
A Deep Learning Approach to Fingerprinting
Indoor Localization Solutions

Linchen Xiao
RWTH Aachen University

Aachen, Germany
Email: linchen.xiao@rwth-aachen.de

Arash Behboodi
RWTH Aachen University

Aachen, Germany
Email: arash.behboodi@ti.rwth-aachen.de

Rudolf Mathar
RWTH Aachen University

Aachen, Germany
Email:mathar@ti.rwth-aachen.de

Abstract—Fingerprinting Localization Solutions (FPSs) en-
joy huge popularity due to their good performance and
minimal environment information requirement. Considered
as a data-driven approach, many modern data analytics can
be used to improve its performance. In this paper, we propose
tow learning algorithms, namely a deep learning architec-
ture for regression and Support Vector Machine (SVM) for
classification, to output the estimated location directly from
the measured fingerprints. The design issues of the proposed
neural network is discussed including the training algorithm,
regularization and hyperparameter selection. It is discussed
how data augmentation methods can be utilized to extend the
measurements. The deep learning approach can be used to
save the data collection time significantly using a pre-trained
model. Moreover the run-time complexity is significantly
reduced. The numerical analysis show that in some case,
only 10 percent of original training database is enough to
get acceptable performance on a pre-trained model.

I. INTRODUCTION

Precise location of people and devices in indoor environ-
ments is an essential enabler for future wireless networks
and location-based services. Significant research has been
conducted during recent years on indoor localization. In
plethora of indoor localization algorithms, RF based ap-
proaches are particularly interesting given their techno-
logical accessibility. However the propagation in indoor
environments follow complex models that should account
for various sources of attenuation and deflection. Given the
dynamics of indoor environments, the propagation models
should also be constantly updated with changes in the
propagation space. Therefore the algorithms that rely on
explicit propagation models for localization require sig-
nificant environmental awareness and continuous manual
update. Fingerprinting-based methods, on the other hand,
are not model-dependent. They are data-driven approaches
working on the assumption that there are certain RF fea-
tures capable of identifying a location uniquely and stably.
The algorithm collect these features at different locations
and constructs fingerprint for each point. The fingerprint
collection can be done for only finite number of points
in the space and it is the most time-consuming part of
the algorithm. These pairs of fingerprints and locations are
organized into a training database. The main problem of
localization is, hence, to find the location corresponding
to a new observation. Fingerprinting algorithms can usu-
ally be built on top of available infrastructures, such as

WiFi networks and their model-independence and minimal
infrastructure requirement make them a very attractive
choice for fast indoor localization deployment. As their
drawbacks, the training database should be updated and
sometimes built anew when the environment changes and
consequently so are the fingerprints. This is more troubling
given the time consuming nature of data collection. In this
paper, the goal is to look at the fingerprinting localization
algorithms from machine learning point of view and show
how these issues can be addressed using the modern
learning architectures. Not only utilization of these learning
architectures improves upon the classic algorithms but the
techniques like model transfer and data augmentation can
be borrowed from machine learning to accelerate new
training base creation. The rest of the paper is structured
as follows. Section II presents the general overview of
fingerprinting algorithms particularly from data analytics
point of view. Section III describes SVM approach to
fingerprinting. In section IV deep learning architecture
is proposed for fingerprinting. Different hyperparameter
choices are discussed. Section V presents the numerical
evaluations for different settings.

II. ARCHITECTURE OF FINGERPRINTING ALGORITHMS

The localization space is given by the set D ⊂ Rd.
The goal of localization is to infer the position of a
target node placed at u in the region D based on the
observations Su, usually a vector in Euclidean space.
Therefore the task of localization can be understood as
the problem learning the mapping of the observation S to
the location u. Fingerprinting algorithms are data-driven
approaches where the localization task utilizes the data
gathered from the environment as the basis for location
inference. In fingerprinting algorithm, a set of true location-
observation pairs (u,Su) is known and the localization
function is learned using the set mapping new observations
to a position. The central task of localization is to learn the
localization function denoted by Φ. The building blocks of
fingerprinting algorithms are feature collection, fingerprint
creation, pattern matching and post-processing [1].

A. Feature Collection

As any data-driven learning algorithm, the fingerprinting
algorithm requires the collection of data. In this phase,



the algorithm selects a grid of points, denoted by Λ, in
the localization space D. Some choices of the grid include
square, hexagonal and random grid. At each point v in this
grid Λ, also called training points, some observations are
made that pertain to the location information. For RF-based
localization, a signal feature is measured, mostly multiple
times to compensate the transient effect of propagation
environment such as fading and shadowing. The feature
is chosen such that it contains adequate information about
the location. The sufficient condition for the signal feature
to distinguish training points is discussed in [2, 3]. It
states simply that the probabilistic descriptions of the
feature at different locations should be enough distinct
measured in terms of Kullback-Leibler divergence. In this
work, Received Signal Strength Indicator (RSSI) values
of multiple anchors are used as the signal feature. The
measurements are labeled with the location of the training
points and therefore construct a database of labeled data.

B. Fingerprint Creation and Pre-Processing

Fingerprint creation is considered a kind of pre-
processing for the data that is essentially heterogeneous.
In data analysis applications, it is in general essential to
pre-process the data for better presentation, compression
and cleaning of the data. There are various guidelines for
preparing the data for further analysis. Our data preparation
follows the tiny data paradigm developed in [4]. In RF
based fingerprinting solutions, given the volatile nature of
wireless environments, measurements from different an-
chors differ in their numbers and scaling. At a location, one
might not be able to get the same number of measurements
from anchors due to their different signal strengths and in-
curred packet loss. Therefore the numbers of visible access
points and the corresponding measurements differ from
location to location. In this work, the training set consists
of rows of different size corresponding to each training
location. The row contains the position of the training
point v ∈ Λ and the anchor ID and the corresponding
measurements. In the light of what we discussed above,
each row might have different length. It will be discussed
later how to employ different data augmentation techniques
to increase the size of training data and construct the rows
of same length. At the end, one constructs the training
dataset of form (v,Xv) from the raw observations (v,Sv)
and Xv is called the fingerprint of the point v.

For RF-based fingerprinting, a simple and popular pro-
cedure[5] for building a homogeneous database out of
heterogeneous data is to compute the average value of
RSSI values obtained from each access point. The averaged
values are arranged into a vector and hence the rows of final
database consists of the training location and the vector
of averaged RSSI value. This vector is the fingerprint of
the point v ∈ Λ. There are other ways to create the
fingerprint including, to name a few, RSSI quantiles or
fitting Multivariate Gaussian distributions to RSSIs. In this
work, the averaging method is used as the benchmark. In
general, once the data is prepared for further analysis, the

fingerprint of the point v is implicitly understood as the
rows corresponding to v in the database.

C. Pattern Matching and Post-processing

Once the training dataset is built, a function should
be learned mapping the new observations to positions in
D. In conventional fingerprinting algorithms, the function
of pattern matching is to capture the similarity between
fingerprints of training points and the fingerprint of test
points. Namely, the goal is to find the most similar pairs
of test point and training point in the fingerprint space and
then use the location information of the training points to
estimate the test point in the location space. One of the
most well known algorithms for pattern matching employs
Euclidean Distance (ED) to measure the similarity between
fingerprints given as d(Xu,Xv) = ‖Xu − Xv‖2. With
a new test point to be estimated, the Euclidean distance
has to be calculated between the fingerprints Xv of all
training points v in training grid Λ and the fingerprint of
test point X. The training point with smallest Euclidean
distance from test point would be the best candidate:

û = arg min
v∈Λ

d(Xv,X). (1)

In general, the function d can be any kernel function. This
process is completer with post-processing methods such
as k-nearest neighbor (kNN) is the last step of traditional
fingerprint algorithms. In the previous step, the k closest
fingerprints in the training set are chosen and the final
location is obtained by the linear combination of the k
corresponding locations. The number k and the weights
of final linear combination as parameters of learning algo-
rithm are chosen during the matching process.

Indeed, this approach is nothing but an extension of
kNN classifier. The problem of learning the localization
function Φ is a supervised learning problem. Depending on
the particular problem at hand, it can be a classification or
regression problem. Regression-based localization function
aims at giving the estimated location while classification-
based localization function identifies the room or the area
in which the target node is placed. In this paper, we
consider both classification and regression-based approach
and address the design challenges of learning algorithms
in this context.

III. SUPPORT VECTOR MACHINE IN FINGERPRINTING
ALGORITHM

In this section, the localization is considered as a classifi-
cation problem. The training grid Λ divides the localization
space into different regions and the goal of the localization
algorithm is to determine the region corresponding to a test
point. SVM is used as the classification algorithm.

A. Support Vector Machine Algorithm

SVM is a binary classifier introduced by Vapnik and
Chervonenkis in 1963. SVM aims at finding a linear clas-
sifier, i.e., a hyperplane which maximizes the margin be-
tween two classes. It has extensions to non-linear classifiers



Fig. 1. Linear Support Vector Machine

and non-separable data too. First a training dataset, linearly
separable, is given consisting of data points xi ∈ Rp

with labels yi ∈ {−1,+1}. The idea of SVM is to use
a hyper-plane f(x) = aTx + b to separate two classes so
that each class lies on one side of the hyper-plane, i.e.,
yi(a

Txi + b) ≥ γ > 0 for some γ > 0. The optimal hyper-
plane would be the one which maximum margin between
two classes. It can be seen that the following optimization
problem provides a solution for a and b [6]:

arg min
a,b

‖a‖2

2
s.t. yi(a

Txi + b)− 1 ≥ 0. (2)

One can equally solve the dual problem by considering the
Lagrangian, yielding the following problem:

arg max
λ

n∑
i=1

λi −
1

2

n∑
i=1

n∑
j=1

λiλjyiyjx
T
i xj

s.t.
n∑

i=1

λiyi = 0 and 0 ≤ λi.
(3)

Note that the dimension of search space for the dual
problem scales with the size of training set but for the
primal problem with the dimension of training points.
Therefore, although both problems can be considered as
quadratic optimization problem and can be easily solved
by quadratic programming algorithms, the choice of which
problem to solve depends on the number of training points
and their dimension. After solving the dual problem, a can
be obtained as a =

∑n
i=1 λiyixi. The support vectors are

those with λi > 0 and they solely determine a and b. For
a support vector xk, b is obtained as b = yk − aTxk. Th
support vectors are shown in Fig.1.

In order to deal with non-separable data, a penalty term
is added which tries to minimize the number of points
inside the margin. If the margin violation of each point
is denoted by ξi, the goal is to minimize the `0-norm
of ξ = (ξ1, . . . , ξn)T for this purpose. To have a convex

formulation `1-norm is used instead which is well known
to provide sparsity. Therefore the following optimization
problem is solved:

arg min
a,b

‖a‖2

2
− C

∑
i

ξi

s.t. yi(a
Txi + b)) ≥ 1− ξi and ξi ≥ 0.

where C is a parameter which should be correctly chosen.
The equivalent dual problem is given by:

arg max
λ

n∑
i=1

λi −
1

2

n∑
i=1

n∑
j=1

λiλjyiyjx
T
i xj

s.t
n∑

i=1

λiyi = 0 and 0 ≤ λi ≤ C.
(4)

Note that the search space has the dimension p + n + 1
for the primal problem while the dimension of the dual
problem remains unchanged for both separable and non-
separable case, equal to n, hence, making it more efficient
to solve for non-separable case.

As another advantage of the dual problem, it can be
easily extended to a non-linear SVM classifier which is
achieved by using kernel trick. In this case, the inner
product xT

i xj as in (4) is replaced by a kernel function
k(xi,xj). The kernel function represents an inner product
of the transformations of these vectors in a feature space,
usually higher dimension and possibly infinite dimensional.
This transformation is only done implicitly and in many
cases the transformation function is not explicitly known.
Since the dual problem only depends on the inner product,
it is sufficient to know the inner product in the feature space
as a function of training points and kernel functions provide
this information. By transformation into higher dimensional
space, a linearly non-separable data in the ambient space
might become linearly separable in the feature space. Some
examples of kernel functions are polynomial kernel, Radial
Basis Function (RBF) kernel and hyperbolic tangent kernel.
In general, SVMs only require to tune few parameters
namely the constant C in (4) and parameters of kernel
function.

B. SVM in Fingerprinting Algorithm

In the context of fingerprinting algorithm, the fingerprint
of each training point is a sequence of equal number
of measurements from different anchors. Therefore for A
anchors and M measurements per each, the fingerprint at
each training point is of dimension A×M . To apply SVM
in fingerprinting algorithm, training points are chosen. The
Voronoi diagram corresponding to the grid divides the loca-
tion space into different regions where each region can be
seen as a class and all points in one region are seen as one
class. The aim is to classify the test point to one of those
partitions using SVM. However if the problem contains
only a single observation for a given class, SVM would
be exactly same as Euclidean distance based localization.
Therefore multiple observations are needed for each class.



This can be done using data augmentation which will be
discussed later. However casting the localization problem
as classification makes possible to utilize the so called
imprecise measurements. In that case, it would be enough
to know the region in which observations are collected,
i.e., the label of measurements. Unlike training points
on the grid, no precise location information is needed.
Interestingly this improves the localization performance.

One needs particularly to solve a multi-class classifica-
tion problem. Therefore multiple binary SVM classifiers
have to be trained and the final decision is made according
to one vs. one or one vs. rest strategy. For k classes, in one
vs. one approach,

(
k
2

)
binary classifiers are constructed and

the class with highest number of decisions is chosen. In
one vs. rest approach only k classifiers are trained and for
each classifier one class is tested against all other classes
put into a single one. Note that the kNN can also be used
in SVM approach by choosing multiple top classes and
finding the linear combination of corresponding training
points location.

IV. DEEP LEARNING FOR FINGERPRINTING
ALGORITHM

Deep learning architectures emerged as the prime can-
didate for complex learning problems with excellent per-
formance. In span of few years these architectures outper-
formed conventional machine learning algorithms in tasks
such as pattern recognition. Neural networks consist of
multiple units called neurons connected to each other where
each neuron computes a function of its input value, mostly
a non-linear function. The input to each neuron is the linear
combination of the output of some other neurons and the
goal is to learn the weights in each linear combination to
be able to finally perform certain tasks. This process is
called training phase. The training is done usually through
a procedure called back propagation where the weights
are adjusted iteratively to minimize the output error for a
training set. Deep learning refers to an architecture in which
the neurons are organized in many consecutive layers. The
main challenge in training deep architectures is that the
output error as a function of weights contains many local
minima and saddle points, making it extremely difficult
to find the global optimum. In this section, deep neural
networks are used to perform regression task for indoor
localization problem. The function Φ is approximated using
the neural network mapping fingerprints to the estimated
location of this point. The training set is therefore the pairs
of training points and their fingerprints. Compared to kNN
approach, this approach combines pattern matching and
post-processing and provides the location in one shot. On
the other hand, the received RSSI values are not averaged
and directly used as the input to the algorithm. This might
prevent the possible information loss in averaging. There
have been some researches which already applied deep
learning to indoor localization problems. In [7], the authors
propose a fingerprint construction using neural networks
based on measured Channel State Informations (CSIs).

In [8], RSSI values are used to solve floor classification
problem. In this work, we focus on design issues including
the influence of different hyperparameters, avoiding overfit-
ting and training algorithms. The hyperparameters in deep
learning consists of number of layers, number of neurons in
each layer, the choice of non-linearity parameters, learning
rate, etc. The choice of hyperparameter is an important
problem in deep learning and currently there is almost
no unified theory for choosing those parameters. However
there are many guidelines derived from vast experimental
researches such as in [9]. For simplicity, not all the hyper-
parameters are discussed in this paper. More focus is put
into those hyperparameters with seemingly most important
effect.

1) Weight initialization: The boom of deep learning
research starts from the idea of layer-wise pre-training
the network weights [10]. The idea is to pre-train the
weights of neural network in order to put them in a good
start point in error space and then fine-tuning the whole
network following forward, backward propagation update
procedure. However it has been studied in latter research
[11] that a straightforward initialization of weights are
sufficient for network to converge to a good minimum. In
this work, the weights are initialized according to Gaussian
distribution, namely the weight matrix of i-th layer W(i)

is a random matrix with i.i.d. entries generated as Gaussian
N (0,

√
2/n(i)) where n(i) is the number of neurons in i-th

layer [11].
2) Gradient-based training: Once the weights are ini-

tialized, the weight are adjusted to minimize the error
for the training set as function of weights E(W). The
training set is divided into so called mini-batches each
one containing B training points. At each step, the error
is minimized for a single mini-batch and weights are
updated proportional to their contribution to the mini-batch
error. The process is called mini-batch stochastic gradient
descent, in particular stochastic gradient descent if B is
equal to one and batch gradient descent for B equal to the
whole training data-set. Pure stochastic gradient descent,
B = 1, is rarely used in practical application for their slow
convergence in small gradient direction and oscillation for
large gradient direction. The weights are updated iteratively
by repeating the training over each mini-batch for multiple
times, called epochs. At iteration n, the weights are updated
by ∆W(n) which is determined by

∆W(n) = ρ∆W(n−1) − α∂E(W(n−1))

∂W(n−1)
. (5)

ρ is the momentum parameter and α is called learning
rate. ρ determines how much the last update should be
preserved in the next iteration and α determines how fast
one can move away from the previous iteration. The update
is given by W(n) = W(n−1) + ∆W(n).

Adaptive learning rates enable different weights to have
their own learning rates rather than a unified learning
rate α. This can be done by accumulating the sum of
the squared gradient for each weight and then divide the



unified learning rate by the sum element-wise. Different
algorithms are designed to achieve these two approaches.
Adagrad[12] accumulates the squared gradient constantly,
but the learning rate will monotonically decrease. RMSprop
instead uses a decay parameter to remove the influence of
gradients from very early iterations to prevent the problem
in Adagrad. Adam[13] combines the ideas of momentum
and adaptive learning rate together. In this work Adam is
chosen as our default optimization method.

3) Learning rate: This is the single most important
hyperparameter in deep learning. It controls the step size
of gradient descent. Too large learning rate can cause the
update oscillating around minimum or even diverge. On
the other hand too small learning rate will make the update
very slow and possibly getting stuck in local minima. There
are many guidelines for choosing the learning rate. In this
work, the parameter is manually fine tuned by looking at
the behavior of error after each iteration.

4) Activation function: For a long time, logistic sigmoid
function 1

1+e−x has been the default choice of activation
function but it suffers from vanishing Gradient problem.
It is known that Rectified Linear Unit (ReLU), defined
as f(x) = max(0, x) does not suffer from saturation and
converges faster than sigmoid to an acceptable minimum.

5) Number of hidden layers and neurons: In [9], it was
suggested that higher number of hidden layers with ade-
quate neurons provide significant expressive power. Large
number of hidden layers provide more capacity to model
more complicated functions with the drawback of difficult
training process. For regression and classification task, and
not representation learning, it is also recommended to use
same size for all layers rather than decreasing or increasing
size layers.

6) Regularization: Another central problem in machine
learning is overfitting. It occurs when the learning algo-
rithm gives a very good performance on the training data
but it performs badly on the test data. This is because
the learning algorithm models those features of particular
training set which is non-essential to the task and therefore
becomes sensitive to variation of those features. Regular-
ization is an important approach to prevent overfitting. The
idea is to use techniques during the training process to force
partial but effective learning of essential features of the task
in hand. One approach is based on using either `1 or `2-
regularization. In this case, a penalty term λ

∑L
i=1 ‖Wi‖pp,

p = 1 or 2, is added to the error function of the neural
network to be minimized. The penalty term restricts the
norm of weights to be small for p = 2 and promotes spar-
sity of the weights for p = 1. Another approach is called
Dropout which prevents overfitting by randomly dropping
some hidden units during weights update for each iteration
[14]. In this way, the intermediate representations of the
input is not dependent on only few neurons. Finally, early
stopping is a very easy and effective way of regularization.
The database is divided into training and validation set
and the network is trained only using the training set.
However the error is observed for the validation set and

Fig. 2. Neural network configuration

the training should stop when the error of validation set
stops decreasing.

A. Deep Learning in Fingerprinting Algorithm

TABLE I
NEURAL NETWORK CONFIGURATION

Raw RSS values as input
Fully Connected layer with 500 neurons

Dropout layer with 50% rate
Fully Connected layer with 500 neurons

Dropout layer with 50% rate
Fully Connected layer with 500 neurons

Dropout layer with 50% rate
Location coordinates (2 dimensional)

In this work, deep neural networks are trained to ap-
proximate the localization function Φ, Fig. 2. We propose
to use a three fully connected hidden layers neural network
with 500 neurons in each hidden layer. All hidden layers
are equipped with the ReLU non-linearity, Table I. The
output layer is a linear layer. For each layer we deploy a
dropout layer with dropping rate of 50 percent. The weights
are initialized by using random procedure suggested above.
The neural network is trained using Adam algorithm with
learning rate 0.001, momentum parameter 0.9 and mini-
batch size 100. Moreover, `2 penalty is also used with
the penalty parameter λ set to 0.03. The input is the raw
RSSI values directly obtained from different Access Pointss
(APs). The output is the estimated coordinates of the test
point which is in our case in two-dimensional space.

V. NUMERICAL ANALYSIS

In this section, the previous learning algorithms are
implemented to solve indoor localization problem. The im-
plementation details are discussed and the final algorithms
are evaluated. The implementations are done in Python
using Tensorflow and Keras.

A. Experimental data

In order to compare different proposed algorithms, the
UJIIndoorLoc dataset is used [15]. The dataset contains
19937 training samples and 1111 test samples. Each sample
consists of 529 features where the first 520 features are
RSSI values from 520 access points ranged from -104 dBm



TABLE II
DISTRIBUTION OF DATA

BuildingFloor ID Training samples Test samples
B0F0 1059 78
B0F1 1356 208
B0F2 1443 165
B0F3 1391 85
B1F0 1368 30
B1F1 1484 143
B1F2 1396 87
B1F3 948 47
B2F0 1942 24
B2F1 2162 111
B2F2 1577 54
B2F3 2709 40
B2F4 1102 39
Total 19937 1111

to 0 dBm. The positive value 100 is used to indicate when a
signal was not detected. The features 521 to 529 correspond
to latitude, longitude, floor, building ID, space ID, relative
position, user ID, phone ID and time stamp. The data, Table
II, is obtained from 3 buildings with 4, 4 and 5 floors
respectively.

B. Experimental Result

In this paper, we only select data from floors of building
0. The undetected signals are denoted by -110 dBm instead
of 100 which means very weak signals (-104 dBm is the
smallest measured RSSI value in data set). The features
are then scaled independently to have zero mean and
variance of 1. The absolute positions are converted to
relative positions by subtracting the smallest latitude and
longitude in the data set. The room size (98.7m × 110.5m,
104.2m × 118.4m, 104.2m × 119.1m, 104.2m × 119.1m
for four floors) can be obtained by looking at the difference
between maximum and minimum of latitude and longitude.
Moreover there are some access points that are undetected
for all points in a certain floor. Those features are removed
in order to speed up the training phase.

The traditional Euclidean distance and SVM algorithm
are also tested here as comparison to Neural Network solu-
tion. k is chosen equal to 3 for kNN. SVM is implemented
using RBF kernel K(x,y) = exp(−γ‖x − y‖2) with
parameter γ = 1 and C is chosen equal to 7. According to
Table III, in all four floors for building one, neural networks
gives better average mean error and less error variance.

C. Algorithm Optimization

Despite the good performance of fingerprinting algo-
rithm in indoor localization environment, the data collec-
tion has always been a problem due to the long collection
time and potential change of indoor environment. Thus
we propose two methods that can alleviate this problem,
namely data augmentation and model transfer.

1) Data Augmentation: Data augmentation is a common
method in deep learning to reduce the effect of overfitting.
The idea is to expand the existing dataset using only
the available data so that the learning algorithm grasps

TABLE III
SUMMARY RESULTS FOR THREE ALGORITHMS

Floor 0 of Building 0
Euclidean Distance SVM Neural Network

Mean error [m] 10.06 8.48 7.62
Error variance 68.30 63.35 43.00
Min. error [m] 0.45 0.25 0.63
Max. error [m] 40.15 53.62 34.02

Floor 1 of Building 0
Euclidean Distance SVM Neural Network

Mean error [m] 9.93 8.81 8.08
Error variance 195.33 119.73 93.94
Min. error [m] 0.25 0.09 0.40
Max. error [m] 118.64 81.56 90.00

Floor 2 of Building 0
Euclidean Distance SVM Neural Network

Mean error [m] 9.50 9.42 7.42
Error variance 180.24 175.47 28.43
Min. error [m] 0.07 0.38 0.37
Max. error [m] 105.58 86.69 25.21

Floor 3 of Building 0
Euclidean Distance SVM Neural Network

Mean error [m] 9.40 7.72 7.27
Error variance 89.87 52.98 29.36
Min. error [m] 0.82 0.22 0.76
Max. error [m] 63.35 39.16 26.41

better those features essential to the task. In case of im-
age classification, common data augmentation approaches
include translation, rotation and reflection of images in
the dataset since the label of the image is unchanged by
those transformations [16]. A similar thing can be done for
fingerprints. For an observation of m RSSI values per n
APs, a data matrix with size m × n is obtained for each
training point. Since the order of measurements from each
AP is irrelevant for localization, assuming constant power
and steady environment, one can permute each column and
a new data matrix of same size can be generated. This
action can be done k times. The labels of these new data
are the coordination of the corresponding training point.
A sufficient number of permutation can give around 10%
improvement in the mean error.

2) Model Transfer: Inspired by pre-trained models in
image classification such as AlexNet[16], it is possible to
fine tune pre-trained models by training on small amount
of data. Applied to indoor localization application, this idea
makes it possible to use an existing deep architecture for
a different but similar building or for the same but altered
building with far fewer measurements. In order to test the
usage of pre-trained models, we take the whole data of
Floor 0 and 10 percent of the data from Floor 1 of the
building 0 from UJIIndoorLoc dataset. Fig.3 shows the
training grids of two floors and it can be seen that two floors
have similar structure. First, we train the neural network on
the whole data of Floor 0 to get our pre-trained model and
then we fine tune the model by only 10 percent of the data
from Floor 1. Finally the new model is tested on the test
samples from Floor 1.

Table IV shows the test result for three scenarios. first the
neural network is trained directly by 10 percent data from
Floor 1 and test with test samples from Floor 1; second,



Fig. 3. Training grids of two floors

TABLE IV
SUMMARY RESULTS FOR MODEL TRANSFER

W/o pre-training Before fine-tuning After fine-tuning
Mean error [m] 26.45 12.45 10.55
Error variance 163.86 53.81 112.37
Min. error [m] 1.56 0.46 0.15
Max. error [m] 62.65 47.70 81.20

the neural network is trained by data from Floor 0 and test
with the test samples from Floor 1 and third the model is
obtained from the second step and fine tuned by 10 percent
data from Floor 1 and tested with the test samples from
Floor 1. By looking at the first and third scenarios, it can
be seen that even when there are not enough data, using
pre-trained model can give reasonable result. By comparing
second and third scenarios, it can be concluded that by fine-
tuning with small amount of latest data, the neural network
can be updated in order to fit the new propagation model.

VI. CONCLUSION

In this work, SVM and deep architectures are used to
address issues in fingerprinting indoor localization prob-
lem. The state of art training methods in deep learning
are used to further improve the performance. Moreover we
proposed using data augmentation and model transfer to
alleviate the problem in data collection which is essential
in fingerprinting approaches. It was shown in the end
that neural network performs better than the other two
algorithms in the sense of mean error and error variance.
Future work includes further variations in hyperparameters,
e.g. deeper network structure, usage of convolutional neural
networks and examining different gradient based methods.

REFERENCES

[1] Filip Lemic et al. “Experimental decomposition of
the performance of fingerprinting-based localization
algorithms”. In: Indoor Positioning and Indoor Nav-
igation (IPIN), 2014 International Conference on.
2014, pp. 355–364.

[2] Arash Behboodi, Filip Lemic, and Adam Wolisz.
“Hypothesis Testing Based Model for Fingerprint-
ing Localization Algorithms”. In: 2017 IEEE 85th
Vehicular Technology Conference (VTC-Spring’17).
2017.

[3] Arash Behboodi et al. “A Mathematical Model for
Fingerprinting-based Localization Algorithms”. In:
arxiv:1610.07636 (2016).

[4] Hadley Wickham et al. “Tidy data”. In: Journal of
Statistical Software 59.10 (2014), pp. 1–23.

[5] Ville Honkavirta et al. “A comparative survey of
WLAN location fingerprinting methods”. In: Po-
sitioning, Navigation and Communication, 2009.
WPNC 2009. 6th Workshop on. 2009, pp. 243–251.

[6] Ingo Steinwart and Andreas Christmann. Support
vector machines. 1st ed. Information science and
statistics. New York: Springer, 2008.

[7] Xuyu Wang et al. “CSI-based fingerprinting for
indoor localization: A deep learning approach”. In:
IEEE Transactions on Vehicular Technology 66.1
(2017), pp. 763–776.

[8] Michał Nowicki and Jan Wietrzykowski. “Low-
effort place recognition with WiFi fingerprints using
deep learning”. In: arXiv:1611.02049 (2016).

[9] Yoshua Bengio. “Practical recommendations for
gradient-based training of deep architectures”. In:
Neural networks: Tricks of the trade. Springer, 2012,
pp. 437–478.

[10] Geoffrey E Hinton, Simon Osindero, and Yee-Whye
Teh. “A fast learning algorithm for deep belief nets”.
In: Neural computation 18.7 (2006), pp. 1527–1554.

[11] Kaiming He et al. “Delving deep into rectifiers:
Surpassing human-level performance on imagenet
classification”. In: Proceedings of the IEEE in-
ternational conference on computer vision. 2015,
pp. 1026–1034.

[12] John Duchi, Elad Hazan, and Yoram Singer. “Adap-
tive subgradient methods for online learning and
stochastic optimization”. In: Journal of Machine
Learning Research 12.Jul (2011), pp. 2121–2159.

[13] Diederik Kingma and Jimmy Ba. “Adam: A method
for stochastic optimization”. In: arXiv:1412.6980
(2014).

[14] Nitish Srivastava et al. “Dropout: A simple way to
prevent neural networks from overfitting”. In: The
Journal of Machine Learning Research 15.1 (2014),
pp. 1929–1958.

[15] Joaquı́n Torres-Sospedra et al. “Ujiindoorloc: A new
multi-building and multi-floor database for wlan
fingerprint-based indoor localization problems”. In:
Indoor Positioning and Indoor Navigation (IPIN),
2014 International Conference on. 2014, pp. 261–
270.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E
Hinton. “Imagenet classification with deep convolu-
tional neural networks”. In: Advances in neural in-
formation processing systems. 2012, pp. 1097–1105.


