subject to τ2 + ∆2 ≤ 1

10 . By this op-
timization problem, two limiting cases can be compared. The
first limiting case is achieved when τ2 tends to zero and F (x)
approaches to the distribution 1

2ε(x−
1
2 +∆)+ 1

2ε(x−
1
2 −∆)

with ∆ ≤ 1√
10

= 0.316. This limiting distribution is a special
case of the already investigated scenario in Subsection VI-B.
The second limiting case is specified when ∆2 tends to
zero and F (x) approaches to the single Gaussian distribu-

tion 1√
2πτ2

∫ x
−∞ e−

(t−1/2)2

2τ2 dt with τ2 ≤ 1
10 . The second

limiting case describes the optimal input distribution with
limited signal energy for standard Gaussian channels without
quantization and is thus an important case.

By numerical maximization of (15) over τ and ∆ subject
to τ2 + ∆2 ≤ 1

10 , we observe the optimal values I(X;Y ) =
3.0865, ∆ = 0.2382 > 0 and τ = 0.2080 > 0. For the choice
σ = 1

30 and τ2 + ∆2 ≤ 1
10 , this result shows that neither

a single Gaussian for the input distribution nor a discrete
input distribution can be capacity-achieving. In addition, by
comparing this result with the capacity 3.2539 of a standard
Gaussian channel without censoring or quantization, cf. [11],
we observe only a small loss in the capacity, since the noise
variance is sufficiently small. Note that by comparing this
result with those in Fig. 5 and 6, one must be aware that
the input signal X for the results in Fig. 5 has more power in
average.
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Fig. 6: Optimal probabilities for n ∈ {8, 15, 18} under
Gaussian noise.

VII. CONCLUSION

We have investigated the mutual information of a channel,
which is linear over the interval [0, 1] and is censored to the
left by zero and to the right by one. Determining mutual
information and capacity of this channel is a fundamental
information theoretic problem. We have provided a compact
closed-form formula for the mutual information of this chan-
nel. Furthermore, a simple upper bound on the capacity of this
channel has been developed, which shows that the capacity of
the censored channel is bounded even if the energy of the input
signal is arbitrarily high. Finally, selected numerical results
for uniformly distributed noise as well as for Gaussian noise
have been presented. Optimizing corresponding parameters has
yielded insight into the behavior of the censored channel and
the accuracy of the bound.
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