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Abstract—We study a collaborative quickest detection scheme
that uses a function of the eigenvalues of the sample covariance
matrix for a spectrum sensing system with a fusion center.
A simple model consisting of one potentially present primary
user (PU), which utilizes phase shift keying (PSK), and the
standard additive white Gaussian noise (AWGN) assumption
is considered. Here, for both detection hypothesis, the sample
covariance matrix follows a Wishart distribution. For K = 2
collaborating secondary users (SUs), the probability distribution
function (PDF) of the maximum-minimum eigenvalue (MME)
test statistic can be derived analytically under both hypotheses,
allowing us to develop exact quickest detection algorithms for
known and unknown SNR. We analyze the two types of change
detection problems in spectrum sensing, i.e., the channel becom-
ing free when it was occupied before and vice versa. Performance
evaluation is done by evaluating bounds and by comparing the
presented quickest detection algorithms with the traditional block
detection scheme.

Index Terms—eigenvalue-based spectrum sensing, quickest
detection, random matrix theory

I. INTRODUCTION

Opportunistic spectrum access has been proposed as a
possible way to overcome the spectral scarcity problem by
allowing unlicensed secondary users (SUs) to access un-
occupied frequency bands. More precisely, the SUs decide
autonomously whether to use a frequency band when its
licensee, the so called primary users (PU), is not using [2].
The detection of such transmission opportunities is referred
to as spectrum sensing and is a key requirement in order
to minimize interference for the communication of the PUs.
A variety of spectrum sensing algorithms have been reported
in the literature and they can be differentiated by the signal
features they exploit to perform the detection; see [3] for
a review. Among these are detectors that are based on the
sample covariance matrix and its eigenvalues, see, e.g., [3]
for an overview. An advantage is that many of them do not
require precise knowledge of the noise power, in contrast to
the energy detector [4]. A well studied detector is the ratio of
the maximum-to-minimum eigenvalue (MME) of the sample
covariance matrix [5], which will be utilized in this work.

This work was partly supported by the Deutsche Forschungsgemeinschaft
(DFG) project CoCoSa (grant MA 1184/26-1).

Parts of the results have been published in more detail as a pre-print in [1].
This is a revised version of the paper, which corrects some typographic errors.
The original uncorrected version can be found in the conference proceedings.

Receiver noise is typically modeled as additive white Gaus-
sian noise (AWGN) for theoretical analysis of the detectors.
Under the AWGN assumption, when no PU is present, the
sample covariance matrix is a so called Wishart matrix. Ran-
dom Matrix Theory (RMT) studies the properties of random
matrices and in the recent years significant progress on the
exact eigenvalue distributions of Wishart matrices have been
made, see for example [6] for a summary. Based on the joint
ordered eigenvalue distribution, the distribution of the standard
condition number (SCN) which is the test statistic of the MME
detector, can be found [7], [8]. Consequently, this and other
results from RMT have been applied to spectrum sensing [9].

Typically, block detection is applied in spectrum sensing
scenarios. A block of consecutive samples is taken, the test
statistic is computed and compared to a predefined threshold
to form a decision about the occupancy status of a frequency
band. However, the detection difficulty at hand does not
influence the number of samples used for detection, since
in block detection this number has to be predetermined and
reflects a worst case point of view. Thus, even in the presence
of a very strong PU signal, the decision can only be made after
the necessary number of samples has been recorded. As we
will discuss in more detail in Section IV, this may introduce
significant delays that either result in interference for the PUs
or reduce the potential transmittable amount of data of the
SUs by shortening the transmission window.

Instead of applying block detection, the hypothesis test of
identifying the channel occupancy can also be viewed as a
change detection problem, c.f. Section IV. To minimize the
mean detection delay of a hypothesis change while having a
mean time to false alarm greater than a predefined constant
is the goal of quickest detection [10], [11]. Quickest detection
approaches have been investigated for spectrum sensing sce-
narios based on energy detection [12]-[14], using a sinusoidal
PU signal [15] and exploiting cyclostationarity [16].

The remainder of the paper is organized as follows. In
Section II we introduce the system model and notations.
Probability density functions (PDFs) of the test statistic under
both hypotheses are given in Section III by summarizing and
extending results from literature. We discuss the two possible
types of change detection problems in spectrum sensing in
Section IV. Quickest eigenvalue-based spectrum sensing is
introduced in Section V and algorithms for both types of



hypothesis changes in case of known and unknown SNR are
derived and evaluated in Sections VI and VII, respectively.

II. SYSTEM MODEL

We consider the case of K cooperating SUs, which share
their collected samples with a fusion center that is responsible
for the decision. The basic hypothesis testing problem of
detecting the presence of a PU can be stated as follows:

Ho = y(t) = w(t)
Hyi:y(t) =x(t) +w(t).

Here, y(t) is a K x 1 vector of complex baseband samples
collected by the SUs at time index t € N = {1,2,3,...}.
The vectors w(t) and x(t) stand for additive noise and
the PU signal, respectively. The noise vector is assumed
to be i.i.d. jointly complex circularly symmetric Gaussian
distributed for each time index ¢ with no temporal correlation.
More precisely, for each entry of the noise vector w the
real- and imaginary part is independently Gaussian A/ (0,1/2)
distributed. For simplicity, we assume one PU is potentially
present that is transmitting a deterministic phase shift keying
(PSK) modulated signal, which is unknown to the SUs. It can
be described as x(t) = y/a s(t) 1, where « is the signal-to-
noise ratio (SNR) of the receivers. The symbol s(t) € C is a
complex PSK symbol on the unit circle (i.e., |s(t)] = 1) and
1k is a column vector of dimension K containing only ones.
This is a very simple model of the #; situation in which all
SUs experience the same SNR. Nevertheless, it will allow us
to give the exact detector PDF under #;, which will allow
a fair comparison of block detection and quickest detection
using the MME detector.

In order to estimate the covariance matrix, a block of IV
time instances is considered. The block of samples can be
written as a K x N matrix: Y = [y(1),y(2),...,y(N)].
Analogously, a signal matrix X and a noise matrix W can
be constructed. Hence, it follows Y = W under Hy and
Y = X+ W under H;. Using this notation, we can calculate
the sample covariance matrix as R, = %YYH. It converges
to the statistical covariance matrix for N — oo. The test
statistic of the well known MME detector is:
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where \; > > Ak are the ordered eigenvalues of
the sample covariance matrix R, [5]. Since scaling of the
sample covariance matrix results in the same scaling of its
eigenvalues, the ratio is not affected by it. Thus, we will omit
the normalization factor and use the scaled sample covariance
matrix R = YY" in the following. This holds analogously
for the noise power, which is why the system model depends
on the SNR directly.

We assume the SUs are dual radio transceivers (see [2]),
meaning that they can simultaneously transceive on one band
and receive samples on another. Assuming the PU uses his
whole frequency band when he is present, the SU may only
use a part of this frequency band for spectrum sensing. In

doing so, the SUs may transmit on the remaining part of the
band when it is free, while monitoring the other part for a
change H, to H;. Section IV discusses the importance of this
hypothesis change for spectrum sensing.

III. ExACcT MME DETECTOR PDFSs

In this section, the distribution of the sample covariance
matrix is specified under both hypotheses. For the case of
K = 2 SUs the PDFs of the test statistic can be found exactly.
Hence, the remainder of the paper will assume that K = 2.
Numerically evaluating the PDFs for K > 2 may be possible
by utilizing results from [8] but this is out of the scope of this

paper.

A. PDF under H,

Under hypothesis H, the sample covariance matrix can be
written as Ry = WW?", which is a complex uncorrelated
central Wishart matrix of dimension K with N degrees of
freedom [17]. We denote this as Rg ~ CWgk(N,Ig). For
K = 2 the PDF of the MME detector from (2) can be given
exactly for 7' > 1 as [7]

(N —1)I'(2N) (T —1)2T7(N-2)
PO="FwE arow @

B. PDF under H;

Under hypothesis 1, the sample covariance matrix is given
by

R = (X+ W)X+ W)" 4)
N N

=) X+ w)x +w)T =Dyt )
Jj=1 j=1

where the j-th column of the sample matrix y, follows a
complex circularly symmetric Gaussian distribution with mean
x;, i.e, y; ~ CN(x;,Ix) for all j = 1,...,N. Hence,
it is a complex uncorrelated non-central Wishart distribution
with dimension K, having N degrees of freedom with non-
centrality matrix Q = E[Y]E[Y]" = a N 141% (c.f. [17]).
In short notation we write Ry ~ CWg (N, Ix, Q).

In [8] the MME detector PDF was reported in a MIMO
beamforming context for the case that X = N = 2. Following
the same way as reported there and using straightforward
tedious algebra, we can generalize the result to arbitrary N.
For this, we collect the ordered eigenvalues of R, and 2 in
the vectors A = (A1, A2)" and w = (w1, w9)”, respectively.
For K =2,T > 1 and w; # wy we arrive at (6). Noticing that
2 is a rank one matrix, we can find its eigenvalues directly
as w; = 2aN and wy; = 0. Inserting the values for w; and
we into (6), we gain a simplified version of the PDF in (7).
Although (7) contains an infinite sum it can be evaluated
precisely by noting that for high j the contribution of the
summands becomes negligible. An example plot of both fj
and f; is shown in Figure 1.
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Fig. 1. Plot of fo(T") (noise only) in black and fi(T;«) for different
values of the SNR « indicated by different colors. The number of samples is
N = 500. Crosses indicate values taken from an empirical PDF obtained by
simulation.

IV. CHANGE DETECTION IN SPECTRUM SENSING

In spectrum sensing, two types of hypothesis change can be
distinguished. Firstly, a change from #, to #H; and secondly a
change from H; to H. Both situations are depicted in Figure 2
and relevant time points with associated delays are described.

The delay introduced by the detection algorithm has differ-
ent practical implications depending on the type of hypothesis
change considered. In the case that a previously occupied
frequency band becomes free again (#; to Ho), the detection
delay shortens the transmission window for the SUs. This
represents an inefficiency of the secondary system, but has no
direct negative effect on the primary system. However, if the
channel is falsely declared to be free and the secondary system
accesses it, interference for the primary system is inevitable.
Thus, this change is critical with respect to detection accuracy.
If we consider the change from #Hy to H;, a PU appears
that intends to start a transmission. Here, the detection delay
translates to increased interference for the primary system,
since the secondary system does not immediately terminate
its communication on this band. Thus, it is the more critical
case as far as the detection delay is concerned, since it has a
direct negative effect on the (licensed) primary system.

V. QUICKEST EIGENVALUE-BASED SPECTRUM SENSING

In contrast to block detection, where the goal is to decide
which hypothesis is true in a block of samples, quickest
detection (QD) has the objective to minimize the detection
delay of a change between two hypotheses. Let us assume
(without loss of generality) that before the unknown change
time t. hypothesis Ho is true and that it changes to H;
at t. (c.f. Figure 2). In QD it is usually presumed that the
samples taken by the detection algorithm are i.i.d. random
variables, where at ¢. the underlying distribution changes. For
each sample the detection algorithm updates its output value
and compares it to a predefined threshold hg. An alarm is
raised if the threshold hg is exceeded. If the threshold was
not surpassed after a predetermined maximum run-time, the
algorithm is aborted and restarted in order to avoid generating
false alarms.

The estimation of the covariance matrix requires taking a
block of samples. To use a function of the eigenvalues of the
sample covariance matrix as an input to a QD algorithm, we
must introduce a time-dependent version of the test statistic
T,ie., T(k)= /\All{((?), where in our case K = 2. Blocks of V
non-overlapping consecutive samples are taken to calculate the
k-th sample covariance matrix R(k) = Y (k)(Y (k))", where
Y(k) = [y((k — )N +1), -, y(kN),

For the theoretical treatment we make an additional assump-
tion that no hypothesis change may happen within a block, that
ist. € {(k—1)N +1 | k € N}. Note, that this assumption is
a standard one for the analysis of block detection algorithms.
Then, depending on whether T'(k) was observed before or after
t. it is distributed according to fo(T) or f1(T’; «), respectively.

The most widely known QD algorithm is called the cu-
mulative sum (CUSUM) algorithm. It exploits that the log-

likelihood ratio (LLR), defined as I(k) = log (ﬁgggg) is
positive on average when #; is true and negative on average
when Hg is true. The idea behind the CUSUM is that a
cumulative sum of the LLR will show a positive drift under
‘H.. However, accumulating a negative drift will increase the
detection delay. Given the definitions from above, the CUSUM

can be (recursively) formulated as follows [10], [18]:

k .
H(T(G);a)
o= s, > () o
=gk = 1) +1(k)]T, )

with ¢(0) = 0 and []* = max(-,0). Note, that both PDFs
fo(T) and f1(T; o) must be known.

The relevant performance measures for QD are the mean
time to false alarm 7y, = Ej [t,] and the mean detection

delay 79 = Ep [ta —te+ 1|ty > e, ﬂ(tC_l)}, where the

trajectory of the observations before . is denoted as Tl(trl) =
[T(1),...,T(tc — 1)] [10]. The notation E;[-] stands for the
expectation over the PDF f.

VI. EXACT EIGENVALUE-BASED QUICKEST DETECTION
ALGORITHMS FOR Hy TO H1

For this section, we use the results from Section III and the
detection scheme from Section V to give an exact eigenvalue-
based QD algorithm tailored to detect the change Hg to H; for
the model from Section II. As argued in Section IV, this is the
more critical of the two possible types of changes, since the
delay directly influences interference for the primary system.
Both the case of known and unknown SNR « are investigated
and the performance is evaluated with respect to the MME
block detector operating on the same model.

A. Known SNR

Under the model from Section II both PDFs of the MME
test statistic from (2) were given in Section III. So when the
SNR « is known, the CUSUM algorithm from (9) can directly
be applied. Explicitly inserting both (3) and (7) into the LLR
I(k) and simplifying yields (10). There, we made use of the
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Fig. 2. Change detection problems in spectrum sensing. At ¢¢ a change from
Hypothesis o (unoccupied channel) to Hypothesis 71 (occupied channel)
occurs. The detection algorithm raises an alarm at ¢,, so the detection delay
is 7¢ = ta — tc. The reverse situation that an occupied channel becomes free
happens at f. with analogously defined alarm time £, and detection delay
T4. The duration shaded in red indicates interference for the primary system,
while the duration in blue symbolizes wasted transmission opportunities for
the secondary system.

Pochhammer symbol (a), = (a +b—1)!/(a — 1)

To assess the detection performance beforehand and to ease
determination of a proper threshold h¢g, bounds on 74 and 7,
are helpful.

An upper bound on 74 can be found in [10]:

— —x (h+fo1)
Ta STy < 577 (11)
T T B, )]
where
vr=sup Ef[i(k)—¢ | l(k) > > 0] (12)
§>0
and

7’-; = supesssupEy, [ta —t.+1 | ty > te, ﬁ(tc_l):| (13)

te>1

is the worst mean delay [19].
Likewise, a lower bound on 7¢, can be found in [10]:

S 1 (e eih 1
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where ¢ is the single non-zero root of E[e~##!(¥)] = 1. For
¢, the following equation must be solved:

Ejy[em#70!®)] = /1 : (fﬁ;;))‘“’m fo(T)dT =1.
(15)

Obviously, ¢z, = —1 solves (15), since only the integral over
f1(T'; @) remains. Thus, (14) can easily be simplified to:

1

+h—|—’yf0) ) (14)

T > = (1= +h+7y) . (16)
+Z B ] )
A second, much simpler bound is [10]:

Ty > € (17)

Unfortunately, neither E, [I(k)] nor E¢, [I(k)], v¢, or v¢, can
be handled analytically, but numerical evaluation is possible.

tighter than (16), we have observed the opposite situation when
considering smaller numbers of samples N.

B. Unknown SNR

Let us assume that the SNR « is unknown to the SUs, which
is a more realistic scenario in spectrum sensing. Then, direct
application of the CUSUM algorithm is not possible. Perform-
ing likelihood ratio tests when parameters are unknown can be
done by utilizing a generalized likelihood ratio test (GLRT).
There the unknown parameters are estimated beforehand by
maximum likelihood estimation (MLE) [20]. Here, the only
unknown parameter is o and we can use the GLRT to extend
the CUSUM algorithm from (8). The resulting generalized
likelihood ratio (GLR) algorithm can be given as [10]:

s AT()A)
96(k) = oa pj%bg( ST

The supremum present in (18) has to be evaluated numerically,
since we are not aware of an analytical form for the MLE of «
in f;. Also the GLR has a higher complexity than the CUSUM,
since it cannot be formulated recursively and demands storage
of all previous samples.

Firstly, the mean time to false alarm 7y gained from a
simulation for both the GLR and the CUSUM algorithm is
shown in Figure 3a. Secondly, the mean time to detection
T4 obtained from a simulation for both algorithms is plotted
in Figure 3b. Note also, that in both plots the corresponding
bounds from (11), (16) and (17), which are only valid for
the CUSUM, are depicted as well. Moreover, the thresholds
which result in the same 7¢, for both algorithms are shown in
both Figures 3a and 3b. This helps to visualize the increase
in detection delay of the GLR with respect to the CUSUM,
which is due to the fact that the GLR performs an estimation
of the SNR.

Next, we compare the performance of the GLR algo-
rithm to the performance of a MME block detector. For the
latter, we can directly predict the probability of detection
Pd(h =1- flh f1(T; @) dT and the probability of false alarm

Pu(h)=1- fl fo(T) dT for a given threshold with the help
of (3) and (7). We demgned the MME block detector with a
block length of 105 samples with P, = 0.015 resulting in
the threshold h = 1.0146, which exhibits Py = 0.928 for an
SNR o = —20 dB. For the GLR, a Monte-Carlo simulation

(18)
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the theoretical bounds for the CUSUM from (11), (16) and (17) (red). The
simulated performance of both the CUSUM and GLR algorithm is shown for
N = 10000 and SNR a = —17 dB, where the GLR numerically evaluates
the supremum over & within the interval [—20.5, —5] dB in 0.1 dB steps.
The gray vertical lines mark an exemplary choice of thresholds for which
both algorithms exhibit the same 7¢,. This helps to visualize the performance
loss of the GLR with respect to 74 in Figure 3b due to the SNR estimation.

with N = 10000 for 1000 random seeds was performed that
includes a variety of thresholds and the supremum in (18)
was numerically evaluated in the range [—20.5,—5] dB in
0.1 dB steps. In Figure 4 the probability of false alarm P, and
the probability of detection Py over the run-time of the GLR
is depicted for several SNRs. There, a threshold hg = 4.5
was chosen, such that at a run-time of 10 blocks (which
is equal to having 10° samples processed) the P, for the
GLR is equal to the P, for which the MME block detector
was designed. For a wide range of SNRs the GLR quickest
detection algorithm offers faster detection than the MME
block detector at comparable or even lower false alarm rate.
However, at very low SNRs the MME block detector offers a
quicker and more reliable detection. This can be explained by
the fact that the MME block detector processes the entirety of
samples (in this case 10° samples) to form a decision and was
designed to perform well in the worst case. In contrast, the
GLR subsequently processes blocks of N = 10000 samples
to estimate the sample covariance matrix, thereby aiming at

to the block detection approach.

In summary, for a wide range of SNRs the presented GLR
quickest detection algorithm offers faster detection of the
appearance of a PU and consequently the possibility to free
the channel earlier resulting in reduced interference for the
primary system. However, the MME block detector is faster
in detecting very weak PU signals close to the worst case SNR
for which it was designed.

VII. EXACT EIGENVALUE-BASED QUICKEST DETECTION
ALGORITHMS FOR H1 TO Hg

This section studies the second kind of possible hypothesis
change (H; to Hg), where the detection delay is associated
with inefficiency in the secondary system and detection ac-
curacy is critically linked to primary system interference as
discussed in Section IV.

A. Known SNR

To detect a change from H; — 7 the inverse situa-
tion of Section VII must be considered. Thus, the LLR in
this case is I(k) = log (% —I(k). Hence, the
CUSUM algorithm for this case directly follows as g(k) =
[§(k —1) — I(k)]". Similarly, the bounds presented in (11)
and (16) can be adapted straightforwardly by inserting ZN(k')
for I(k) and by exchanging fo with f; and vice versa.



B. Unknown SNR

Since numerator and denominator are swapped in the LLR
I(k) also the GLR has to be adapted. Now, the MLE for
the unknown SNR concerns the denominator. Hence, the
supremum in (18) must be exchanged with an infimum and
a negative sign can be factored out of the sum such that the
LLR from (10) can be utilized directly. The GLR for the H;
to Ho case then yields:

- g (LL2020))

0<m<k & Pl fo(T(5))

In Figure 5 we perform the analogous comparison to Figure 4
for the H; to Hp change. Due to the inverted situation the
false alarm performance is now dependent on the SNR and the
detection performance is constant, contrary to the Hgy to Hy
case. Because of that, the advantage of the quickest detection
approach that was observed in Section VI is not present here.
We conclude, that for this type of hypothesis change the block
detection approach is faster and more reliable in terms of
detection accuracy.

ga(k) = (19)
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Fig. 5. Performance of the GLR algorithm from (19), evaluated as Py and Py,
over the algorithm run-time for the threshold h = 2.4. Note, that Py is plotted
on the left ordinate and P, is plotted on the right ordinate for different SNRs.
The gray circular markers and the thin solid lines indicate the performance of
the MME block detector also designed to detect the change from H1 to Ho
for a block length of 105 samples and P, = 0.015 at SNR a = —20 dB,
which results in Py = 0.9117.

VIII. CONCLUSION

In this work, we have studied a collaborative quickest
eigenvalue-based spectrum sensing system with a fusion cen-
ter. We have introduced a basic AWGN system model with
K collaborating SUs and a single PU. The PU transmits PSK
signals and the SUs have identical SNRs. Under this model,
both the noise only () hypothesis and the PU signal + noise
(1) hypothesis lead to Wishart sample covariance matrices.
Thus, confining the number of SUs to K = 2 we can give
the exact PDF of the maximum-minimum eigenvalue (MME)
test statistic under both hypotheses. The two relevant change
detection problems in spectrum sensing were separately in-
vestigated, i.e., Hg to H; and H; to Hy. For both cases,
exact quickest detection algorithms were given for known
and unknown SNR. Performance evaluation was performed

by comparing to the traditional block detection scheme. It was
found, that for the o to 7, change, where detection delay
is directly associated with primary system interference, the
quickest detection approach is applicable. It offers reduced
detection delay at similar or better false alarm performance
for a wide range of SNRs. For the second type of change (H;
to Ho) the traditional block detection algorithm was found
to be the more sensible choice. Future work should aim at
generalizing to more realistic models with channel fading and
more secondary users.
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