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Abstract—With the abundance of mobile connected devices
and coexisting networks, localization solutions are inevitably
subject to interference. In this paper, effects of interference on
the performance of Fingerprinting Localization Algorithms (FPS)
are studied both theoretically and through experimentation. The
previously introduced theoretical framework based on Hypothesis
Testing (HT) problem is employed to characterize the perfor-
mance of FPS and provide guidelines for combating negative
impact of interference. In particular, it is shown that background
interference interestingly can improve the performance of FPS,
while the interference in the measurement phase incurs an
error by pushing the reported location closer to the anchors.
Moreover, the anchors provide the highest interference robustness
for locations in their proximity. These results are further verified
through simulations and experimentation in realistic setups.

I. INTRODUCTION

Location information is an indispensable requirement for
providing context-aware services, location-aware and perva-
sive computing, ambient intelligence, and location-based ser-
vices. Significant efforts have been invested in developing lo-
calization solutions that can, both indoor and outdoor, provide
locations of objects and individuals with precision and accu-
racy required by the target application. It is more favorable for
localization solutions to leverage available technologies and
infrastructures and hence avoid extra hardware development
and deployment costs. In that regard, Radio-Frequency (RF)-
based solutions that utilize technologies such as IEEE 802.11
(WiFi), IEEE 802.15.4 (ZigBee), IEEE 802.15 (Bluetooth),
Ultra-Wide Band (UWB), RFID, and mobile networks are
particularly interesting.

However, as the density of wireless devices increases,
wireless networks and services are more subject to unintended
wireless transmissions from other devices. Interference turns
out to be a bottleneck for many wireless networks by reducing
the Signal to Interference Noise Ratio (SINR). Many research
pieces attempted to address interference problem by devising
different techniques for interference avoidance, cancellation,
and coordination [1]–[3]. However, it is much more difficult
and much less attempted to characterize the effects of in-
terference on localization solutions. In general, localization
solutions are complex systems influenced by infrastructure,
used technology, signal processing algorithms, and propaga-
tion environment. The effect of interference is the aggregation
of its effects on each part of the system. Even the same
type of interference can have dissimilar effects on different

technologies (IEEE 802.11, IEEE 802.15.4, etc.) and on the
localization parameters reported by each technology.

In this work, we focus on Received Signal Strength (RSS)-
based fingerprinting solutions, one of the most promising
approaches for indoor indoor localization. Different aspects
of fingerprinting algorithms have been studied vastly in the
literature [4]–[8]. The main theoretical work on fingerprinting
algorithms is [9], where the authors provide an analysis of the
effect of the number of visible Access Points (APs) and radio
propagation parameters on the performance of fingerprinting
algorithms. These results are extended to complexity analysis
in [10]. The authors in [11] proposed a probabilistic model
for RSS-based fingerprinting relating locations to received
RSS. The performance of fingerprinting algorithms has then
been discussed using likelihood-based detection algorithms
and insights have been provided for fingerprinting design.

The general belief is that the interference between APs de-
grades the performance of localization solutions [12]. In WiFi-
based systems one effect of interference is the loss of beacon
packets, which impacts harmfully Received Signal Strength
Indicator (RSSI)-based fingerprinting algorithms [13]. How-
ever, if the packet is correctly received, the interference can
still affect RSSI values. Based on a set of measurements
using telosB with a CC2420 radio, it has been observed
that the interference effect on RSSI values is additive [14]
(and a similar work in [15]). This idea has been explored
experimentally and theoretically in [16], where the effect of
interference on packet-based RSSI, reported by IEEE 802.11
and IEEE 802.15.4 technologies, and on the Time of Flight
(ToF) measured by IEEE 802.15.4 nodes was studied. From
an information theoretic perspective three regimes have been
identified. With low interference power, no significant changes
are observed in RSSI values. When the interference power
increases and passes a certain threshold, the RSSI value start
to change and afterward they change almost linearly with the
interference power in dBm until a certain threshold where
packet reception is no longer possible. Note that in general
the interference power is added to the received power when
measured in Watt and not dBm.

In this work, we employ the theoretical framework de-
veloped in [17], [18] to study the effect of interference on
RSS-based fingerprinting algorithms. The signal feature is
assumed to be the RSS value. It is assumed that RSS values
are measured in Watt and not obtained from beacon packets.
Therefore, the main effect of interference is changing the978-1-5090-6299-7/17/$31.00 c© 2017 IEEE



RSS values and not the packet loss. The variation due to
interference is modeled by an additive term. Based on [17], a
function based on Kullback-Leibler (KL)-divergence is used
as the performance metric encapsulating both latency and
accuracy. It is shown that the interference, if it is present
in both training and measurement phases, can improve the
performance of fingerprinting solutions for a part of the region.
On the other hand, if the interference is only present in
the measurement phase, the localization solution tends, for a
location in proximity to interference, to “push” the position
estimate closer to the anchors. These results are supported by
both theoretical and numerical investigations.

The paper is organized as follows. In section II, the system
model is introduced including propagation channel and RSS
model. The interference effect on localization solutions are
discussed theoretically in section III. The experimental and
analytical evaluations are given in Section IV.

II. SYSTEM MODEL

The localization system consists of K dedicated anchors
used for localization. The location of the anchor i and the
target node are respectively given by wi and u both in an
Euclidean space Rd. The anchor i’s signal is denoted by x(i)(t)
with transmission power P (i)

T . The received signal from the
anchor i can be modeled as follows [19]:

y(i)(u, t) =
∑

a
(i)
j (t)x(i)(t− τ (i)j (t)) + z(i)(t), (1)

where a(i)j (t) and τ (i)j (t) are the channel gain and delay of
j’th multi-path component. The fingerprint at the point u is
then Xu = (X

(1)
u , . . . , X

(K)
u ) where X

(i)
u is the fingerprint

of the anchor i which is supposed to be the received power
P (i)(u). In this work, it is assumed that the received power is
calculated over long period and therefore the small scale fading
is averaged out. Moreover assuming one dominant channel tap,
the attenuation is assumed to be proportional to 1

‖wi−u‖α/2
with α is the path loss exponent, assumed to be the same
for all the anchors. For example, WiFi RSSI values vary only
slightly in time and that mainly due to quantization noise.
Therefore the fingerprint X(i)

u writes as:

X(i)
u = P (i)(u) =

P
(i)
T

‖wi − u‖α +N +Ni, (2)

where N is the additive noise power, Ni is a Gaussian random
variable of variance Ni to account for small changes in RSS
values. Suppose that the interference is present at wI and is
transmitting with power PI . The total received power now has
an additive interference part. The new fingerprints under this
condition are given by:

X(i)
u = P (i)(u) =

P
(i)
T

‖wi − u‖α +
PI

‖wI − u‖α +N +Ni. (3)

III. INTERFERENCE EFFECT ON FINGERPRINTING

To analyze the effect of interference on performance of
fingerprinting localization solutions, we adopt the framework
introduced in [18]. In the framework, it was assumed that the
measured feature for localization is probabilistically related
to the measurement location and the relation is characterized
through a probability distribution function. The localization
problem is recognized as hypothesis testing problem for the
probability distribution of the measured feature at each lo-
cation. Indeed, it has been shown in [18] that knowing the
probability distribution and with some mild conditions, one
can accurately localize each object with sufficient number
of measurements. Kullback-Leibler (KL) divergence measures
the difference between probability distributions and appears
as a central performance metric. In general, the smaller the
KL divergence of the probability distributions at two different
locations, more measurements are needed to distinguish them,
and hence higher latency. Therefore, KL divergence is used in
this work as the metric to evaluate the latency and accuracy
of underlying localization solution under interference.

A. Interference in Training and Measurement Phase

In this section, it is assumed that interference is present
in both training and measurement phases. The probability
distributions of the feature at two locations u1 and u2 is given
by PX|u1

and PX|u2
characterized by (2) and (3). It is known

from [17], [18] that the accurate localization is possible in this
case under sufficient number of measurements and training
points. KL-divergence is used to evaluate the performance of
localization solutions. For the case where no interference is
present, the KL-divergence is evaluated as:

D(PX|u1
‖PX|u2

) =
∑
j

(P
(j)
T )2

2Nj

(
1

‖wj − u1‖α
− 1

‖wj − u2‖α

)2

.

(4)
On the other hand, when the interference is there, the new

KL-divergence D(PIX|u1
‖PIX|u2

) is given by:

D(PIX|u1
‖PIX|u2

) =
∑
j

1

2Nj

(
(P

(j)
T )2

‖wj − u1‖α
− (P

(j)
T )2

‖wj − u2‖α
+

P 2
I

‖wI − u1‖α
− P 2

I

‖wI − u2‖α

)2

.

(5)

Similar to [18], the previous expressions are evaluated
for the case D(PX|u‖PX|u+e) which indicates how well
two points of distance ‖e‖ can be distinguished as a func-
tion of u and system parameters. The functions `(u, e) =
D(PX|u‖PX|u+e) and `I(u, e) = D(PIX|u‖PIX|u+e) are
called resolvability functions since they indicated how well
one can resolve two points of fixed distance. As expected, if
u is far from the interference, then the interference does not
have a major effect. This is different for those points close to
the interference. Interestingly, `I(u, e) is very large for points
closer to the interference source, compared to the case where
no interference is present. With background interference, the



points closer to the interferer can be better distinguished
from their neighbors of distance ‖e‖. This means that the
accuracy and latency features of localization for those points
are significantly improved. This can be seen in Figure 1 where
two cases are compared. At first no interference is present,
followed by the case when fingerprinting is done with a
background interference. All sources have unit power, path-
loss exponent is 2, and e = (0.1, 0.1) with meter as the
unit in an area of 3× 3m2. The level curves of `I(u, e) and
`(u, e) are shown with same values attributed to the same
color. Note that the KL-divergence is significantly improved
around the interferer’s location meaning that interference can
actually improve fingerprinting localization performance for
points close to the interferer’s source. Another hint from this
discussion pertains to anchor placement. If the positions of
background interference are known, one can deploy dedicated
localization anchors more efficiently by placing them far from
interference sources.

B. Interference in Measurement Phase
Consider the case where the interference is only present

in the measurement phase and not the training phase. In
this case, interference changes the fingerprints such that the
closest fingerprint to the one measured under interference
might not be any more the fingerprint taken at that location.
When the interference is not present, at a given location,
the KL-divergence between feature probability distributions
in the training and measurement phases is trivially zero since
they both have the same statistics. This is not the case when
interference is present. Suppose that the feature probability
distribution at u1 in the measurement phase is given by
PIX|u1

. To see how much interference corrupts the fingerprint
distribution, consider the probability distribution in the training
set which is the most similar one to PIX|u1

:

û1 = argmin
u
D(PX|u‖PIX|u1

), (6)

This implies an error ‖û1 − u1‖. When no interference is
present, this error will be zero. To get some intuition about
how big the error can get under interference, consider the func-
tion `u1

(u) = D(PX|u‖PIX|u1
). We call it the identification

function at u1 because it shows how well one can identify
the location u1 in the measurement phase. The level curves of
this function indicate how well different points in the space
are distinguishable from u1. In idea situation, the function is
minimized at u1 and rapidly increases by moving away from
the point. The maximum value of this function is then attained
around the anchors, which is expected given that points closer
to the anchors have better accuracy. Under interference these
level curves are displaced. Following theorem is a hint on how
the level curves are deformed.

Theorem 3.1: Consider a fingerprinting localization solution
composed of K anchors placed at w1, . . . ,wK and an inter-
ference source at wI .

1) Under interference, the reported location is either the
same or closer to at least one anchor compared to the
actual location.

2) Suppose that the interference source is outside the convex
hull1 of anchors and suppose that u1 is a point outside
the convex hull of anchors and in proximity of the
interference source. Then the estimated location û1 by
KL-divergence based FPS belongs to the convex hull of
anchors.
Proof: As for the first part of the theorem, for the simple

model introduced above, the function `u1(u) is characterized
as follows:

`u1(u) =
∑
j

1

2Nj

(
(P

(j)
T )2

‖wj − u1‖α
− (P

(j)
T )2

‖wj − u‖α +
P 2
I

‖wI − u1‖α

)2

.

(7)
For a fixed u1, the interference increases each fingerprint

by P 2
I

‖wI−u1‖α . The reported location u? is the one attaining
the minimum in (6). If this point u? is different from u1, then
at least for one j, we should have ‖wj − u1‖ ≥ ‖wj − u?‖.
Otherwise we have:

(P
(j)
T )2

‖wj − u1‖α
− (P

(j)
T )2

‖wj − u?‖α > 0. (8)

This means instead that `u1(u
?) > `u1(u1) which is in

contradiction with assumption of u? being the minimizer of
(6). For the second part, assume that all powers are put equal
to one. If u? is the minimizer in (6), then it should satisfy the
following gradient constraints:

∇u`u1(u) = 0, (9)

which after standard manipulation leads to:∑
j

βj(u,u1)(u−wj) = 0, (10)

with:

βj(u,u1) =

(
1

‖wj − u1‖α
− 1

‖wj − u‖α +
1

‖wI − u1‖α

)
.

u? must satisfy this equation. If all βj(u,u1)’s are nonneg-
ative or non-positive simultaneously with at least one of them
non-zero, then the reported location belongs to the convex hull
of anchors. In this sense, if a point is close to the interference
source, i.e, if ‖wI − u1‖ is very small, then βj(u,u1)’s are
all positive and therefore u? is reported inside the convex hull
of anchors.

The previous theorem can be examined from another per-
spective. First consider the following lemma.

Lemma 1: Suppose that u is in the convex hull of points
w1, . . . ,wK . If for another point v we have:

∀j ∈ {1, . . . ,K} : ‖v −wj‖ ≤ ‖u−wj‖, (11)

then v = u.
Proof: From ‖v−wj‖ ≤ ‖u1−wj‖, it can be seen that:

vTv + 2wT
j (u− v) ≤ uTu. (12)

1A convex hull of a set X of points in a given space is the smallest convex
set that contains X .
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Fig. 1: Resolvability of points with distance 0.14m with 3 anchors (A)
and 1 interference source (I) in 3× 3m2 - The arrow points toward

increasing resolvability.

Fig. 2: Localization error versus
distance from interference source for

different interference powers
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Fig. 3: Identification function for u1, `u1(u) for interference power PI = 0, 0.5 and 1 W in 3× 3m2
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Fig. 4: Effect of anchor placement on `u1
(u); anchors placed as (0.5 + δ, 0.5− δ) for δ = 1, 0.5, 0.35

If u is in the convex hull of points w1, . . . ,wK , there are
αi ∈ [0, 1] with

∑
αi = 1 such that u =

∑
αiwi. Multiplying

each inequality by αi and summing up we have:∑
j

αjv
Tv + 2

∑
j

αjw
T
j (u− v) ≤

∑
j

αju
Tu =⇒

vTv − 2uTv + uTu ≤ 0,

(13)

which means ‖v − u‖ = 0 and hence v = u.
Suppose that the actual location u1 is in the convex hull of

anchors. If βj(u?,u1) ≤ 0 for all j, then the reported location
is also inside the convex hull. But the negativity of βj(u?,u1)
implies that ‖u?−wj‖ ≤ ‖u1−wj‖ for all j. An interesting
implication of previous lemma is that u? should be equal to
u1. But this is not be possible because βj(u1,u1) is positive.
Therefore βj(u

?,u1) cannot all be non-positive. Note that
the function βj(u?,u1) shows how much interference pushes
away the reported location from the actual one.

A very general rule of thumb is that the interference pushes
the level curves of `u1(u) close to the anchors. Particularly
those points close to the interference are affected severely
by being pushed into the convex hull of anchors. This is
expected because the interference is generally additive to the
received power. By increasing the received power, it creates the
appearance of receiving higher power and hence being close to
the anchors. To see how the points closer to the interference are
affected, consider the function `u1

(u1), which boils down to
‖wI−u1‖−2α. This expression shows how much interference
corrupts the fingerprint at each point compared to the training
phase. It is easy to see that the fingerprint corruption is
inversely proportional to the distance to the interferer.

Figure 3 shows the level curves of `u1(u) with interference
powers 0, 0.5 and 1. The anchors are denoted by the red
points and have unit power, while the interferer is presented
by a blue point. The arrow shows the direction of increase



in the values corresponding to level curves and same colors
represent the same values in all figures. These figures present
more intuitively the ideas discussed above regarding the effect
of interference. Note that the error can be numerically char-
acterized at each location by solving (6). In Figure 2 the error
incurred by interference is found on each point located on the
line from interference at (1,0) to the anchor at (0,1). It can be
seen that the error decreases exponentially by distance from
interference until it hits zero. By increasing the interference
power, the decay of error by distance becomes linear.

C. Opportunistic Anchors for Interference Robustness

In the presence of the interferer, suppose that its location
is available. Also suppose that the training phase is done
using multiple anchors but only some of them are used in
measurement phase and the rest are idle for example for energy
efficiency purpose. The question is which anchor should be
turned on to improve better the performance. An interesting
question is to see whether it is always better to turn on an
anchor close to the interferer.

In Figure 4 this scenario is discussed. In the figure, it can
be seen that the anchor closer to the object of localization,
and not necessarily closer to the interferer, provides better
robustness. However, an anchor close to the interferer yields
higher improvements in the overall performance of the system
because the points closer to the interferer are subject to higher
inaccuracies due to interference. On the other hand, if the
localization of a specific object is desired, it is better to localize
it in two steps. In the first step, existing infrastructure provides
an approximate location of the object and in the second step,
if needed, a new anchor close to the approximate location is
activated to provide better accuracy.

IV. EVALUATION

In this section, we demonstrate the consistency of the
developed theory with the realistic behavior of fingerprinting
algorithms under interference. First, we compare the results
of the theory with the ones derived by leveraging a more
complex model for indoor radio propagation. Second, we show
the consistency of the theoretical results with the ones obtained
through experimentation. As a fingerprint at each location,
both for analytically and experimentally derived results, we use
the vector of average RSS values observed from visible WiFi
APs in a targeted environment, which is an often used signal
feature in fingerprinting [20]. The pattern matching function
between a fingerprint in the measurement phase and each
fingerprint from the training phase is the Euclidean distance
between RSS vectors, which is again an established method
in indoor fingerprinting [21].

A. Analytical Evaluation

The footprint of the environment used in our simulation is
given in Figure 5. The outer size of the environment is roughly
15x30 m2. In the environment, we defined a set of four APs,
with their transmission power set to 20 dBm and with their
locations as indicated in the figure. We further defined a set

of 40 training locations for fingerprinting, with their locations
labeled with red dots in the figure. We modeled the RSS values
from the four APs in each training location using the COST
231 multi-wall model for indoor radio propagation [22]. The
model’s applicability for indoor localization purposes has been
demonstrated repeatedly (e.g. [17], [23], [24]). The model
accounts for the type and number of walls and obstacles in an
environment. The first attenuation contribution in the model is
a one-slope term that relates the received power to distance.
This attenuation contribution is characterized by the constant
l0 (the path-loss at 1 m distance from an AP and at the center
frequency of 2.45 GHz) and the path-loss exponent α. Second,
the number of walls in the direct path between an AP and a
target location is counted and for each wall an attenuation
contribution is assumed. The model yields RSS values from
the defined APs at a target location.

AP3	

AP2	

AP1	

AP4	

Interferer	1	

Interferer	2	
Interferer	3	

Interferer	5	 Interferer	4	

New	AP3	

New	AP2	

New	AP1	

New	AP4	

Fig. 5: Footprint of the environment used for deriving
analytical results

In the parameterization of the model, we leveraged pre-
collected measurements from the TWIST testbed environment
with the same footprint [25] and used a least-square fitting
procedure that allows minimizing the cost function between
the measured received power and the modeled one. The pa-
rameters used as inputs to the model are the constant lc related
to the least-square fitting procedure, the path-loss exponent
α, and the wall attenuation factor lw. Moreover, a zero-mean
Gaussian noise with standard deviation σ has been added
to the obtained RSS values, which is a standard procedure
in the simulation of the behavior of RSS-based localization
systems [26], [27]. The procedure yielded the values for model
parameter, i.e. lc=53.73, α=1.64, and lw=4.51. Furthermore,
we defined σ=2 because similar variabilities of WiFi RSS
measurements have been reported and usually used in the
literature, e.g. [27], [28].

A target node’s true location was selected randomly and
the observed RSS values at that location were modeled using
the outlined propagation model. By leveraging the modeled
RSS values at the target node’s location and the ones from the
training locations as inputs to the selected fingerprinting algo-
rithm, the target node’s location was estimated. Furthermore,
the localization error, i.e. the Euclidean distance between the
estimated and the true location, was calculated. The procedure
was repeated 10000 times and the results have been reported
in a regular box-plot fashion.



First we evaluate the theoretical derived result claiming that,
somewhat counterintuitive, if the interference is present in
both phases of fingerprinting, the accuracy of fingerprinting
can be improved. To evaluate this statement, in our simulation
environment we introduced “Interferer 1”, with its location
as indicated in Figure 5. Interferer 1 is a source of constant
interference. Using the previously discussed COST 231 model
for radio propagation, the observed interference power due to
Interferer 1 has been modeled at both training and evaluation
locations. In the dB scale, interference has an additive effect
on the observed RSS values from different APs, as discussed
in [16]. In other words, in contrast to having no interference, if
Interferer 1 is introduced in the environment, the observed RSS
values from different APs at a given location are increased
by the interference power observed at that location. Figure 6
compares the achieved fingerprinting accuracy in case there
is no interference with the accuracies in case Interferer 1 is
introduced, with different configurations of its transmit power.
As visible in the figure, in case interference is present in both
training and measurement phases of fingerprinting, constant
interference source to a certain level improves the accuracy of
fingerprinting, in comparison to the case when no interference
is present. Additionally, an increase in the interference power
further benefits the fingerprinting accuracy. This is due to the
additive influence of interference on the observed RSS values
at a certain location, which effectively increases the distance
||e|| between two training fingerprints, yielding higher KL
divergence between two neighboring locations. This result is
consistent with the developed theory.

Fig. 6: Influence of the interferer’s transmit power in both
phases of fingerprinting on the localization accuracy

Supporting the same theoretical claim, if multiple inter-
ference sources are introduced in the environment in both
phases of fingerprinting, further accuracy improvements can
be achieved. This result has been derived through simulation
and is depicted in Figure 7. As visible in the figure, introducing
additional interferers in the environment (i.e. sequentially
Interferer 2, then Interferer 3, then Interferer 4, etc., with their
locations as depicted in Figure 5 and with their transmit power
set to 10 dBm) yields substantial accuracy improvements.
Example-wise, a roughly 20% of average localization error
reduction is achieved when 5 interferers are introduced, in
contrast to having no interference in the environment.

Fig. 7: Influence of the number of interferers in both phases
of fingerprinting on the localization accuracy

Next we evaluate the theoretical statement claiming that
interference in only one phase of fingerprinting reduces the
localization accuracy. Leveraging the same Interferer 1 as
previously, but in this case only in the measurement phase
of fingerprinting, we observe the localization accuracies as
depicted in Figure 8. As visible in the figure, interference in
only one phase of fingerprinting (in this case the measurement
phase) dramatically reduces fingerprinting accuracy. For exam-
ple, having only one interferer with constant transmit power
of 20 dBm roughly doubles the achieved errors, in comparison
to the scenario without interference. These analytically derived
results are consistent with the theory, as well as with experi-
mentally obtained indications in the literature ([20], [29]).

Fig. 8: Influence of the interferer’s power in the measurement
phase of fingerprinting on the localization accuracy

We further evaluate the theoretical contributions related to
the opportunistic selection of localization APs for improving
interference robustness of fingerprinting. The theory claims
that for improving the system level accuracy of fingerprinting,
i.e. its expected accuracy for the whole served environment, a
new AP should be positioned as close as possible to the inter-
ference source. In our simulation, we again leverage Interfer 1
with its transmit power set to 20 dBm and with its location
as indicated in Figure 5. We then introduce a new AP in the
served environment, first in the same location as Interferer 1
and later at four random locations in the environment. The
achieved localization errors for these scenarios are given in
Figure 9. As visible in the figure, introduction of a new AP
generally improves fingerprinting accuracy. Furthermore, the
highest accuracy improvement of roughly 15% in average



localization error is achieved if a new AP is introduced at
the interferer’s location. Both results are consistent with the
previously developed theory.

Fig. 9: System level performance vs. location of an
additional AP in relation to interferer’s location

The theoretically derived results further claim that if the aim
is localization of a specific object whose location is vaguely
known, then the introduction of a new AP in the vicinity
to that object is optimal in terms of fingerprinting accuracy
improvement. To evaluate this scenario, we will assume that all
our evaluation points are inside of a small square in Figure 5.
The location of Interferer 1 is the same as previously. Same as
previously, we first introduce a new AP at the same location
as Interferer 1. In other scenarios, we introduce a new AP in
the vicinity of the small square where the evaluation points are
located. This newly introduced AP is labeled with receptively
“New AP 1”, “New AP 2”, “New AP 3”, etc., for different
scenarios, with their locations as indicated in Figure 5. The
localization errors obtained for this set of scenarios are given in
Figure 10. As visible in the figure, introducing a new AP at any
location in the environment generally improves fingerprinting
accuracy. Moreover, introduction of an AP in the vicinity
of the evaluation locations yields higher improvement than
introducing an AP close to the source of interference. These
results are aligned with the respective theory.

Fig. 10: Performance in a particular area vs. location of an
additional AP in relation to interferer’s location

B. Experimental Evaluation

We carried the experimental part of the evaluation in the
TWIST testbed environment. The evaluation environment is an

office building in its usual operation and, at the same time, it
is a testbed specifically designed for experimentation focused
on the evaluation of indoor localization solutions [30]. In
the environment, we generated a training phase by collecting
RSS measurements from 4 APs in 32 training points, with
their locations as indicated with red dots in Figure 11. The
measurements were collected using a specifically designed
infrastructure for supporting experimentation related to the
evaluation of indoor localization solutions [30]. The infras-
tructure allows automated, person-less, accurate, and highly
repeatable experimentation under controlled and monitored
interference conditions. Using the same infrastructure, we
further collected 20 measurements in locations labeled with
red pins in the figure. These additional 20 measurements were
collected in three scenarios, i.e. without interference and with
a signal generator as the source of constant interference with
two configurations of its transmit power (10 and 20 dBm). The
location of the signal generator is indicated in Figure 11. The
generated interference was a power envelope of characteristic
IEEE 802.11b/g signals without carrier sensing. The interfer-
ence was generated at the frequency of the APs’ operating
channel (channel 11), with APs’ locations and interference
signal spectrum information as depicted in Figure 11.

AP3	

AP2	

AP1	

AP4	
Signal	generator	

Fig. 11: Locations of APs, training points, evaluation points,
and interferer in the testbed environment

We have applied the fingerprinting algorithm on the col-
lected measurements, which yielded 20 estimated locations
for each scenario. We further calculated the localization errors
for each scenario. The obtained average localization errors per
scenario differ substantially, i.e. from 1.94 m in the scenario
without interference to 2.67 and 3.31 m in scenarios with
interference with interferer’s transmit power set to 10 and
20 dBm, respectively. These results are in accordance with the
previously derived theory and with the analytically obtained
ones. Figure 12 depicts per-point localization errors for differ-
ent scenarios. As visible in the figure, the evaluation location
closer to the source of interference in general experience larger
accuracy degradation due to interference being present in the
environment. The achieved results support the theoretically de-
rived conclusions, which demonstrates the applicability of the
developed theory for modeling the behavior of fingerprinting
algorithms under interference in realistic practical conditions.



(a) No interference

(b) PI =10 dBm

(c) PI =20 dBm

Fig. 12: Spatial distribution of localization errors in the
testbed environment

V. CONCLUSION

In this work, we characterized the additive effect of in-
terference on the performance of RSSI-based fingerprinting
solutions. Our results show the applicability of the previously
proposed theoretical framework [18] for modeling interference
effect on fingerprinting. Somewhat counterintuitive, we show
that interference in both phases of fingerprinting improves its
accuracy. Moreover, interference in only one phase degrades
the fingerprinting performance. Future work will be oriented
toward extending this study to consider the effect of packet
loss due to interference on the performance of RSSI-based
fingerprinting algorithms.
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