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Abstract—In this paper, we study the performance of
a system with multiple decode-and-forward (DF) relays
under the finite blocklength (FBL) regime. We derive
the FBL-Throughput under both perfect CSI and average
CSI scenarios while the corresponding throughputs under
an infinite blocklength assumption (IBL-throughput) are
discussed as performance references. Through numerical
analysis, we evaluate the system performance. We show a
higher throughput under the FBL assumption than under
the IBL assumption under the perfect CSI scenario.

Index Terms—Finite blocklength regime, decode-and-
forward, relaying, throughput, perfect CSI, average CSI

I. INTRODUCTION

Relaying [1], [2] is well known as an efficient way
to greatly enhance the performance of wireless transmis-
sion by exploiting spatial diversity. Specifically, two-hop
decode-and-forward (DF) relaying protocols significantly
improve the throughput/capacity [3]–[6]. However, all the
above studies of the advantages of relaying are based
on an ideal assumption that the transmission is error-
free or arbitrarily reliably at Shannon’s channel capacity
where coding is assumed to be performed in the infinite
blocklength (IBL) regime (using a code block of infinite
length). Unfortunately, in practice it is impossible for
systems to have infinite blocklengths.

If the codeword is restricted to a reasonable size,
i.e., to a finite blocklength, the error probability of
the communication becomes no longer arbitrarily small.
Hence, in the finite blocklength (FBL) regime, it is essen-
tial to consider the error probability while investigating
the communication performance. Recently, an accurate
approximation of achievable coding rate was presented
in [7] for a single-hop transmission system which also
takes a block error probability (due to noise) into account.
In [7] the authors show that the performance loss due to a
finite blocklength is considerable and and increases for a
decreasing blocklengths. Subsequently, this fundamental
study regarding additive white Gaussian noise (AWGN)
channels was extended to Gilbert-Elliott channels [8],
quasi-static fading channels [9], [10], quasi-static fading
channels with retransmissions [11] as well as spectrum
sharing networks [12]. However, all these works focus
on single-hop non-relaying systems.

In a two-hop DF relaying network, relaying exploits
spatial diversity but at the same time halves the block-
length of the transmission (if equal time division is
considered). As the performance loss increases under the

FBL model as the blocklength decreases [7], an interest-
ing questions arises: Does relaying pay off less in the FBL
regime? In our previous work [13]–[15], we address these
questions under a single relay scenario where we find that
the performance loss (due to FBL) in the case of relaying
is much smaller than expected, while the performance
loss of direct transmission is larger. In other words, under
the FBL model relaying is in fact more beneficial as the
FBL effect due to the shortening of the time frame (in
case of relaying) is more or less compensated by higher
channel quality at each hop. In this paper, we extend the
study to a multi-DF-relay scenario where the information-
theoretic performance limit is not known. Both perfect
CSI and average CSI (at the transmitter) assumptions are
considered in this work.

The rest of the paper is organized as follows. Sec-
tion II describes the system model and briefly introduces
the background theory regarding the FBL regime. In
Section III and IV, we derive the blocklength-limited
performance of the multi-relay system under perfect
CSI and average CSI scenarios while the corresponding
throughputs under the IBL regime are also discussed as
comparison schemes. Section V presents our numerical
results. Finally, we conclude our work in Section VI.

II. PRELIMINARIES

A. System Model

We consider a simple scenario with a source S, a
destination D and J DF relays Rj , j = 1, 2, ..., J as
schematically shown in Fig. 1. In general, the distances
between relays are assumed to be significantly shorter
than the distances either from the source to relays or from
the relays to the destination. The entire system operates in
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Fig. 1. Example of the considered multi-relay system.

a slotted fashion where time is divided into transmission
periods of length 2m (symbols). Each transmission period
contains two phases (each phase with length m), which
are referred to as broadcasting phase and relaying phase.
In the broadcasting phase, the source sends a data block
to relays. Afterwards, if at least one relay decodes the
block successfully, all these relays forward the block



together to the destination in the subsequent relaying
phase. As a result, the destination likely receives mul-
tiple coherent signal copies.

Channels are assumed to experience Rayleigh block-
fading, i.e., channels are constant during the duration of
each transmission period but vary from one period to
the next. The CSI of a link is assumed to be perfectly
estimated at the receiver. We denote the channel gains
from the source to the destination, from the source to
relay j and from relay j to the destination during period
i by |hS,D,i|2, |hS,j,i|2 and |hj,D,i|2 (j=1, 2, ..., J). The
corresponding average channel gains are |h̄S,D|2, |h̄S,j |2
and |h̄j,D|2. In addition, we denote Ptx as the transmit
power at the source and each relay. The noise power
is denoted by σ2. Also, we assume no interference to
be present. Hence, the instantaneous signal-to-noise ratio
(SNR) in transmission period i from the source to relay j
is γS,j,i=Ptx|hS,j,i|2/σ2. Similarly, the SNR of the link
from relay j to the destination is γj,D,i=Ptx|hj,D,i|2/σ2.
As multiple relays forward the same data block during a
relaying phase, the destination receives multiple signals
of the block. By applying maximum ratio combining
(MRC) during the reception of these signals, the des-
tination obtains a joint instantaneous SNR as the sum
of the instantaneous SNRs of links from these relays as
γξi,D,i=

∑
Rj∈ξi

γj,D,i, where ξi is the set of relays which
forward the packet during transmission period i.

B. FBL Performance of a Single-Hop Transmission

For AWGN channels, [7] derives a tight bound for the
coding rate of a single-hop transmission system. With
blocklength m, block error probability ε and SNR γ,
the coding rate (in bits per channel use) is given by:
r = 1

2 log2(1 + γ) −
√

(1− 1
(1+γ)/2m2 )Q−1 (ε) log2e +

O(log2m)
m , where Q−1(·) is the inverse of the Q-function

given by Q(w) =
∫∞
w

1√
2π

e−t2/2dt. In [10], the above
result has been extended to a complex channel model
with received SNR γ, where the coding rate (in bits per
channel use) is:

r = R(γ, ε,m) ≈ C(γ)−
√

V

m
Q−1(ε), (1)

where C(γ) is the Shannon capacity. For a known SNR
of the channel, it is given by C(γ) = log2(1 + γ).
Moreover, V is the channel dispersion [7, Def.1]. Hence,
for a single hop transmission with blocklength m and
coding rate r, the decoding (block) error probability at
the receiver is given by:

ε = P(γ, r,m) = Q

(√
m

V
(C(γ)− r)

)
. (2)

Finally, the blocklength-limited throughput (FBL-
throughput) CFBL of the transmission is defined as the
average/expected effectively transmitted information (the

number of correctly received bits at the destination) per
channel use, given by: CFBL = (1− ε)r.

So far, we have introduced the system model and the
performance model of a single-hop transmission with
FBL. In the following, we will study the performance
of the considered multi-relay system under two different
assumptions: Having perfect CSI of all links at the source
as well as having only average CSI of all links at the
source. Both the infinite blocklength (IBL) regime and
the FBL regime will be considered.

III. PERFECT CSI SCENARIO: IBL-THROUGHPUT VS.
FBL-THROUGHPUT

A. The IBL-Throughput of Multi-Relay with Perfect CSI

In the IBL regime, with perfect CSI the source knows
which relays will decode the data packet successfully
for a given coding rate, i.e., by comparing the coding
rate with the Shannon capacity of the link to the relay.
Therefore, the source is able to determine an optimal
coding rate to have an appropriate set of forwarding
relays to maximize the throughput under the IBL regime.
Denote the throughput at transmission period i of the con-
sidered two-hop multi-relay network by CIBL,i. CIBL,i

is actually the achievable/maximal throughput of the
considered two-hop multi-relay system, and it is given
by: CIBL,i = max

ξi∈P(S)
{Cξi}, where P(S) is the powerset

of relay set S = {1, 2, ..., J} and Cξi is the throughput
of a multi-relay transmission with the forwarding relay
set ξi. By combining these signals from all relays in ξi
to the destination, the combined SNR at the destination
is given by

∑
j∈ξi

γj,D,i. Therefore, we have:

Cξi =
1

2
min

⎧⎨
⎩min

j∈ξi
{C (γS,j,i)} , C

⎛
⎝∑

j∈ξi

γj,D,i

⎞
⎠
⎫⎬
⎭

=
1

2
C
⎛
⎝min

j∈ξi

⎧⎨
⎩γS,j,i,

∑
k∈ξi

γk,D,i

⎫⎬
⎭
⎞
⎠ .

(3)

Thus, the throughput of transmission period i is given by:

CIBL,i=
1

2
C
⎛
⎝ max

ξi∈P(S)

⎧⎨
⎩min

j∈ξi

⎧⎨
⎩γS,j,i,

∑
k∈ξi

γk,D,i

⎫⎬
⎭
⎫⎬
⎭
⎞
⎠ . (4)

Finally, the IBL-Throughput of multi-relay with perfect
CSI is given by the expectation of CIBL,i over all possible
realizations of the channel SNR: Cperf

IBL = E
γ
[CIBL,i].

B. The FBL-Throughput of Multi-Relay with Perfect CSI

In the FBL regime, due to perfect instantaneous CSI the
source is able to determine an appropriate coding rate for
each transmission period. Denote the determined coding
rate for transmission period i by ri. According to (2) the
error probability of the link from the source to relay j is
given by: εS,j,i = P(γS,j,i, ri,m). In other words, with



probability 1 − εS,j,i the relay j will decode the packet
correctly and join the relaying phase. Recall that for a
forwarding relay set ξi the combined SNR at the destina-
tion is given by

∑
j∈ξi

γj,D,i. Then the error probability

of the second hop is given by P
(∑

j∈ξi
γj,D,i, ri,m

)
.

Hence, the expected overall error probability of two-hop
relaying at period i is:

εMR,i=
∑

ξi∈P(S)

⎧⎨
⎩
∏
j/∈ξi

εS,j,i
∏
n∈ξi

(1−εS,n,i)P(
∑
n∈ξi

γn,D,i, ri,m)

⎫⎬
⎭.

(5)
Therefore, with perfect CSI the (expected) FBL-
throughput of transmission period i is given by:

CFBL,i = (1− εMR,i)ri/2. (6)

Finally, the average FBL-throughput (over all possible
realizations of the channel SNR) of multi-relay with
perfect CSI is given by: Cperf

FBL = E
γ
[CFBL,i].

IV. AVERAGE CSI SCENARIO: IBL-THROUGHPUT VS.
FBL-THROUGHPUT

A. The IBL-Throughput of Multi-Relay with Average CSI

Our previous work [5] has shown that the outage
probability of a multi-relay transmission with average CSI
is given by:

Pout
MR =

∑J

n=0
Pout
R,D(n) · PB

(
n; J, P out

S,R

)
, (7)

where the number of active relays n is a binomially
distributed random variable. Recall that J is the total
number of relays deployed in the system. Denote by
PB

(
n; J, P out

S,R

)
the probability density function of n,

hence we have:

PB

(
n; J, P out

S,R

)
=

(
J
n

)(
1− P out

S,R

)n (
P out
S,R

)J−n
,

(8)
where P out

S,R is the outage probability of the link from the
source to each relay:

P out
S,R = 1− exp

(−γ∗σ2
/
2h̄2

S,jPtx

)
. (9)

In (7), Pr2(n) is the outage probability of the relaying
phase with n active relays. In addition, the SNR threshold
γ∗ is subject to the coding rate r and is given by γ∗ =
2r−1. Due to MRC, the combined SNR at the destination
results from the superposition of several fading signals,
which leads to a Gamma-distributed random variable for
the joint SNR [16]. Hence, Pout

R,D(n) is equivalent to the
cumulative distribution function of a Gamma-distributed
random variable:

Pout
R,D(n) =

⎧⎪⎪⎨
⎪⎪⎩
1−

n−1∑
j=0

1

j!

(
γ∗

β

)j

e−
γ∗
β , n > 0;

1, n = 0,

(10)

where β is the scaling parameter of the gamma dis-
tribution and is given by β = 2

∑J
j=1 Ptxh̄

2
j,D

/
Jσ2.

Both the gamma distribution and the binomial distribution
are approximations based on the topology simplification
(recall that the distances between relays are assumed to
be significantly shorter than the distances either from the
source to relays or from the relays to the destination, this
simplification further assumes distances from the source
to relays to be the same).

Finally, the throughput under the IBL regime with av-
erage CSI (also known as outage capacity) of the studied
multi-relay system is given by: Cave

IBL = (1− P out
MR)r/2.

B. The FBL-Throughput of Multi-Relay with Average CSI

Based on the topology simplification [5], the error
probabilities of the links from the source to relays can
be simplified to be approximately the same. Hence, the
expected error probability of a source-relay link is:

E
γ
[εS,R]=

σ2

Ptx|h̄2|2
∫ ∞

0

e
− γσ2

Ptx|h̄2|2 P(γ, r,m)dγ

=
σ2√

2πPtx|h̄2|2
∫ ∞

0

∫ ∞

√
mw(γ)

e
− t2Ptx|h̄2|2+2γσ2

2Ptx|h̄2|2 dtdγ,

(11)

where w (γ) = C(γ)−r√
1
m (1−2−2C(γ))log2e

.

Then, the number of relays which decode the data
block successfully is binomial-distributed:

PB (n,N, εS,R) =

(
N
n

)(
1− E

γ
[εS,R]

)n

E
γ
[εS,R]

N−n
,

(12)
Next, the received SNR at the destination is a Gamma-
distributed random variable (the proof is the same as the
one in the IBL regime, which is given in [16]). Hence,
if the number of forwarding relays is n, the expected
error probability of the second hop can be obtained
by averaging (2) over the Gamma distribution. Denote
this error probability by ε̄R,D(n), the expected overall
error probability (based on the topology simplification)
is furthermore given by:

E
γ
[εMR] =

∑N

n=0
E
γ
[εR,D]PB

(
n,N,E

γ
[εS,R]

)
. (13)

Finally, the expected FBL-throughput is given by:
Cave

FBL = (1− E
γ
[εMR])r/2.

V. NUMERICAL RESULTS

In this section we numerically compare the throughputs
of multi-DF-relay under the FBL assumption and under
the IBL assumption. For the comparison, we consider the
following parameterization of the system model: First, we
consider an outdoor urban scenario and distances of the
broadcasting, relaying and direct links are set to 200 m,
200 m and 360 m. Second, we set Ptx= 30 dBm and



σ2 = -90 dBm. Moreover, we utilize the well-known
COST [17] model with the center frequency 2 GHz for
calculating the path-loss.

A. Impact of Relay Number on the Relaying Performance

In Figure 2, we show the relationship between the
relaying performance and the number of relays deployed
in the system. Firstly, as more relays are deployed in the
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Fig. 2. IBL-throughput vs. FBL-throughput while varying the number
of relays deployed in the system (m=500).

system both IBL-throughputs and FBL-throughputs are
improved. Secondly, with the average CSI at the source
multi-relay transmission has similar performance under
the IBL and FBL regimes. This observation matches our
previous results in [15] for a single relay scenario. Thirdly
and most surprisingly, we find that with perfect CSI the
FBL-throughput of multi-relay transmission exceeds the
IBL-throughput if there are two or more relays deployed
in the system. Recall that the IBL-throughput is mod-
eled based on the Shannon capacity which is generally
expected to be an upper limit of the channel’s capac-
ity/throughput. Hence, one could expect that the perfor-
mance with IBL assumption should be the upper limit
of the one under the FBL regime. However, our results
show that under the studied multi-relay system the upper
throughput limit is not the IBL-throughput anymore. This
is surprising and different from our findings in [15],
where we showed for a single relay system that the IBL-
throughput is always higher than the FBL-throughput.
An explanation is as follows. According to (2), if the
coding rate of a single-link transmission is higher than
the Shannon capacity of the link, the error probability of
this transmission is higher than 0.5 but lower than 1. In
other words, in the considered multi-relay system even
if the source sets the coding rate to be higher than the
Shannon capacity of each source-relay link, based on the
FBL model it is possible that some relays decode the data
block correctly. However, under the IBL regime there is
definitely an error for the link which has a coding rate
being higher than the Shannon capacity. As a result, under
the FBL assumption the multi-relay system can achieve
a higher throughput (in comparison to under the IBL

assumption) by setting the coding rate more aggressively
for each transmission period (according to the perfect
CSI). Our finding indicates that the Shannon capacity is
inappropriate for modeling the capacity/throughput of the
studied system where the transmission is not completely
error-free, i.e., it is possible that the overall transmission
is successful while only partial relays decode the packet
correctly (from the source) and join the forwarding.
Lastly, the mismatch between the FBL-throughput and
IBL-throughput (under the perfect CSI scenario) is sig-
nificantly increasing in the number of relays deployed in
the system.

B. Impact of Blocklength on Relaying Performance

A condition for FBL-throughput violating the IBL-
throughput is shown in Figure 2: The number of relays
should be at least two. As the FBL-throughput is influ-
enced by the blocklength, in this subsection we further
investigate the impact of blocklength on this violation for
the scenario with only two relays. We show it in Figure 3
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Fig. 3. The performance of two relays while varying the blocklength.

and find that the FBL-throughput is increasing in the
blocklength while the IBL-throughput is not influenced
by the blocklength. As a result, the FBL-throughput is
lower than the IBL-throughput for very short blocklengths
but significantly higher than the IBL-throughput when the
block is long.

VI. CONCLUSION

In this work, we studied the performance of multi-
DF-relay under the FBL regime. We found that with
perfect CSI at the source the FBL-throughput is more
likely higher than the IBL-throughput. It is known that
for a single link transmission the IBL performance is the
upper limit of the FBL performance. Our work actually
provided an example to show that this result (of single
link transmission) is not always true for more complex
systems, e.g., the considered multi-DF-relay network.
It should be mentioned that the information-theoretic
performance limit of the multi-DF-relay network is still
open and requires more future work.
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