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Abstract—So called hinge functions play an important role in
many applications, e.g., deep learning, support vector machines,
regression, classification and others. A thorough theory, which
explains why some of these applications are so successful for
their respective purpose, is still missing. This paper aims at
filling a knowledge gap by answering the question of how
much information can be conveyed across a neural node, e.g.,
which uses the hinge loss function on weighted agglomerated
information from precedent nodes. We hope that insight from
artificial neural networks may also have implications for
understanding biological information processing. As key results
in this paper, an elegant representation of mutual information
is derived and, furthermore, some structural properties of a
channel, that consists of a certain input signal which is overlaid by
additive noise and is filtered by a hinge function, are investigated.
Determining the capacity of this channel in an explicit form,
although an important fundamental problem, seems to be
extremely difficult and unsolved as of today. Thus, necessary
and sufficient conditions for an optimal input signal along
with upper bounds on the capacity are deduced. Furthermore,
we conjecture that exponentially distributed input signals are
asymptotically capacity-achieving in the high SNR regime.

I. INTRODUCTION

The nonnegative valued function Q(z) = max{z − c, 0} =
(z − c)+, z ∈ R, c some constant, see Fig. 1, is often called
rectifier or hinge function. An early article on the mathematical
structure in higher dimensions, convergence properties, and
effectiveness for neural networks is [1] which extends the
work [2], that investigates approximation bounds for super-
positions of sigmoidal functions.

The application of hinge functions in deep learning neural
networks is very successful, and is even superior to smooth
loss functions like logistic sigmoid, hyperbolic and inverse
tangent function [3], cf. [4]. The main advantage is achieved
in unsupervised learning. One of the reasons seems to be that
rectifying neurons induce sparsity by producing true zeros in
an obvious way. This seems to be suitable for modeling corre-
sponding sparse representations in biological neural networks.
A thorough theory of understanding the efficiency of rectifier
neural networks is however missing.

The present paper aims at contributing to this problem
by answering the question of how much information can be
conveyed across a neural node when using the hinge loss
function on weighted agglomerated information from prece-
dent nodes. We hope that from this insight the functionality
of deep learning networks can be better understood, and that
such networks can be conceived as a reasonable model for
biological information processing.

Fig. 1: The hinge function.

The contributions of this paper are as follows. We first
derive a compact representation of the mutual information
between a certain input variable X and the output Y , where
X is subject to additive noise and is then sent through the
hinge function. We first investigate the mathematical struc-
ture of mutual information. Determining the capacity of this
channel requires maximizing mutual information over all input
distributions, which is an extremely and, as of today, unsolved
problem. Instead, necessary and sufficient conditions for an
optimal input signal along with upper bounds on the unknown
capacity are derived in the present paper.

II. CHANNEL MODEL

We assume a time-discrete memoryless channel. Some real
input X with cumulative distribution function (CDF) F (x) is
subject to additive noise W with density function fW (w) and
corresponding CDF FW (w), not necessarily Gaussian. X and
W are assumed to be stochastically independent. The noisy
signal Z = X +W is then filtered by the hinge function Q
to generate output Y . The system model is depicted in Fig. 2
and reads as

Y = Q(X +W ) = max{X +W, 0} = (X +W )+. (1)

In order to understand how much information can be
conveyed from the input variable X to the output Y , we will
investigate the mathematical structure of the mutual informa-
tion IX;Y . Maximizing IX;Y over all input distributions F
yields the capacity CX;Y of this channel. We hope that by
training artificial neural networks the input distributions at
intermediate nodes come close to the capacity-achieving one.
This would help to understand why deep learning networks
are this powerful.

III. ENTROPY OF MIXTURE DISTRIBUTIONS

The entropy of a random variable Y with density g with
respect to some dominating σ-finite measure µ on the real
line is defined as

H(Y ) = −
∫
g(y) log g(y) dµ(y), (2)



Fig. 2: The system model: some real input X is subject to
additive noise W and is then filtered by the hinge function.

see [5]. Channel model (1) leads to a mixture of a one-point
distribution at 0 and a continuous distribution, for which the
corresponding entropy can be determined by following the
work [6].

We introduce jointly independent random variables U ,
V and B. U is assumed to be absolutely-continuous with
Lebesgue density fc(u), and V to be discrete with countably
many support points vi, probabilities pi and discrete density
fd(v) = pi, whenever v = vi and fd(v) = 0, otherwise. B is
a Bernoulli distributed random variable with P (B = 1) = α
and P (B = 0) = 1− α. In this case

Y = BU + (1−B)V

has density

g(y) = αfc(y) + (1− α)fd(y)

with respect to the measure µ = λ+χ, the sum of the Lebesgue
measure λ and the counting measure χ on the support points
of V .

From (2) it follows that

H(Y ) = −α
∫
fc(y) log fc(y) dy − α logα

− (1− α)
∑
i

pi log pi − (1− α) log(1− α)

= H(B) + αH(U) + (1− α)H(V ). (3)

The entropy of Y is hence a convex combination of the entropy
of U and V with factor α, plus the additional uncertainty in-
troduced by switching the random variable B, cf. [7, Thm. 3].

IV. MUTUAL INFORMATION OF THE HINGE CHANNEL

Two common abbreviations will be useful in the following.
First, self-information is defined as

ρ(q) = −q log q , q ≥ 0 (4)

and, second, the binary entropy function as

h(p) = −p log p− (1− p) log(1− p)
= ρ(p) + ρ(1− p) , 0 ≤ p ≤ 1 ,

(5)

where the base of the logarithm is kept general. It is well-
known that both ρ(q) and h(p) are strictly concave functions
of their arguments q and p, respectively.

The conditional distribution function of Q(X +W ) given
X = x is easily determined as

P
(
Q(X +W ) ≤ y | X = x

)
=

{
0 , if y < 0 ,

FW (y − x) , if y ≥ 0 .

Assuming that the noise distribution is absolutely-continuous
with density fW , in which case X + W is also absolutely
continuous, the density of Q(X + W ) given X = x is
a mixture of a discrete single-point distribution at 0 and
a continuous one with density 1

αfW (y − x), y ≥ 0, with
α =

∫∞
0
fW (w − x)dw =

∫∞
−x fW (t)dt.

Now let

r(f, x) =

∫ ∞
−x

f(t)dt

and

`(f, x) =

∫ −x
−∞

f(t)dt .

Then by formula (3) we obtain

H(Y | X = x)

= h
(
r(fW , x)

)
− r(fW , x)

∫ ∞
0

fW (z − x)
r(fW , x)

log
fW (z − x)
r(fW , x)

dz

= h
(
r(fW , x)

)
−
∫ ∞
−x

fW (z) log fW (z)dz + r(fW , x) log r(fW , x)

= −`(fW , x) log `(fW , x)−
∫ ∞
−x

fW (z) log fW (z)dz.

The conditional entropy of Y given X is obtained by
integrating H(Y | X = x) w.r.t. the input distribution F as

H(Y | X) =

∫
H(Y | X = x)dF (x) . (6)

In a similar manner, H(Y ) is derived as

H(Y ) = −`(fZ , 0) log `(fZ , 0)

−
∫ ∞
0

fZ(z) log fZ(z)dz
(7)

with fZ(z) =
∫
fW (z − x) dF (x).

From IX;Y = H(Y )−H(Y | X) with (4), (6) and (7), the
following compact representation of the mutual information is
achieved:

IX;Y = ρ

(∫ ∫ 0

−∞
fW (u− x)du dF (x)

)
−
∫
ρ

(∫ 0

−∞
fW (u− x)du

)
dF (x)

+

∫ ∞
0

ρ

(∫
fW (u− x)dF (x)

)
du

−
∫ ∞
0

∫
ρ
(
fW (u− x)

)
dF (x) du .

(8)

As is expected, equation (8) is in line with the corresponding
result for censored channels, see [8].

The channel capacity CX;Y of the hinge channel under con-
straints is obtained by maximizing the corresponding mutual
information (8) over certain classes of input distributions F .
We emphasize the dependence on F by the notation IX;Y (F )
hereinafter.



V. CAPACITY OF THE HINGE CHANNEL

Determining the channel capacity of the hinge channel
subject to moment constraints can be described by the op-
timization problem

CX;Y = max
F

IX;Y (F )

s.t.
∫
xidF (x) = mi , for certain i ∈ N0 ,∫
xjdF (x) ≤ mj , for certain j ∈ N ,

(9)

for given values mi and mj . For example, m0 = 1 ensures
that a solution F ? satisfies limx→∞ F ?(x) = 1 and is hence
a proper distribution function. Choosing |m1| < ∞ and
0 < m2 < ∞ ensures that input X has prescribed mean and
power, respectively. Without constraints of the above type the
channel capacity may be infinite, depending on the underlying
noise distribution. The reason behind this fact is the ramp
on the right side of the hinge function by which error-free
communication for any data-rate is possible by increasing
the power of the input signal to arbitrary high values. This
behavior is similar to the common AWGN channel.

The maximization problem (9) is fortunately a convex
optimization program, since the self-information ρ is strictly
concave. Hence, we use the Karush-Kuhn-Tucker (KKT) con-
ditions to characterize the global optimum. Its Lagrangian
reads as

L(F ) = −IX;Y (F ) +
∑
i

λi

(
−mi +

∫
xidF (x)

)
+
∑
j

µj

(
−mj +

∫
xjdF (x)

)
,

(10)

where λi ∈ R and µj ≥ 0 are the Lagrangian multipliers. The
functional derivative of the Lagrangian (10) vanishes at any
stationary solution, which yields a necessary condition for an
optimum solution F ?. Since the above optimization problem
belongs to the class of convex programs, the necessary condi-
tion is also a sufficient condition. For all points x̃ of increase
of F ?, this condition reads as

0 = log

(
e

∫ ∫ 0

−∞
fW (u− x)du dF ?(x)

)∫ 0

−∞
fW (u− x̃)du

+ ρ

(∫ 0

−∞
fW (u− x̃)du

)
+

∫ ∞
0

ρ
(
fW (u− x̃)

)
du

+

∫ ∞
0

log

(
e

∫
fW (u− x)dF ?(x)

)
fW (u− x̃)du

+
∑
i

λ?i x̃
i +
∑
j

µ?j x̃
j ,

(11)

where the constant e denotes Euler’s number. The complicated
structure of the condition (11) obviously prevents determining
an explicit solution F ? as a proper candidate for the optimal
solution. However, equality (11) is important for numerical
methods to solve (9).

VI. BOUNDS ON THE CAPACITY

As equation (11) demonstrates, it is extremely hard to
determine the capacity of the hinge channel by maximizing (8)
over certain distribution functions F . It is the purpose of this
section to determine upper bounds on the unknown capacity.
This is done by first constructing a lower bound on (6) and
then an upper bound on (7).

By the following chain of inequalities we derive a lower
bound on H(Y | X).

H(Y | X)

=

∫ [
ρ

(∫ −x
−∞

fW (u)du

)
+

∫ ∞
−x
ρ
(
fW (u)

)
du

]
dF (x)

≥
∫ ∫ ∞

−x
ρ
(
fW (u)

)
du dF (x)

=

∫ ∫ ∞
0

ρ
(
fW (v − x)

)
dv dF (x)

= −
∫ ∫ ∞

0

fW (v − x) log
(
fW (v − x)

)
dv dF (x)

≥ −
∫ ∫ ∞

0

fW (u− x)du log

[∫∞
0
f2W (v − x)dv∫∞

0
fW (v − x)dv

]
dF (x)

≥ −ρ
(
e−1
) ∫ ∫ ∞

0

f2W (v − x) dv dF (x)

≥ −ρ
(
e−1
)∫ ∫ ∞

−∞
f2W (v − x) dv dF (x)

= −ρ
(
e−1
) ∫ ∞
−∞

f2W (v) dv .

(12)

The first inequality is due to the positivity of the first term,
the second inequality follows from Jensen’s inequality, see
e.g. [9]. The third inequality is due to the fact that p log q

p ≤
qρ(e−1) for any positive numbers p and q. Equality in the
above chain is never attained.

Finally, an upper bound on H(Y ) follows from

H(Y ) = ρ
(∫ 0

−∞
fZ(z)dz

)
+

∫ ∞
0

ρ
(
fZ(z)

)
dz

= ρ
(∫ 0

−∞
fZ(z)dz

)
+ ρ
(∫ ∞

0

fZ(z)dz
)

+

∫ ∞
0

fZ(z̃)dz̃

∫ ∞
0

ρ

(
fZ(z)∫∞

0
fZ(z̃)dz̃

)
dz

= ρ
(∫ 0

−∞
fZ(z)dz

)
+ ρ
(∫ ∞

0

fZ(z)dz
)

+

∫ ∞
0

fZ(z̃)dz̃ H(Z̃)

≤ ρ
(∫ 0

−∞
fZ(z)dz

)
+ ρ
(∫ ∞

0

fZ(z)dz
)

+

∫ ∞
0

fZ(z̃)dz̃ H(S)

= ρ(α1) + ρ(α2) + α2H(S),

(13)

where α1, α2 ≥ 0 and α1 + α2 = 1.



Fig. 3: Mutual information (8) and the upper bound (16) in
[nats] over the signal-to-noise ratio in [dB] for a hinge channel
subject to additive standard Gaussian noise are visualized.
For mutual information the input signal is either Gaussian,
depicted by the solid red line, or binary distributed, shown
by the dashed blue line. The dotted black line represents the
upper bound on the capacity for any input signal with limited
variance.

The entropy H(Z̃) corresponds to a random variable Z̃

with density equal to fZ(z)∫∞
0
fZ(z̃)dz̃

, z ≥ 0, while the entropy
H(S) corresponds to a random variable S, that achieves the
maximum entropy subject to the given constraints.

For example, when neglecting positivity and thus extending
the set of admissible distributions, S would be Gaussian if the
constraint refers to upper bounding the variance. S would have
an exponential distribution if the constraint fixes the mean.
Note that H(S) is a function of the values mi and mj as well
as the moments of the noise density fW . Thus, the entropy
H(S) is independent of the input distribution F . Equality
in (13) is attained if S has the same density as Z̃.

A global upper bound for H(Y ) is found by maximizing
the right hand side over α1 and α2. Since the objective
function ρ(α1)+ ρ(α2)+α2H(S) is concave, we use simple
convex optimization methods to obtain the optimum α?1 =(
1 + eHe(S)

)−1
, where He(S) is the entropy of S based on

the natural logarithm. Hence, by aid of the binary entropy (5)
we deduce

H(Y ) ≤ h
( 1

1 + e−He(S)

)
+

H(S)

1 + e−He(S)
. (14)

Finally, combining (12) and (14) yields the upper bound

CX;Y ≤ h
(

1
1+e−He(S)

)
+ H(S)

1+e−He(S) +ρ
(
e−1
)∫ ∞
−∞

f2W (v) dv.

(15)
The right hand term of the upper bound corresponds to

the energy of the noise density. Inequality (15) shows that
the capacity of the hinge channel is finite once the maximum
entropy H(S) is finite due to certain constraints, and the noise
density is square-integrable. This is an interesting result in

itself. In order to tighten the upper bound (15), we consider
the following technique.

A further upper bound on the channel capacity can be
derived by using the data processing inequality. Following
this approach, the mutual information IX;Y for the Markov
chain X → Z → Y is bounded by min{IX;Z , IZ;Y }. Hence,
the channel capacity CX;Y is bounded by min{CX;Z , CZ;Y }.
For this upper bound the mutual information IZ;Y = H(Y )−
H(Y |Z) is needed, which can similarly be deduced as shown
for IX;Y . It follows that H(Y |Z) = 0, since the conditional
probability P (Y |Z = z) is a single-point distribution, while
H(Y ) is equal to (7). With these results, an upper bound
on the mutual information of the hinge channel is given by
IX;Y ≤ IZ;Y = H(Y ). Using the bound in (14), we obtain
the upper bound

CX;Y ≤ h
( 1

1 + e−He(S)

)
+

H(S)

1 + e−He(S)
, (16)

which is obviously tighter than the upper bound in (15).

VII. NUMERICAL EXPERIMENTS

In this section, we consider two scenarios for numerical ex-
periments. In both scenarios additive standard Gaussian noise
W applies. Mutual information (8) and the upper bound (16)
are compared in both scenarios for different input signals and
constraints.

In Fig. 3 the results for the first scenario are shown. In this
scenario we compare two input signals where the first one is
Gaussian distributed while the second one has a symmetric
binary distribution. Both input signals are zero mean and have
the same variance E{X2}. As is shown by the solid red line,
the Gaussian input signal achieves a better throughput for high
signal-to-noise ratios (SNR) than the binary input, depicted by
the dashed blue line. The reason behind this effect is that the
capacity for binary signaling is achieved at approximately 7dB
and a further increase is only possible by including additional
signaling points. The upper bound, depicted by the dotted
black line, corresponds to a Gaussian random variable S with
a variance equal to E{X2}. The difference between the upper
bound and the mutual information of the Gaussian input signal
shows an interesting effect. The difference is not necessarily
decreasing for high SNR values, since the left-half of the input
power is always censored by the hinge function and hampers
the increase of the corresponding mutual information.

In Fig. 4 the results of the second scenario are visualized.
Here, an exponentially distributed input signal is compared to
a uniformly distributed binary input signal with one signaling
point at zero. Both input signals have the same positive mean
E{X} > 0. For the sake of comparability with the results
above, the curves are depicted over the ratio between the
squared expected value of the input signal and the noise
variance. As is shown by the solid red line, the exponentially
distributed input signal achieves a better throughput for high
SNRs than the binary input, depicted by the dashed blue line.
The reason behind this effect is the same as described above.



Fig. 4: Mutual information (8) and the upper bound (16) in
[nats] over the signal-to-noise ratio in [dB] for a hinge channel
subject to additive standard Gaussian noise are visualized. For
mutual information the input signal is either exponentially,
depicted by the solid red line, or binary distributed, shown
by the dashed blue line. The dotted black line represents the
upper bound on the capacity for any input signal with limited
mean.

But the exponentially distributed input signal achieves also
better results for very low SNRs, which can be explained by
the bad placement of both signaling points of the binary input
signal. The upper bound, depicted by the dotted black line,
refers to an exponentially distributed random variable S with
expected value equal to E{X}. The difference between the
upper bound and the mutual information of the exponentially
distributed signal seems to converge to zero as the SNR tends
to infinity.

Comparing the results in both figures reveals that input sig-
nals with a positive support achieve higher mutual information
than input signals that also have support on the negative real
line. Furthermore, the upper bound on the capacity seems to
be tighter for input signals with positive support as can be
expected from the equality condition in (13).

In summary, we conjecture that an input signal with at
most one single mass-point on the negative real line should
be preferable to increase the mutual information of the
hinge channel. Moreover, we conjecture that exponentially
distributed input signals for a wide range of noise distributions
are asymptotically capacity-achieving as SNR tends to infinity.

VIII. CONCLUSION

The hinge channel is an important member of communica-
tion channels which has wide applications mainly for artificial
neural networks. Information theoretic investigations of this
channel are extremely hard, as shown in the present paper. We
have achieved a concise description of the mutual information
of the hinge channel and provided necessary and sufficient
conditions for the capacity-achieving input distribution. Since
an explicit form of the information capacity seems to be out
of reach, we have developed upper bounds on the unknown
capacity. The tightness of the upper bounds under different
constraints is demonstrated by numerical investigations. We
conjecture that the exponential distribution is asymptotically
capacity-achieving as the SNR tends to infinity.
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