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Abstract—We present a novel algorithm for self-localization in
sensor networks without any prior knowledge on the locations
of the sensors. We assume that all sensors in the network can
receive and transmit, thus we obtain time difference of arrival
measurements for all combinations of sensors. Using the full set
of these differences in arrival times in the network we are able
to obtain the relative location of the sensors nodes, the shape of
the network. This leaves us with the problem of anchoring the
network to its absolute location, which we solve using additional
transmitting beacons at known locations. Experimental results
from numerical simulation demonstrate the performance of our
approach under various conditions.

Index Terms—Time Difference of Arrival, Sensor Networks,
Self-localization, Multidimensional Scaling

I. INTRODUCTION

In distributed localization systems, knowledge about the
sensor locations is crucial. Often, due to practical issues,
this information is incomplete or erroneous. In ad-hoc sensor
networks the locations might be even completely unknown.
To overcome this problem various methods for calibration and
self-localization have been developed, which can be classified
into active and passive. Active methods require the sensors
to receive as well as transmit, while passive methods must
rely on signals transmitted by targets because the sensors
can only receive. Passive self-localization approaches for time
difference of arrival (TDOA) systems have been developed
only very recently [1], [2]. In general, the optimization prob-
lems associated with active as well as passive self-localization
are not convex. Research results on passive methods indicate
that the underlying minimization problem severely suffers
from many local minima, so great effort is necessary to
find the global optimum and thereby the sensor locations.
In this paper we therefore consider active self-localization
based on time difference of arrival (TDOA) measurements
of the received signals. Due to the non-convex nature of the
problem it is difficult to provide mathematical rigorous proofs
of convergence. However, our numerical simulations show a
more manageable behavior of the passive problem with respect
to local minima as the passive problem tends to have no local
minima close to the global optimum solution.

Classical active self-localization relies on distance mea-
surements between sensors [3], [4], [5]. The relative sensor
locations can be determined from this distance measurements

using the theory of multidimensional scaling [6]. This assumes
that the sensors are able to perform two way ranging in
order to determine the pairwise distances. However, in TDOA
systems, the ability to perform ranging between sensors might
not be available due to technical reasons. On the other hand,
differential measurements between two receiving sensors and
a third transmitting sensor are a natural operation and require
insignificant changes in the system software. However, there
is no known approach to solve the multidimensional scaling
problem from differential measurements. Therefore, in the
present paper we introduce and study an iterative algorithm
that is able to derive the sensor locations from the full set
of TDOA measurements between all combinations of sensors.
Shepard and later Kruskal developed an algorithm now known
under the names of the authors [7], [8]. The algorithm it-
eratively decreases a cost function called Stress, much like
a gradient descent type algorithm. We essentially define a
new Stress function for the time difference measurements,
to develop a similar iterative approach of finding the sensor
locations by minimizing this Stress. Further, we compare the
resulting algorithm with a numerical gradient descent on the
Stress function.

A practical real-world application that motivates our work,
is to apply it to the ATLAS system [9]. This is a wildlife
tracking system in Hula Valley in northern Israel, an area
that lies on an important bird-migration route. For the ATLAS
project, birds are tagged with a transmitter and their move-
ments can be observed in real-time. The system uses a number
of basestations that perform time of arrival measurement of the
bird tags. These arrival times are sent to a central fusion center
that calculates the locations based on the resulting TDOAs.
Locations of the sensor antennas, most of which are mounted
on cellular network towers, can be erroneous, e.g., due to
the GPS antenna not placed next to the receive antenna or
errors in the GPS position. The ATLAS system has some
transmitting beacons in well known absolute locations. We
explain how those can be used to anchor the solution of the
self-localization.

The paper is structured as follows. Section II defines a
system model and notations. Sections III introduces the al-
gorithms for differential multidimensional scaling based on
TDOA measurements. Following that, Section IV discusses



the problem of anchoring the solution to absolute locations.
Finally, Section V provides numerical simulation results to
give a better insight into the algorithm and to study its
performance under noisy conditions. A short conclusion of
the research is given in Section VI.

II. SYSTEM MODEL

We consider a system of M sensor nodes located in a
two dimensional euclidean space. The sensor locations xj =
[xj1 xj2]T , j ∈ [1 . . .M ] are initially unknown. Further a
number of N beacons with known locations xb are available
as anchors. The beacons are constantly transmitting and are not
able to receive whereas the sensors are able to receive as well
as transmit signals. After deployment the system enters into a
self-localization phase. In this phase, each sensor transmits a
calibration signal while all the other sensors are listening. We
assume the sensors to be perfectly time synchronized. Further,
we assume the signals emitted by the sensors to be orthogonal
to the beacon signals such that they do not interfere with the
measurements.

Assuming free-space propagation, the TDOA measurements
for a transmitting sensor at location xj and receiving sensors
at locations xk and xl can be expressed as

τj,k,l =
1

c
‖xj − xk‖2 −

1

c
‖xj − xl‖2 + η, j 6= k 6= l

where c denotes the speed of the wave and η is a Gaussian
distributed noise term. Equivalently we define distance differ-
ences

∆j,k,l = c ∗ τj,k,l + η′.

The full set of ∆j,k,l contains M(M − 1)(M − 2) mea-
surements, the problem is symmetric in the sense that
∆j,k,l = −∆j,l,k, this can be exploited to further speed up
the algorithm described in the next section. We also define
the matrix Dj,k = ‖xj −xk‖ of all pairwise sensor distances.

III. DIFFERENTIAL MULTIDIMENSIONAL SCALING

After obtaining the full set of differential measurements we
would like to estimate the locations of the sensors. Clearly, if
the locations of the sensors are rigidly translated, rotated, and
reflected, the pairwise distances and their differences will not
change. Therefore, we can only determine sensor locations up
to a transformation of the plane (a composition of translation,
rotation, and reflection). We refer to these relative locations as
a configuration.

Multidimensional scaling, as first introduced in [6], provides
a well known solution to this problem if the distance matrix
D is known. We introduce an algorithm that can solve for a
configuration even if only the differential distances ∆j,k,l are
known. We call this algorithm differential multidimensional
scaling (DMDS). Clearly, this is only possible for a set of
more than three sensors. Showing the ambiguity of a three
sensor solution is easily possible by finding two sets of sensor
locations for the same difference measurements. Therefore, we
require a minimum of four sensors. The algorithm is inspired
by the Shepard-Kruskal algorithm [7], [8], [10] that finds

a configuration by defining an iterative rule for moving the
points x̂i to new points x̂i+1.

A. Stress criteria for differential MDS
In order to evaluate the fitness of the configuration, we

define the function

∆̂j,k,l = ‖x̂i
j − x̂i

k‖2 − ‖x̂i
j − x̂i

l‖2, j 6= k 6= l.

Now we introduce a cost function (Stress) S, equivalent to the
Stress criteria defined by Kruskal [8],

S(x̂1, . . . , x̂M ) =

√√√√∑j,k,l(∆j,k,l − ∆̂j,k,l)2∑
j,k,l ∆2

j,k,l

,

This is a functional that maps R2×M (M points in the plane)
to R.

B. Iterative displacement of points
We start with a uniformly-distributed random configuration

x̂0
j , j ∈ {1 . . .M}. Ensuring x̂0

j 6= x̂0
k for j 6= k, we then

seek to minimize S. The classical algorithm introduced by
Sheppard intuitively achieves this by comparing all distances
of tuples in the configuration to the measurements and then
displacing the points accordingly, i.e., moving them slightly
closer or further away from all other points of the config-
uration in each iteration. However, in our problem we have
differential measurements, consisting of triples of points, i.e.
all combinations of one transmitting sensor and two receiving
sensors. Therefore, it is not directly obvious how to displace
points in order to achieve convergence to the minimum-Stress
configuration. Based on empirical studies, we propose to
displace only the receiving sensors in each triple and to choose
the direction of displacement as the direction from the receiver
to the transmitter,

bjk =
x̂i
k − x̂i

j

‖x̂i
k − x̂i

j‖
.

The velocity of displacement is chosen based on the residual
error between the current configuration and the measurement,

vjkl = ∆j,k,l − ∆̂j,k,l .

From this, we determine the displacement vector of each point
in each iteration as

dj =
∑
kl

vjklbjk.

Finally, the new location of each point is calculated

x̂i+1
j = x̂i

j − α
1

(M − 1)(M − 2)
dj ,

where (M − 1)(M − 2) is a normalization term and α is a
step-size parameter that we choose experimentally. After each
iteration, we shift the configuration so that its center of mass
coincides with the origin,

oi+1 =
1

M

∑
j

x̂i+1
j ,

x̂i+1
j = x̂i+1

j − oi+1 .
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Fig. 1: Example of the algorithm running into a local minimum (a) and the evolution of the Stress function (b), showing that
it has converged but not to a the near-zero value we expect to see in the ground-truth configuration.

The procedure is repeated until convergence. Criteria for
convergence are discussed next.

C. Convergence and stopping criteria
A possible measure for convergence is the Stress function S.

We define a threshold ε and assume convergence if S < ε. Due
to the general non-convex nature of the problem, the proposed
multidimensional scaling procedure is not always guaranteed
to converge to the global optimum and might get stuck in a
local minimum. Therefore, we introduce a second criteria to
measure the change of S

Ri = Si+1 − Si

If R < δ and S > ε we assume to have reached a local
minima. A scenario where a local minimum has been reached
is depicted in Fig. 1. These thresholds need to be determined
empirically, especially for the case of noisy measurements.

D. Overcoming local minima
The non-convexity of the problem makes it difficult to find a

solution within a limited runtime. However, we offer two ideas
to help cope with local minima. A simple practical solution to
overcome the minima problem is to restart the algorithm with a
new random configuration. In simulations with up to 100 nodes
we found the probability of running into local minima is so
low that we could always find the global minima. Another idea
that works for some scenarios is to evaluate a Stress function
for individual nodes and interchange the location of nodes that
exhibit the strongest stress values.

E. Numerical gradient descent
At this point, we have fully defined an iterative algorithm

that minimizes the Stress function and thereby finds the loca-
tions of the sensors. For comparison we will now formulate

the problem in a way that enables us to perform a gradient
descent. The Stress S is essentially a scalar functional

f(X̂) =
∑
j,k,l

(
∆j,k,l − ∆̂j,k,l(X̂)

)2
of the vector X̂ = [x̂11, x̂12, . . . , x̂M1, x̂M2]T , X̂ ∈ R2M that
specifies locations x̂j for the sensors. The minimizer of

min
x̂11,x̂12,...,x̂M1,x̂M2

f(X̂),

also solves the original self-localization problem. A common
approach to minimize f is to iteratively perform a gradient
descent step, moving in the opposite direction to the gradient

∇f(X̂) =

[
∂f

∂x̂11
,
∂f

∂x̂12
, . . . ,

∂f

∂x̂1M
,
∂f

∂x̂2M

]T
. (1)

The gradient descent method starts with a random X̂0 value as
an initial position guess and iteratively calculates new values
by the recursive formula

X̂i+1 = X̂i − α 1

(M − 1)(M − 2)
∇f(X̂)|X̂=X̂i . (2)

As the analytical evaluation of the gradient (1) used in (2)
is impractical for large a number of sensors, another way is
to numerically evaluate it in a local region 2∆ around the
variables

∂f

∂x̂jk
=
f([x̂11, . . . , x̂jk + ∆, . . . , x̂M2])

2∆

− f([x̂11, . . . , x̂jk −∆, . . . , x̂M2])

2∆
, k ∈ (1, 2).

Similar to the previous algorithm, α has to be determined
experimentally and measures for overcoming local minima
have to be taken.



IV. ANCHORING

After convergence of the DMDS we have a configuration
that exhibits the correct shape of the sensor network, but
in general is shifted, rotated and reflected. Therefore, we
introduce anchoring points at known locations. In practice
these can be very inexpensive, constantly transmitting beacons,
with no receive capability. They should be placed at a point
that is accessible and can be localized with high accuracy using
methods from land surveying. For example, in the ATLAS
system [9], they are placed on the roof of a bird-watching
huts. In two dimensions we require at least 3 beacons in
order to find the true locations using the following approach.
Based on the final configuration obtained from DMDS, we
localize the beacons using a TDOA localization algorithm as
described in [11]. Other TDOA localization algorithms from
the literature might be used as well, which leads to similar
results. Next we perform Procrustes analysis [12] to determine
the transformation

P =

[
cos θ sin θ a
− sin θ cos θ b

]
that maps the localized beacon locations to the true ones
with least squared error using a shift specified by [a b]T

and a rotation by the angle θ. Finally, we apply the same
transformation to the sensor locations in order to find the true
locations of the sensors on the global map.

ŷj = P [x̂T
j 1]T .

Note that due to the dilution of precision problem [13], it
is important to have beacons located in the center of the
system, otherwise the accuracy of the solution might severely
be affected. Each solution step of the process is shown in
Fig. 2. This concludes the self-localization phase; the system
may now enter into its operational state.

V. RESULTS

We have proposed an iterative algorithm for self-localization
in TDOA sensor networks. This section presents some numer-
ical simulation results in order to investigate and visualize its
performance. First a value for the thresholds that are needed to
detect convergence of the algorithm has been experimentally
determined. Values of ε = 0.001 and δ = 0.001 have been
found to be working well. Further, good values for the step
size, controlled by α have to be determined. Note that for
values of α that are too high, oscillation and divergence of
the algorithm can occur. Whereas for very small values of
α, the number of necessary iterations becomes large. For all
presented results the value of α has been set to 1 in the
DMDS and 0.1 in the gradient descend algorithm, which
yields a good compromise between stability and speed of
convergence. Two types of experiments have been performed.
First the proposed DMDS algorithm has been compared with
the gradient descent. The same initial configuration has been
used for both algorithms. Fig. 3 shows an example for 6
sensor nodes and measurements not affected by noise. It can
be observed that the trajectories of both algorithms follow
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Fig. 2: The steps of the self-localization and anchoring pro-
cess visualized. The final solution is obtain using Procrustes
analysis on the localized beacons.

a similar path. None of the algorithms has been observed
to be always quicker. Repeating the experiment for many
different random sensor locations, the convergence times of the
two algorithms have been found to be comparable. Similarly,
both of the algorithms might run into local minima. However,
this doesn’t necessarily occur jointly in both algorithms for a
certain random instance of locations. In a second experiment
the performance under noise conditions has been studied. For
that, a regular grid of sensors as shown in Fig. 4 has been used.
The noise η ∼ N (0, σ2) on the measurements is increased
step wise and the performance in terms of root means square
error (RMSE) is observed for different numbers of sensors. We
observe the algorithm to be stable as long as the noise term is
reasonably low. Further, for the considered sensor placement
an increased number of sensors increases the robustness of the
system against noise. This can be intuitively explained by the
increased number of available measurements.

VI. CONCLUSION

An iterative multidimensional scaling algorithm for the case
of differential measurements obtained from triples of sensor
nodes has been introduced Further, it has been shown how
to anchor the obtained configuration using additional beacons
at known absolute locations. Different simulation results have
been presented to evaluate the behavior and effectiveness of
the new scheme. We suggest it to be deployed in TDOA sensor
networks if two way ranging and thus classical multidimen-
sional scaling is not easily possible as it may require heavy
changes to the hardware and software of the sensors.
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Fig. 3: Trajectories of the sensor nodes during the iterations of the algorithm (a), together with the Stress functions (b).
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Fig. 4: A simple scenario to study the behavior with noisy measurements (a). Adding more sensors and thereby more
measurements, results in improved robustness of the self-localization against the measurement noise (b).
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