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Abstract—In this paper we study the performance bound of
a wireless sensor network which is capable of estimating the
true values of several active targets. We assume that sensors
can observe each target separately, assuming either targets
are orthogonal in frequency or physically distinguishable. The
aforementioned assumption is of practical relevance for targets
with different physical nature, e.g., heat, humidity, pressure etc.
Another interesting example of separable observation is power
grids where the voltage of each node can be exclusively estimated
at any of its neighboring nodes by measuring the flowing current
and applying the Ohm’s law. Even though such a sensor network
is not wireless, the current work provides a suitable framework
for state estimation and planning of the smart meters in smart
grids. We then propose a novel unbiased estimator. Moreover, as
an additional design variable, we perform power allocation and
optimal fusion of data to further improve the performance of
the proposed estimator. The optimal fusion rules are provided in
closed-form, while power allocation is optimally done by means
of convex optimization.

Index Terms— optimal fusion, target detection, classification,
state estimation, separable targets

I. INTRODUCTION

The rise of certain applications in the 5th generation wireless
systems (5G) drastically increases the importance of sensor
networks for sensing and monitoring purposes. However, an
optimal resource utilization is necessary for an accurately
performed sensing and monitoring task, since the estimation
performance increases with the energy and power consumption
of the network. Hence, the optimization of power and energy
resources for a required performance is of high interest and
studied in many publications, especially for scenarios with
a single target. In [1] we have solved the power allocation
problem in closed-form s.t. individual power limitations of
the sensors as well as a given sum-power constraint for a
single target network. In multi-target scenarios the main topics
for investigations address the tracking and coverage problem.
For example, the focus in [2] is to maximize the lifetime s.t.
power constraints and coverage regions. In the present work
we minimize the estimation error instead of maximizing the
lifetime. The authors in [3] use the GaussMarkov mobility
model to formulate the tracking problem as a hierarchical
Markov decision process and solve it with the aid of neu-
rodynamic programming. Due to difficulties of a centralized
processing to handle multi-target problems, the authors in [4]
have studied the tracking problem by a distributed data pro-
cessing approach. In [5] a special scenario is considered in
which sensor nodes can be put into a sleep mode with a

timer, that determines the sleep duration. By optimizing the
sleep duration they show an improvement of the tracking
performance in sensor networks. In contrast to [4] and [5],
we investigate the centralized scenario and determine the least
reliable sensor nodes to keep them asleep for a uniform time
duration, respectively. It is to mention, that our approach
is more general and it can be used not only for tracking
but also for detection and classification of targets, cf. [6].
In this paper we extend our previously published work [7],
where we consider a wireless sensor network for observing L
active targets by deploying K wireless sensors. The current
work expands that setup by assuming that sensing channels
are orthogonal which means each sensor can observe each
target, separately. For instance, targets are either orthogonal
in frequency or of different physical nature such that they
can be observed by sensors without inter-target interference.
This demands in turn, sophisticated sensor nodes which are
capable of observing targets over different frequency bands
or targets with different physical nature such as humidity,
temperature, etc. In such a condition, sensors can relay their
observations over orthogonal communication resources using
standard techniques of division multiple access such that there
is no inter-sensor and intra-sensor interference.

An interesting application for such a network is voltage
estimation in power grids, as the sensing channels are cables
and, thus, orthogonal. Even though the cable sensing channels
are not wireless, this work enables to provide a suitable
framework for power grid state estimation.

The sensors in our sensor network consume no power for
observation, but only for relaying their observation to the
fusion center. The targets, on the other hand, actively transmit
signals in their environment. The relaying communication
from sensor nodes towards the fusion center is subject to
both per-sensor node output power constraints and a sum-
power constraint on all sensors. Then, at the fusion center
a linear fusion rule, i.e., a matrix multiplication, is applied
to estimate the true values of the target signals from its
received observations. We propose an unbiased estimator for
our sensor network. The total estimation error of the estimator
is further minimized by optimal linear fusion of observations
and also power allocation. For the fusion coefficients, the
optimal solution is provided in closed-form, while the global
optimum of the power allocation is achieved by means of
convex optimization.

The organization of this paper is as follows: the system



model is described in Section II. We propose an unbiased
estimator in Section III whose variance of error can be further
minimized by optimizing the power allocation among the
sensor nodes as well as optimizing a set of fusion rules (per
sensor node) at the fusion center. The resulting optimization
problems are solved in Section IV and Section V. While the
simulation results are presented in Section VI, Section VII
concludes this paper.

Notations: The notation used throughout the paper is as
follows: x denotes a scalar x while x is a vector x with entries
xi. X represents a matrix X with entries xij . x∗, x∗ and
X∗ stand for the complex conjugate of scalar x and complex
conjugate transpose of vector x and matrix X, respectively.
Also, x′ and X′ are the transpose of vector x and matrix
X, respectively. A diagonal matrix with diagonal entries x
is written as Λx. E(·) refers to the statistical expectation.
The sets N, R and C denote the set of all integer positive
and non-zero numbers, the set of real numbers and the set of
all complex numbers, respectively, while Cm×n the set of all
complex matrices of the size of m×n. Finally, the Kronecker
delta function is denoted as δlm.

II. SYSTEM MODEL

The wireless sensor network of interest in the current
work is consisted of K ∈ N passive sensor nodes. Such a
sensor network is illustrated in Fig. 1 and can estimate the
true values of L ∈ N unknown, complex-valued and active
targets, i.e., r1, . . . , rL. The index sets FK = {1, . . . ,K} and
FL = {1, . . . , L} correspond to the set of all sensors and
targets, respectively.

We assume that each target has the known power, i.e.,
Rl := E(|rl|2), l ∈ FL. Nonetheless, their true unknown values
change slowly such that they can be assumed constant over
each round that we perform estimation.

The target signal rl propagates towards the sensor node
k over the so-called sensing channel glk ∈ C and then is
influenced by additive measurement noise mlk ∈ C. We
assume the sensing channel to be nearly constant over each
estimation interval. Hence, it can be treated as a time-invariant
deterministic channel coefficient. The noise is zero-mean,
identically and independently distributed (iid) with variance
of Mlk, which is also independent from the target signals. So,
it is correct to state

E(mlkm
∗
l′k′) = δkk′δll′Mlk, ∀k, k′, l, l′, (1a)

E(mlkr
∗
l′) = E(mlk) E(r∗l′) = 0, ∀k, l, l′. (1b)

Each sensor accordingly amplifies its received signal form
target l ∈ FL by the complex-valued coefficient ulk, k ∈ FK
and transmits it towards the fusion center. The output of sensor
k corresponding to target l, i.e., xlk is represented by

xlk = ulk(mlk + rl glk), k ∈ FK . (2)

Thus, the output power of sensor k for target l is derived below

Xlk := E
(
|xlk|2

)
) = |ulk|2

(
Mlk +Rl|glk|2

)
. (3)

The overall output power Xk of each sensor is limited by the
individual power budget for sensor k ∈ FK , denoted by Pk,
which results in the individual power constraint

Xk :=
∑
l∈FL

Xlk =
∑
l∈FL

|ulk|2
(
Mlk +Rl|glk|2

)
≤ Pk . (4)

The transmitted signal from each sensor propagates through
the communication channel and arrives at the fusion center.
We denote this signal by ylk which can be derived by:

ylk := nlk + hlkxlk = nlk + hlkulk(mlk + rl glk), (5)

where hlk is the communication channel coefficient between
the sensor node k and the fusion center. Similarly, the com-
munication channel hlk is almost constant during the interval
of estimation, and thus deterministic and time-invariant. Also,
nlk represents the additive noise at the fusion center antenna,
which is assumed to be zero-mean and iid with variance Nlk.
Therefore, we can write

E(nlkn∗l′k′) = δkk′δll′Nlk, ∀k, k′, l, l′, (6a)
E(mlkn

∗
l′k′) = E(mlk) E(n∗l′k′) = 0, ∀k, k′, l, l′. (6b)

For a compact representation of our system, we introduce
the following vector notation. The active targets are writ-
ten as the vector r =

[
r1, . . . , rL

]′
, r ∈ CL×1 , while

xl = [xl1, . . . , xlK ]′ , xl ∈ CK×1 is the vector containing
the outputs of all sensors corresponding to one specific target
l ∈ FL. The other system variables yl,ul,gl,hl,ml and
nl ∈ CK×1 are defined, accordingly. Then, (2) can be recast
into the vector form

xl = Λul
(ml + rl gl), (7)

where we define Λul
:= diag(ul). Also, by using (7) and

defining Λhl
= diag(hl), we rewrite (5) into the vector form

yl = nl + Λhl
xl = nl + Λhl

Λul
(ml + rl gl). (8)

Since the system can make observations of each target sepa-
rately, the fusion center fuses them separately by multiplying
its input corresponding to target l with the so-called fusion
vector vl ∈ CK×1 which results into the observation values

r̃l = v′lyl = hlrl + wl , (9)

where hl := v′lcl is the effective observation channel and

[cl]k := hlkulkglk . (10)

Also wl := v′lnl + v′lΛhl
Λul

ml is the effective noise.
To examine the performance bound of such a sensor net-

work, we assume that the channel coefficients are perfectly
estimated and known at the fusion center. Finally, the overall
power that is consumed in the network, i.e., the sum of
the output powers of all sensors from (4), is limited by
the available sum-power Ptot, which leads to the sum power
constraint∑
k∈FK

Xk =
∑
k∈FK

∑
l∈FL

|ulk|2
(
Mlk +Rl|glk|2

)
≤ Ptot. (11)

This allows to increase the life time of our network, since in
each round of estimation the power is allocated optimally.
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Fig. 1: Block diagram of the multi-target wireless sensor network. Targets are observed separately at each sensor node and
fused separately at the fusion center.

III. PROPOSED ESTIMATOR

An efficient estimator, which is unbiased and further attains
the Cramer-Rao lower bound, is possible to find only when
the probability distribution function of the observation data
is known [8]. Unfortunately, in our case this requirement is
not met, as we know only mean and variance of the signals.
Consequently, it is also not viable to come up with a minimum
variance unbiased estimator (MVUE). Given these facts, we
are ideally interested in the best linear unbiased estimator
(BLUE), r̂, such that E(r̂ − r) = 0 and its error variance
is minimum. Unfortunately, for such an estimator we cannot
perform power allocation, since the underlying mathematical
problem is intractable, cf. [7].

We, therefore, propose an alternative estimator which is not
only unbiased but also its variance of error is further reduced
by doing power allocation and optimal fusion. Moreover,
the estimator is tractable. If the power allocation and fusion
strategy are chosen such that the value hl in the observation (9)
is always one, then the estimator

r̂l = r̃l = rl + wl , (12)

is obviously unbiased, since wl is zero-mean. Such an unbiased
estimator delivers the estimation error E(|wl|2) in estimating

target rl. It is easy to prove that f(ul,vl) := E(|wl|2) is

f(ul,vl) =
∑
k∈FK

|vlk|2(Nlk + |hlk|2|ulk|2Mlk). (13)

It is also useful to represent E(|wl|2) in vector form as

f(ul,vl) = v∗l Λdl
vl , (14)

where

Λdl
:= diag(dl) , (15a)

[dl]k := Nlk + |hlk|2|ulk|2Mlk . (15b)

At the same time, we can minimize the total estimation error
by solving the proposed optimization problem

min
ul∈CK×1

vl∈CK×1

l∈FL

∑
l∈FL

∑
k∈FK

|vlk|2(Nlk + |hlk|2|ulk|2Mlk) (16a)

s.t.
∑
k∈FK

vlkhlkulkglk = 1,∀l ∈ FL, (16b)∑
l∈FL

|ulk|2(Mlk +Rl|glk|2) ≤ Pk, k ∈ FK , (16c)∑
k∈FK

∑
l∈FL

|ulk|2(Mlk +Rl|glk|2) ≤ Ptot. (16d)



The unbiasedness is provided by the constraint in (16b) which
is derived from (9) and (10). Also, individual and sum-power
constraints are guaranteed by (16c) and (16d), resulting from
equations (4) and (11).

IV. OPTIMIZING FUSION RULE

Note, that the power constraints (16c) and (16d) are in-
dependent from fusion rules vlk. Hence, the optimal fusion
strategy is achieved by minimizing the objective function (16a)
subject to (16b). Interestingly, there is no interdependence
between fusion rules for different targets, i.e., vl. More
precisely, the objective function is the summation of different
independent terms, i.e., f(ul,vl) on the one hand and on the
other hand the constraint for each target, i.e., hl = 1 depends
only vl. Having given the mentioned property, we can break
the original problem down into L independent optimization
problem. Therefore, the optimal v?l , l ∈ FL is the solution of

f(ul,v
?
l ) = min

vl∈CK×1
v∗l Λdl

vl (17a)

s.t. v′lcl = 1 . (17b)

By composing the Lagrange dual function of the problem (17)
and using the corresponding KKT conditions, it is straight-
forward to achieve the optimal fusion strategy v?l for target
l ∈ FL. The resulting solution is the global optimum due to
the convexity of the problem (17). As an outcome, the duality
gap between primal and dual problem is zero [9]. Hence, the
solution of the dual problem, i.e.,

v?l =
Λ−1dl

(c∗l )
′

c∗lΛ
−1
dl

cl
, (18a)

f(ul,v
?
l ) =

1

c∗lΛ
−1
dl

cl
, (18b)

is identical to the optimum of the primal problem (17). Using
the definition of cl and Λdl

in (10) and (15), we can rewrite
f(ul,v

?
l ) as

f(ul,v
?
l ) =

1∑
k∈FK

|hlk|2|ulk|2|glk|2
Nlk+|hlk|2|ulk|2Mlk

· (19)

V. POWER ALLOCATION

To further minimize the total estimation error, we need
to perform optimal power allocation since the error function
f(ul,v

?
l ) still depends on power allocation. Let

αlk :=

√
|glk|2
Mlk

, (20a)

βlk :=

√
Nlk
(
Mlk +Rl|glk|2

)
|hlk|2Mlk

, (20b)

then, by replacing (3) in (19) the estimation error of target l
can be stated as a function of Xlk:

f(ul,v
?
l ) =

1∑
k∈FK

α2
lkXlk

Xlk+β2
lk

· (21)

The total estimation error (16a), thus, reads∑
l∈FL

f(ul,v
?
l ) =

∑
l∈FL

1∑
k∈FK

α2
lkXlk

Xlk+β2
lk

· (22)

Therefore, the resulting power allocation problem reads

min
Xlk∈R

l∈FL,k∈FK

∑
l∈FL

1∑
k∈FK

α2
lkXlk

Xlk+β2
lk

(23a)

s.t. Xlk ≥ 0 , l ∈ FL , k ∈ FK , (23b)∑
l∈FL

Xlk ≤ Pk , k ∈ FK , (23c)∑
k∈FK

∑
l∈FL

Xlk ≤ Ptot . (23d)

The problem (23) is convex for its objective function and
feasible set are convex. Let g(x) = ax

x+b , then we know that
its second derivative g′′(x) = −2ab

(x+b)3 . It is easy to see that
g′′(x) ≤ 0, if x, a, and b are positive which makes the
function g(x) concave. Now, let x = Xlk ≥ 0, a = α2

lk ≥ 0
and b = β2

lk > 0, then g(Xlk) is concave and non-negative.
Consequently, the denominator of each function f(ul,v?l ) in
(21) is the sum of non-negative concave functions and thus
concave and positive itself. As f(ul,v?l ) is the inverse of a
positive concave function, it is a convex function. This makes
the whole function (23a) convex, since it is the sum of convex
functions, cf. [9].

The main challenge in minimizing the total estimation error
of the proposed estimator was solving the complex problem
in (16). Now, after simplifying the problem into the closed
form solution for fusion rules in (18) and ending up in the
convex power allocation problem in (23), we can easily utilize
any convex solver to have the optimal solution of (16). It is
obvious the solution is the global optimum due to convexity
of the problem.

VI. SIMULATIONS

Having come up with the solution of the proposed opti-
mization problem in (16), we now provide some numerical
results to justify the performance of the sensor network. In the
current simulations, the estimation of the targets are performed
for several realizations of channel and noise, each of which
hands in a different observation of the targets. We shall refer
to these realizations as estimation instances. The channel
coefficients and noise terms are complex-valued, iid with
Gaussian distribution with zero mean and of given variances.
The variance of sensing and communication channels as well
as the power of all targets are set to one. The sensing and
communication noise terms are generated with variances of σ2

s

and σ2
c , respectively. The definition of signal-to-noise ration

(SNR) is a challenging task in order to capture the realistic
situation of the network. Nonetheless, for sake of simplicity
we define SNR by −10 log(σsσc), with σs = σc.

In Fig. 2 and Fig. 3 we have plotted the estimations of
constellation points of L = 2 and 4 target signals, respectively.
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Fig. 2: Estimation of target signals with proposed estimator (L = 2,
Pk = 2, Ptot = 10, σs = σc = 0.2, SNR ≈ 14 dB). Estimation
is done for 1000 estimation instances (different realizations) whose
estimation values are shown with blue dots, while the red dots
correspond to the constellation points of target signals.

The figure are generated for estimation instances. It is signif-
icant to remark the following properties of these figures. The
estimation (blue points) are scattered around red constellation
points in a symmetric fashion, since they are located inside
circles which are co-centered with constellation points. The
centers of these balls, compared to constellation points, are
not rotated, not shifted and not scaled, which all together
emphasize the fact that the proposed estimator is unbiased and
suitable for classification purposes. Obviously, the increase of
radii of these balls corresponds to higher noise power , or
equivalently, lower SNR in the system.

An interesting fact about Fig. 2 and Fig. 3 is that by increase
of K, the estimations become more accurate. This is also
evidenced in Fig. 4 where the total estimation error (TEE) and
symbol error rate (SER) are plotted against SNR for different
values of K.

The reason of such improvement in case of K ≤ 5 (unlike
K > 5) is that the total available power increases when the
number of sensor nodes increases. But, this is not the only
reason. The main reason which also applies to the case of
K > 5 is that, by adding more sensor nodes for a given
total power, i.e., min(KPk, Ptot), the number of sensors nodes
with good quality of observation (lower estimation noise)
increases and thus the overall quality of estimation enhances.
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Fig. 3: Estimation of target signals with proposed estimator (L = 4,
Pk = 2, Ptot = 10, σs = σc = 0.1, SNR ≈ 20 dB). Estimation
is done for 1000 estimation instances (different realizations) whose
estimation values are shown with blue dots, while the red dots
correspond to the constellation points of target signals.

The second reason is the only general cause for networks
with K ≥ Ptot

Pk , i.e., K ≥ 5 in Fig. 4a, given the same
power allocation strategy. More importantly, we can easily see,
optimal power allocation increases the estimation quality. For
instance, a system with K = 8 sensor nodes under optimal
power allocation outperforms K = 16 sensors with uniform
power. Even though the difference between the TEE in both
system seems to be negligible, but one can see in Fig. 4b
that SER for K = 16 at SNR= 10 dB is reduces by 99.5%,
i.e., from 2 × 10−3 to 10−5 by optimal power allocation.
The underlying reason is that while power allocation gives
more power to sensors with higher quality of observation,
non-optimal strategies, e.g., uniform power allocation, amplify
the effective observation noise, in general. Note that SER
is calculated by doing detection of the symbols, since we
have assumed, without loss of generality, that targets transmit
QPSK symbols. The results are averaged over 105 estimation
instances. Each symbol is considered as correct, only if both
bits are detected error-freely.

Finally, in order to provide a comparison between the
present and the previous work [7], Fig. 5 plots the SER of
both systems against SNR for different numbers of sensors.
As figure shows the current sensor network, as expected, con-
siderably outperforms the previous system, since the targets
are separable at sensor nodes. In addition, the estimation of
L = 4 targets is possible for low numbers of sensors, i.e.,
K = 2, while the same problem is infeasible in case sensing
channels are not orthogonal. In other words, symbol error rate
regardless of the value of SNR is 1, as the K = 2 sensors
do not observe the L = 4 targets orthogonally. The reason,
cf. [7, Table I], is that the underlying system of equations is
overdetermined and thus insolvable for K < L.

VII. CONCLUSION

This paper studies a multi-target wireless sensor network for
estimating true values of target signals. We have proposed an
unbiased estimator of minimized estimation error. This is done
by doing data fusion at the fusion center and power allocation
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Fig. 4: TEE and SER against different values of SNR for several
numbers of sensors K. It is assumed that L = 4, Pk = 2, Ptot = 10.
The results are averaged over 1000 realization of the channel and
noise.

among sensor nodes. It is assumed that the targets can be
separately, i.e., interference-freely, observed due to either
orthogonality in frequency or segregation in their physical
nature. The results prove that such a system with orthogonal
observation, as expected, outperforms networks in which all
targets transmit over the same frequency band.
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