
Published as a conference paper at ICLR 2018

VARIATIONAL NETWORK QUANTIZATION

Jan Achterhold1,2, Jan M. Köhler1, Anke Schmeink2 & Tim Genewein1,*

1Bosch Center for Artificial Intelligence
Robert Bosch GmbH
Renningen, Germany

2RWTH Aachen University
Institute for Theoretical Information Technology
Aachen, Germany
*Corresponding author: tim.genewein@de.bosch.com

ABSTRACT

In this paper, the preparation of a neural network for pruning and few-bit quanti-
zation is formulated as a variational inference problem. To this end, a quantizing
prior that leads to a multi-modal, sparse posterior distribution over weights, is in-
troduced and a differentiable Kullback-Leibler divergence approximation for this
prior is derived. After training with Variational Network Quantization, weights
can be replaced by deterministic quantization values with small to negligible loss
of task accuracy (including pruning by setting weights to 0). The method does not
require fine-tuning after quantization. Results are shown for ternary quantization
on LeNet-5 (MNIST) and DenseNet (CIFAR-10).

1 INTRODUCTION

Parameters of a trained neural network commonly exhibit high degrees of redundancy (Denil et al.,
2013) which implies an over-parametrization of the network. Network compression methods im-
plicitly or explicitly aim at the systematic reduction of redundancy in neural network models while
at the same time retaining a high level of task accuracy. Besides architectural approaches, such as
SqueezeNet (Iandola et al., 2016) or MobileNets (Howard et al., 2017), many compression methods
perform some form of pruning or quantization. Pruning is the removal of irrelevant units (weights,
neurons or convolutional filters) (LeCun et al., 1990). Relevance of weights is often determined
by the absolute value (“magnitude based pruning” (Han et al., 2016; 2017; Guo et al., 2016)), but
more sophisticated methods have been known for decades, e.g., based on second-order derivatives
(Optimal Brain Damage (LeCun et al., 1990) and Optimal Brain Surgeon (Hassibi & Stork, 1993))
or ARD (automatic relevance determination, a Bayesian framework for determining the relevance
of weights, (MacKay, 1995; Neal, 1995; Karaletsos & Rätsch, 2015)). Quantization is the reduc-
tion of the bit-precision of weights, activations or even gradients, which is particularly desirable
from a hardware perspective (Sze et al., 2017). Methods range from fixed bit-width computation
(e.g., 12-bit fixed point) to aggressive quantization such as binarization of weights and activations
(Courbariaux et al., 2016; Rastegari et al., 2016; Zhou et al., 2016; Hubara et al., 2016). Few-bit
quantization (2 to 6 bits) is often performed by k-means clustering of trained weights with subse-
quent fine-tuning of the cluster centers (Han et al., 2016). Pruning and quantization methods have
been shown to work well in conjunction (Han et al., 2016). In so-called “ternary” networks, weights
can have one out of three possible values (negative, zero or positive) which also allows for simulta-
neous pruning and few-bit quantization (Li et al., 2016; Zhu et al., 2016).

This work is closely related to some recent Bayesian methods for network compression (Ullrich
et al., 2017; Molchanov et al., 2017; Louizos et al., 2017; Neklyudov et al., 2017) that learn a
posterior distribution over network weights under a sparsity-inducing prior. The posterior distribu-
tion over network parameters allows identifying redundancies through three means: weights with
(1) an expected value very close to zero and (2) weights with a large variance can be pruned as
they do not contribute much to the overall computation. (3) the posterior variance over non-pruned

1

Published as a conference paper at ICLR 2018

parameters can be used to determine the required bit-precision (quantization noise can be made
as large as implied by the posterior uncertainty). Additionally, Bayesian inference over model-
parameters is known to automatically reduce parameter redundancy by penalizing overly complex
models (MacKay, 2003).

In this paper we present Variational Network Quantization (VNQ), a Bayesian network compres-
sion method for simultaneous pruning and few-bit quantization of weights. We extend previous
Bayesian pruning methods by introducing a multi-modal quantizing prior that penalizes weights of
low variance unless they lie close to one of the target values for quantization. As a result, weights are
either drawn to one of the quantization target values or they are assigned large variance values—see
Fig. 1. After training, our method yields a Bayesian neural network with a multi-modal posterior
over weights (typically with one mode fixed at 0), which is the basis for subsequent pruning and
quantization. Additionally, posterior uncertainties can also be interesting for network introspec-
tion and analysis, as well as for obtaining uncertainty estimates over network predictions (Gal &
Ghahramani, 2015; Gal, 2016; Depeweg et al., 2016; 2017). After pruning and hard quantization,
and without the need for additional fine-tuning, our method yields a deterministic feed-forward neu-
ral network with heavily quantized weights. Our method is applicable to pre-trained networks but
can also be used for training from scratch. Target values for quantization can either be manually
fixed or they can be learned during training. We demonstrate our method for the case of ternary
quantization on LeNet-5 (MNIST) and DenseNet (CIFAR-10).

-0.25 0 0.25
10

5

0

lo
g

2

conv_1
n = 500

-0.25 0 0.25

de
ns

ity

-0.25 0 0.25

conv_2
n = 25000

-0.25 0 0.25

-0.25 0 0.25

dense_1
n = 400000

-0.25 0 0.25

-0.25 0 0.25

dense_2
n = 5000

-0.25 0 0.25

(a) Pre-trained network. No obvious clusters are vis-
ible in the network trained without VNQ. No regular-
ization was used during pre-training.

-0.1 0 0.1
10

5

0

lo
g

2

conv_1
n = 500

-0.1 0 0.1

de
ns

ity

-0.2 0 0.2

conv_2
n = 25000

-0.2 0 0.2

-0.1 0 0.1

dense_1
n = 400000

-0.1 0 0.1

-0.25 0 0.25

dense_2
n = 5000

-0.25 0 0.25

(b) Soft-quantized network after VNQ training.
Weights tightly cluster around the quantization target
values.

Figure 1: Distribution of weights (means θ and log-variance log σ2) before and after VNQ training
of LeNet-5 on MNIST (validation accuracy before: 99.2% vs. after 195 epochs: 99.3%). Top row:
scatter plot of weights (blue dots) per layer. Means were initialized from pre-trained deterministic
network, variances with log σ2 = −8. Bottom row: corresponding density1. Red shaded areas
show the funnel-shaped “basins of attraction” induced by the quantizing prior. Positive and negative
target values for ternary quantization have been learned per layer. After training, weights with small
expected absolute value or large variance (logαij ≥ log Tα = 2 corresponding to the funnel marked
by the red dotted line) are pruned and remaining weights are quantized without loss in accuracy.

2 PRELIMINARIES

Our method extends recent work that uses a (variational) Bayesian objective for neural network prun-
ing (Molchanov et al., 2017). In this section, we first motivate such an approach by discussing that
the objectives of compression (in the minimum-description-length sense) and Bayesian inference are
well-aligned. We then briefly review the core ingredients that are combined in Sparse Variational
Dropout (Molchanov et al., 2017). The final idea (and also the starting point of our method) is to
learn dropout noise levels per weight and prune weights with large dropout noise. Learning dropout
noise per weight can be done by interpreting dropout training as variational inference of an approxi-
mate weight-posterior under a sparsity inducing prior - this is known as Variational Dropout which is
described in more detail below, after a brief introduction to modern approximate posterior inference

1Kernel density estimate, with radial basis function kernels with a bandwidth of 0.05

2

Published as a conference paper at ICLR 2018

in Bayesian neural networks by optimizing the evidence lower bound via stochastic gradient ascent
and reparameterization tricks.

2.1 WHY BAYES FOR COMPRESSION?

Bayesian inference over model parameters automatically penalizes overly complex parametric mod-
els, leading to an automatic regularization effect (Grünwald, 2007; Graves, 2011) (see Molchanov
et al. (2017), where the authors show that Sparse Variational Dropout (Sparse VD) successfully
prevents a network from fitting unstructured data, that is a random labeling). The automatic regular-
ization is based on the objective of maximizing model evidence, also know as marginal likelihood.
A very complex model might have a particular parameter setting that achieves extremely good like-
lihood given the data, however, since the model evidence is obtained via marginalizing parameters,
overly complex models are penalized for having many parameter settings with poor likelihood. This
effect is also known as “Bayesian Occams Razor” in Bayesian model selection (MacKay, 2003;
Genewein & Braun, 2014). The argument can be extended to variational Bayesian inference (with
some caveats) via the equivalence of the variational Bayesian objective and the Minimum descrip-
tion length (MDL) principle (Rissanen, 1978; Grünwald, 2007; Graves, 2011; Louizos et al., 2017).
The evidence lower bound (ELBO), which is maximized in variational inference, is composed of
two terms: LE , the average message length required to transmit outputs (labels) to a receiver that
knows the inputs and the posterior over model parameters and LC , the average message length to
transmit the posterior parameters to a receiver that knows the prior over parameters:

LELBO = neg. reconstr. error︸ ︷︷ ︸
−LE

+ neg. KL divergence︸ ︷︷ ︸
−LC=entropy−cross entropy

.

Maximizing the ELBO minimizes the total message length: maxLELBO = minLE + LC , leading
to an optimal trade-off between short description length of the data and the model (thus, minimizing
the sum of error cost LE and model complexity cost LC). Interestingly, MDL dictates the use of
stochastic models since they are in general “more compressible” compared to deterministic models:
high posterior uncertainty over parameters is rewarded by the entropy term in LC—higher uncer-
tainty allows the quantization noise to be higher, thus, requiring lower bit-precision for a parameter.
Variational Bayesian inference can also be formally related to the information-theoretic framework
for lossy compression, rate-distortion theory, (Cover & Thomas, 2006; Tishby et al., 2000; Genewein
et al., 2015). The only difference is that rate-distortion requires the use of the optimal prior, which is
the marginal over posteriors (Hoffman & Johnson, 2016; Tomczak & Welling, 2017; Hoffman et al.,
2017) - providing an interesting connection to empirical Bayes where the prior is learned from the
data.

2.2 VARIATIONAL BAYES AND REPARAMETERIZATION

Let D be a dataset of N pairs (xn, yn)Nn=1 and p(y|x,w) be a parameterized model that predicts
outputs y given inputs x and parameters w. A Bayesian neural network models a (posterior) dis-
tribution over parameters w instead of just a point-estimate. The posterior is given by Bayes’ rule:
p(w|D) = p(D|w)p(w)/p(D), where p(w) is the prior over parameters. Computation of the true
posterior is in general intractable. Common approaches to approximate inference in neural networks
are for instance: MCMC methods pioneered in (Neal, 1995) and later refined, e.g., via stochastic
gradient Langevin dynamics (Welling & Teh, 2011), or variational approximations to the true pos-
terior (Graves, 2011), Bayes by Backprop (Blundell et al., 2015), Expectation Backpropagation
(Soudry et al., 2014), Probabilistic Backpropagation (Hernández-Lobato & Adams, 2015). In the
latter methods the true posterior is approximated by a parameterized distribution qφ(w). Variational
parameters φ are optimized by minimizing the Kullback-Leibler (KL) divergence from the true to the
approximate posterior DKL(qφ(w)||p(w|D)). Since computation of the true posterior is intractable,
minimizing this KL divergence is approximately performed by maximizing the so-called “evidence

3

Published as a conference paper at ICLR 2018

lower bound” (ELBO) or “negative variational free energy” (Kingma & Welling, 2014):

LELBO(φ) =

N∑
n=1

Eqφ(w)[log p(yn|xn, w)]︸ ︷︷ ︸
LD(φ)

−DKL(qφ(w)||p(w)), (1)

' LSGVB(φ) =
N

M

M∑
m=1

log p(ỹm|x̃m, f(φ, εm))−DKL(qφ(w)||p(w)), (2)

where we have used the Reparameterization Trick2 (Kingma & Welling, 2014) in Eq. (2) to get
an unbiased, differentiable, minibatch-based Monte Carlo estimator of the expected log likelihood
LD(φ). A mini-batch of data is denoted by (x̃m, ỹm)Mm=1. Additionally, and in line with similar
work (Molchanov et al., 2017; Louizos et al., 2017; Neklyudov et al., 2017), we use the Local
Reparameterization Trick (Kingma et al., 2015) to further reduce variance of the stochastic ELBO
gradient estimator, which locally marginalizes weights at each layer and instead samples directly
from the distribution over pre-activations (which can be computed analytically). See Appendix A.2
for more details on the Local reparameterization. Commonly, the prior p(w) and the parametric form
of the posterior qφ(w) are chosen such that the KL divergence term can be computed analytically
(e.g. a fully factorized Gaussian prior and posterior, known as the mean-field approximation). Due
to the particular choice of prior in our work, a closed-form expression for the KL divergence cannot
be obtained but instead we use a differentiable approximation (see Sec. 3.3).

2.3 VARIATIONAL INFERENCE VIA DROPOUT TRAINING

Dropout (Srivastava et al., 2014) is a method originally introduced for regularization of neural net-
works, where activations are stochastically dropped (i.e., set to zero) with a certain probability p
during training. It was shown that dropout, i.e., multiplicative noise on inputs, is equivalent to hav-
ing noisy weights and vice versa (Wang & Manning, 2013; Kingma et al., 2015). Multiplicative
Gaussian noise ξij ∼ N (1, α = p

1−p) on a weight wij induces a Gaussian distribution

wij = θijξij = θij(1 +
√
αεij) ∼ N (θij , αθ

2
ij) (3)

with εij ∼ N (0, 1). In standard (Gaussian) dropout training, the dropout rates α (or p to be precise)
are fixed and the expected log likelihood LD(φ) (first term in Eq. (1)) is maximized with respect to
the means θ. Kingma et al. (2015) show that Gaussian dropout training is mathematically equivalent
to maximizing the ELBO (both terms in Eq. (1)), under a prior p(w) and fixed α where the KL term
does not depend on θ:

L(α, θ) = Eqα [LD(θ)]−DKL(qα(w)||p(w)), (4)

where the dependencies on α and θ of the terms in Eq. (1) have been made explicit. The only prior
that meets this requirement is the scale invariant log-uniform prior:

p(log |wij |) = const. ⇔ p(|wij |) ∝
1

|wij |
. (5)

Using this interpretation, it becomes straightforward to learn individual dropout-rates αij per weight,
by including αij into the set of variational parameters φ = (θ, α). This procedure was introduced
in (Kingma et al., 2015) under the name “Variational Dropout”. With the choice of a log-uniform
prior (Eq. (5)) and a factorized Gaussian approximate posterior qφ(wij) = N (θij , αijθ

2
ij) (Eq. (3))

the KL term in Eq. (1) is not analytically tractable, but the authors of Kingma et al. (2015) present
an approximation

−DKL(qφ(wij)||p(wij)) ≈ const.+ 0.5 logαij + c1αij + c2α
2
ij + c3α

3
ij , (6)

see the original publication for numerical values of c1, c2, c3. Note that due to the mean-field ap-
proximation, where the posterior over all weights factorizes into a product over individual weights
qφ(w) =

∏
qφ(wij), the KL divergence factorizes into a sum of individual KL divergences

DKL(qφ(w)||p(w)) =
∑
DKL(qφ(wij)||p(wij)).

2The trick is to use a deterministic, differentiable (w.r.t. φ) function w = f(φ, ε) with ε ∼ p(ε), instead of
directly using qφ(w).

4

Published as a conference paper at ICLR 2018

2.4 PRUNING UNITS WITH LARGE DROPOUT RATES

Learning dropout rates is interesting for network compression since neurons or weights with very
high dropout rates p → 1 can very likely be pruned without loss in accuracy. However, as the au-
thors of Sparse Variational Dropout (sparse VD) (Molchanov et al., 2017) report, the approximation
in Eq. (6) is only accurate for α ≤ 1 (corresponding to p ≤ 0.5). For this reason, the original vari-
ational dropout paper restricted α to values smaller or equal to 1, which are unsuitable for pruning.
Molchanov et al. (2017) propose an improved approximation, which is very accurate on the full
range of logα:
−DKL(qφ(wij)||p(wij)) ≈ const.+ k1S(k2 + k3 logαij)− 0.5 log(1 +α−1ij) = FKL,LU(θij , σij),

(7)
with k1 = 0.63576, k2 = 1.87320 and k3 = 1.48695 and S denoting the sigmoid function. Addi-
tionally, the authors propose to use an additive, instead of a multiplicative noise reparameterization,
which significantly reduces variance in the gradient ∂L

SGVB

∂θij
for large αij . To achieve this, the multi-

plicative noise term is replaced by an exactly equivalent additive noise term σijεij with σ2
ij = αijθ

2
ij

and the set of variational parameters becomes φ = (θ, σ):

wij = θij (1 +
√
αεij)︸ ︷︷ ︸

mult.noise

= θij +σijεij︸ ︷︷ ︸
add.noise

∼ N (θij , σ
2
ij), εij ∼ N (0, 1). (8)

After Sparse VD training, pruning is performed by thresholding αij =
σ2
ij

θ2ij
. In Molchanov et al.

(2017) a threshold of logα = 3 is used, which roughly corresponds to p > 0.95. Pruning weights
that lie above a threshold of Tα leads to

σ2
ij

θ2ij
≥ Tα ⇔ σ2

ij ≥ Tαθ2ij , (9)

which means effectively that weights with large variance but also weights of lower variance and a
mean θij close to zero are pruned. A visualization of the pruning threshold can be seen in Fig. 1 (the
“central funnel”, i.e., the area marked by the red dotted lines for a threshold for Tα = 2). Sparse
VD training can be performed from random initialization or with pre-trained networks by initial-
izing the means θij accordingly. In Bayesian Compression (Louizos et al., 2017) and Structured
Bayesian Pruning (Neklyudov et al., 2017), Sparse VD has been extended to include group-sparsity
constraints, which allows for pruning of whole neurons or convolutional filters (via learning their
corresponding dropout rates).

2.5 SPARSITY INDUCING PRIORS

For pruning weights based on their (learned) dropout rate, it is desirable to have high dropout rates
for most weights. Perhaps surprisingly, Variational Dropout already implicitly introduces such a
“high dropout rate constraint” via the implicit prior distribution over weights. The prior p(w) can
be used to induce sparsity into the posterior by having high density at zero and heavy tails. There is
a well known family of such distributions: scale-mixtures of normals (Andrews & Mallows, 1974;
Louizos et al., 2017; Ingraham & Marks, 2017):

w ∼ N (0, z2); z ∼ p(z),
where the scales of w are random variables. A well-known example is the spike-and-slab prior
(Mitchell & Beauchamp, 1988), which has a delta-spike at zero and a slab over the real line. Gal
& Ghahramani (2015); Kingma et al. (2015) show how Dropout training implies a spike-and-slab
prior over weights. The log uniform prior used in Sparse VD (Eq. (5)) can also be derived as a
marginalized scale-mixture of normals

p(wij) ∝
∫

1

|zij |
N (wij |0, z2ij)dzij =

1

|wij |
; p(zij) ∝

1

|zij |
, (10)

also known as the normal-Jeffreys prior (Figueiredo, 2002). Louizos et al. (2017) discuss how the
log-uniform prior can be seen as a continuous relaxation of the spike-and-slab prior and how the
alternative formulation through the normal-Jeffreys distribution can be used to couple the scales of
weights that belong together and thus, learn dropout rates for whole neurons or convolutional filters,
which is the basis for Bayesian Compression (Louizos et al., 2017) and Structured Bayesian Pruning
(Neklyudov et al., 2017).

5

Published as a conference paper at ICLR 2018

3 VARIATIONAL NETWORK QUANTIZATION

We formulate the preparation of a neural network for a post-training quantization step as a varia-
tional inference problem. To this end, we introduce a multi-modal, quantizing prior and train by
maximizing the ELBO (Eq. (2)) under a mean-field approximation of the posterior (i.e., a fully
factorized Gaussian). The goal of our algorithm is to achieve soft quantization, that is learning a
posterior distribution such that the accuracy-loss introduced by post-training quantization is small.
Our variational posterior approximation and training procedure is similar to Kingma et al. (2015) and
Molchanov et al. (2017) with the crucial difference of using a quantizing prior that drives weights
towards the target values for quantization.

3.1 A QUANTIZING PRIOR

The log uniform prior (Eq. (5)) can be viewed as a continuous relaxation of the spike-and-slab prior
with a spike at location 0 (Louizos et al., 2017). We use this insight to formulate a quantizing prior,
a continuous relaxation of a “multi-spike-and-slab” prior which has multiple spikes at locations
ck, k ∈ {1, . . . ,K}. Each spike location corresponds to one target value for subsequent quantiza-
tion. The quantizing prior allows weights of low variance only at the locations of the quantization
target values ck. The effect of using such a quantizing prior during Variational Network Quanti-
zation is shown in Fig. 1. After training, most weights of low variance are distributed very closely
around the quantization target values ck and can thus be replaced by the corresponding value without
significant loss in accuracy. We typically fix one of the quantization targets to zero, e.g., c2 = 0,
which allows pruning weights. Additionally, weights with a large variance can also be pruned. Both
kinds of pruning can be achieved with an αij threshold (see Eq. (9)) as in sparse Variational Dropout
(Molchanov et al., 2017). Following the interpretation of the log uniform prior p(wij) as a marginal
over the scale-hyperparameter zij , we extend Eq. (10) with a hyper-prior over locations

p(wij) =

∫
N (wij |mij , zij)pz(zij)pm(mij) dzijdmij pm(mij) =

∑
k

akδ(mij − ck), (11)

with p(zij) ∝ |zij |−1. The location prior pm(mij) is a mixture of weighted delta distributions
located at the quantization values ck. Marginalizing over m yields the quantizing prior

p(wij) ∝
∑
k

ak

∫
1

|zij |
N (wij |ck, zij) dzij =

∑
k

ak
1

|wij − ck|
. (12)

In our experiments, we use K = 3, ak = 1/K ∀k and c2 = 0 unless indicated otherwise.

3.2 POST-TRAINING QUANTIZATION

Eq. (9) implies that using a threshold on αij as a pruning criterion is equivalent to pruning weights
whose value does not differ significantly from zero:

θ2ij ≤
σ2
ij

Tα
⇔ θij ∈ (− σij√

Tα
,
σij√
Tα

). (13)

To be precise, Tα specifies the width of a scaled standard-deviation band ±σij/
√
Tα around the

mean θij . If the value zero lies within this band, the weight is assigned the value 0. For instance, a
pruning threshold which implies p ≥ 0.95 corresponds to a variance band of approximately σij/4.
An equivalent interpretation is that a weight is pruned if the likelihood for the value 0 under the
approximate posterior exceeds the threshold given by the standard-deviation band (Eq. (13)):

N (0|θij , σ2
ij) ≥ N (θij ±

σij√
Tα
|θij , σ2

ij) =
1√

2πσij
e−

1
2Tα . (14)

Extending this argument for pruning weights to a quantization setting, we design a post-training
quantization scheme that assigns each weight the quantized value ck with the highest likelihood un-
der the approximate posterior. Since variational posteriors over weights are Gaussian, this translates
into minimizing the squared distance between the mean θij and the quantized values ck:

arg max
k
N (ck|θij , σ2

ij) = arg max
k

e
−

(ck−θij)
2

2σ2
ij = arg min

k
(ck − θij)2. (15)

6

Published as a conference paper at ICLR 2018

Additionally, the pruning rate can be increased by first assigning a hard 0 to all weights that exceed
the pruning threshold Tα (see Eq. (9)) before performing the assignment to quantization levels as
described above.

3.3 KL DIVERGENCE APPROXIMATION

Under the quantizing prior (Eq. (12)) the KL divergence from the prior DKL(qφ(w)||p(w)) to the
mean-field posterior is analytically intractable. Similar to Kingma et al. (2015); Molchanov et al.
(2017), we use a differentiable approximation FKL(θ, σ, c)3, composed of a small number of dif-
ferentiable functions to keep the computational effort low during training. We now present the
approximation for a reference codebook c = [−r, 0, r], r = 0.2, however later we show how the
approximation can be used for arbitrary ternary, symmetric codebooks as well. The basis of our
approximation is the approximation FKL,LU introduced by Molchanov et al. (2017) for the KL di-
vergence from a log uniform prior to a Gaussian posterior (see Eq. (7)) which is centered around
zero. We observe that a weighted mixture of shifted versions of FKL,LU can be used to approximate
the KL divergence for our multi-modal quantizing prior (Eq. (12)) (which is composed of shifted
versions of the log uniform prior). In a nutshell, we shift one version of FKL to each codebook
entry ck and then use θ-dependent Gaussian windowing functions Ω(θ) to mix the shifted approxi-
mations (see more details in the Appendix A.3). The approximation for the KL divergence from our
multi-modal quantizing prior to a Gaussian posterior is given as

FKL(θ, σ, c) =
∑
k:ck 6=0

Ω(θ − ck)FKL,LU(θ − ck, σ)︸ ︷︷ ︸
local behavior

+ Ω0(θ)FKL,LU(θ, σ)︸ ︷︷ ︸
global behavior

(16)

with

Ω(θ) = exp(−1

2

θ2

τ2
) Ω0(θ) = 1−

∑
k:ck 6=0

Ω(θ − ck). (17)

We use τ = 0.075 in our experiments. Illustrations of the approximation, including a comparison
against the ground-truth computed via Monte Carlo sampling are shown in Fig. 2. Over the range
of θ- and σ-values relevant to our method, the maximum absolute deviation from the ground-truth
is 1.07 nats. See Fig. 4 in the Appendix for a more detailed quantitative evaluation of our approxi-
mation.

This KL approximation in Eq. (16), developed for the reference codebook cr = [−r, 0, r], can be
reused for any symmetric ternary codebook ca = [−a, 0, a], a ∈ R+, since ca can be represented
with the reference codebook and a positive scaling factor s, ca = scr, s = a/r. As derived
in the Appendix (A.4), this re-scaling translates into a multiplicative re-scaling of the variational
parameters θ and σ. The KL divergence from a prior based on the codebook ca to the posterior
qφ(w) is thus given by DKL(qφ(w)||pca(w)) ≈ FKL(θ/s, σ/s, cr). This result allows learning the
quantization level a during training as well.

4 EXPERIMENTS

In our experiments, we train with VNQ and then first prune via thresholding logαij ≥ log Tα = 2.
Remaining weights are then quantized by minimizing the squared distance to the quantization values
ck (see Sec. 3.2). We use warm-up (Sønderby et al., 2016), that is, we multiply the KL divergence
term (Eq. (2)) with a factor β, where β = 0 during the first few epochs and then linearly ramp up to
β = 1. To improve stability of VNQ training, we ensure through clipping that log σ2

ij ∈ (−10, 1)
and θij ∈ (−a − 0.3679σ, a + 0.3679σ) (which corresponds to a shifted logα threshold of 2, that
is, we clip θij if it lies left of the −a funnel or right of the +a funnel, compare Fig. 1). This leads to
a clipping-boundary that depends on trainable parameters. To avoid weights getting stuck at these
boundaries, we use gradient-stopping, that is, we apply the gradient to a so-called “shadow weight”
and use the clipped weight-value only for the forward pass. Without this procedure our method still
works, but accuracies are a bit worse, particularly on CIFAR-10. When learning codebook values

3To keep notation in this section simple, we drop the indices ij from w, θ and σ but we refer to individual
weights and their posterior parameters throughout the section.

7

Published as a conference paper at ICLR 2018

0

10

D
K

L
+
C

σ = 1

0

10

σ = 0.01

0

10

σ = 1e− 08

FKL,LU(θ − 0.2, σ)

FKL,LU(θ, σ)

FKL,LU(θ + 0.2, σ)

DMC
KL (qφ||p)

0

1

0

1

0

1 Ω(θ − 0.2)

Ω0(θ)

Ω(θ + 0.2)

−1 0 1

θ

0

10

D
K

L
+
C

−1 0 1

θ

0

10

−1 0 1

θ

0

10

FKL(θ, σ, {−0.2, 0, 0.2})
DMC

KL (qφ||p)

Figure 2: Approximation to the analytically intractable KL divergence DKL(qφ||p), constructed by
shifting and mixing known approximations to the KL divergence from a log uniform prior to the
posterior. Top row: Shifted versions of the known approximation (Eq. (7)) in color and the ground
truth KL approximation (computed via Monte Carlo sampling) DMC

KL (qφ||p) in black. Middle row:
weighting functions Ω(θ) that mix the shifted known approximation to form the final approxima-
tion FKL shown in the bottom row (gold), compared against the ground-truth (MC sampled). Each
column corresponds to a different value of σ. A comparison between ground-truth and our approx-
imation over a large range of σ and θ values is shown in the Appendix in Fig. 4. Note that since
the priors are improper, KL approximation and ground-truth can only be compared up to an additive
constant C - the constant is irrelevant for network training but has been chosen in the plot such that
ground-truth and approximation align for large values of θ.

a during training, we use a lower learning rate for adjusting the codebook, otherwise we observe a
tendency for codebook values to collapse in early stages of training (a similar observation was made
by Ullrich et al. (2017)). Additionally, we ensure a ≥ 0.05 by clipping.

4.1 LENET-5 ON MNIST

We demonstrate our method with LeNet-54 (LeCun et al., 1998) on the MNIST handwritten digits
dataset. Images are pre-processed by subtracting the mean and dividing by the standard-deviation
over the training set. For the pre-trained network we run 5 epochs on a randomly initialized network
(Glorot initialization, Adam optimizer), which leads to a validation accuracy of 99.2%. We initialize
means θ with the pre-trained weights and variances with log σ2 = −8. The warm-up factor β is
linearly increased from 0 to 1 during the first 15 epochs. VNQ training runs for a total of 195 epochs
with a batch-size of 128, the learning rate is linearly decreased from 0.001 to 0 and the learning rate
for adjusting the codebook parameter a uses a learning rate that is 100 times lower. We initialize
with a = 0.2. Results are shown in Table 1, a visualization of the distribution over weights after
VNQ training is shown in Fig. 1.

We find that VNQ training sufficiently prepares a network for pruning and quantization with negli-
gible loss in accuracy and without requiring subsequent fine-tuning. Training from scratch yields a
similar performance compared to initializing with a pre-trained network, with a slightly higher prun-
ing rate. Compared to pruning methods that do not consider few-bit quantization in their objective,
we achieve significantly lower pruning rates. This is an interesting observation since our method
is based on a similar objective (e.g., compared to Sparse VD) but with the addition of forcing non-
pruned weights to tightly cluster around the quantization levels. Few-bit quantization severely limits
network capacity. Perhaps this capacity limitation must be countered by pruning fewer weights. Our
pruning rates are roughly in line with other papers on ternary quantization, e.g., Zhu et al. (2016),
who report sparsity levels between 30% and 50% with their ternary quantization method. Note that

4the Caffe version, see https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet_train_test.prototxt

8

 https://github.com/BVLC/caffe/blob/master/examples/mnist/lenet_train_test.prototxt

Published as a conference paper at ICLR 2018

Table 1: Results on LeNet-5 (MNIST), showing validation error, percentage of non-pruned weights
and bit-precision per parameter. Original is our pre-trained LeNet-5. We show results after VNQ
training (without pruning and quantization, denoted by “no P&Q”) where weights were determin-
istically replaced by the full-precision means θ and for VNQ training with subsequent pruning and
quantization (denoted by “P&Q”). “random init.” denotes training with random weight initializa-
tion (Glorot). We also show results of non-ternary or pruning-only methods (P): Deep Compression
(Han et al., 2016), Soft weight-sharing (Ullrich et al., 2017), Sparse VD (Molchanov et al., 2017),
Bayesian Compression (Louizos et al., 2017) and Stuctured Bayesian Pruning (Neklyudov et al.,
2017).

Method val. error [%] |w 6=0|
|w| [%] bits

Original 0.8 100 32
VNQ (no P&Q) 0.67 100 32

VNQ + P&Q 0.73 28.3 2
VNQ + P&Q (random init.) 0.73 17.7 2
Deep Compression (P&Q) 0.74 8 5− 8

Soft weight-sharing (P&Q) 0.97 0.5 3
Sparse VD (P) 0.75 0.7 -

Bayesian Comp. (P&Q) 1.0 0.6 7− 18
Structured BP (P) 0.86 - -

a direct comparison between pruning, quantizing and ternarizing methods is difficult and depends
on many factors such that a fair computation of the compression rate that does not implicitly favor
certain methods is hardly possible within the scope of this paper. For instance, compression rates
for pruning methods are typically reported under the assumption of a CSC storage format which
would not fully account for the compression potential of a sparse ternary matrix. We thus choose
not to report any measures for compression rates, however for the methods listed in Table 1, they
can easily be found in the literature.

4.2 DENSENET ON CIFAR-10

Our second experiment uses a modern DenseNet (Huang et al., 2017) (k = 12, depth L = 76,
with bottlenecks) on CIFAR-10 (Krizhevsky & Hinton, 2009). We follow the CIFAR-10 settings
of Huang et al. (2017)5. The training procedure is identical to the procedure on MNIST with the
following exceptions: we use a batch-size of 64 samples, the warm-up weight β of the KL term
is 0 for the first 5 epochs and is then linearly ramped up from 0 to 1 over the next 15 epochs, the
learning rate of 0.005 is kept constant for the first 50 epochs and then linearly decreased to a value
of 0.003 when training stops after 150 epochs. We pre-train a deterministic DenseNet (reaching
validation accuracy of 93.19%) to initialize VNQ training. The codebook parameter for non-zero
values a is initialized with the maximum absolute value over pre-trained weights per layer. Results
are shown in Table 2. A visualization of the distribution over weights after VNQ training is shown
in the Appendix Fig. 3.

We generally observe lower levels of sparsity for DenseNet, compared to LeNet. This might be due
to the fact that DenseNet already has an optimized architecture which removed a lot of redundant
parameters from the start. In line with previous publications, we generally observed that the first
and last layer of the network are most sensitive to pruning and quantization. However, in contrast
to many other methods that do not quantize these layers (e.g., Zhu et al. (2016)), we find that after
sufficient training, the complete network can be pruned and quantized with very little additional loss
in accuracy (see Table 2). Inspecting the weight scatter-plot for the first and last layer (Appendix
Fig. 3, top-left and bottom-right panel) it can be seen that some weights did not settle on one of the

5Our DenseNet(L = 76, k = 12) consists of an initial convolutional layer (3× 3 with 16 output channels),
followed by three dense blocks (each with 12 pairs of 1 × 1 convolution bottleneck followed by a 3 × 3
convolution, number of channels depends on growth-rate k = 12) and a final classification layer (global average
pooling that feeds into a dense layer with softmax activation). In-between the dense blocks (but not after the
last dense block) are (pooling) transition layers (1 × 1 convolution followed by 2 × 2 average pooling with a
stride of 2).

9

Published as a conference paper at ICLR 2018

Table 2: Results on DenseNet (CIFAR-10), showing the error on the validation set, the percentage of
non-pruned weights and the bit-precision per weight. Original denotes the pre-trained network. We
show results after VNQ training without pruning and quantization (weights were deterministically
replaced by the full-precision means θ) denoted by “no P&Q”, and VNQ with subsequent pruning
and quantization denoted by “P&Q” (in the condition “(w/o 1)” we use full-precision means for the
weights in the first layer and do not prune and quantize this layer).

Method val error [%] |w 6=0|
|w| [%] bits

Original 6.81 100 32
VNQ (no P&Q) 8.32 100 32

VNQ + P&Q (w/o 1) 8.78 46 2 (32)
VNQ + P&Q 8.83 46 2

prior modes (the “funnels”) after VNQ training, particularly the first layer has a few such weights
with very low variance. It is likely that quantizing these weights causes the additional loss in accu-
racy that we observe when quantizing the whole network. Without gradient stopping (i.e., applying
gradients to a shadow weight at the trainable clipping boundary) we have observed that pruning and
quantizing the first layer leads to a more pronounced drop in accuracy (about 3% compared to a
network where the first layer is kept with full precision, not shown in results).

5 RELATED WORK

Our method is an extension of Sparse VD (Molchanov et al., 2017), originally used for network
pruning. In contrast, we use a quantizing prior, leading to a multi-modal posterior suitable for few-
bit quantization and pruning. Bayesian Compression and Structured Bayesian Pruning (Louizos
et al., 2017; Neklyudov et al., 2017) extend Sparse VD to prune whole neurons or filters via group-
sparsity constraints. Additionally, in Bayesian Compression the required bit-precision per layer is
determined via the posterior variance. In contrast to our method, Bayesian Compression does not
explicitly enforce clustering of weights during training and thus requires bit-widths in the range
between 5 and 18 bits. Extending our method to include group-constraints for pruning is an inter-
esting direction for future work. Another Bayesian method for simultaneous network quantization
and pruning is soft weight-sharing (SWS) (Ullrich et al., 2017), which uses a Gaussian mixture
model prior (and a KL term without trainable parameters such that the KL term reduces to the
prior entropy). SWS acts like a probabilistic version of k-means clustering with the advantage of
automatic collapse of unnecessary mixture components. Similar to learning the codebooks in our
method, soft weight-sharing learns the prior from the data, a technique known as empirical Bayes.
We cannot directly compare against soft weight-sharing since the authors do not report results on
ternary networks. Gal et al. (2017) learn dropout rates by using a continuous relaxation of dropout’s
discrete masks (via the concrete distribution). The authors learn layer-wise dropout rates, which
does not allow for dropout-rate-based pruning. We experimented with using the concrete distribu-
tion for learning codebooks for quantization with promising early results but so far we have ob-
served lower pruning rates or lower accuracy compared to VNQ. A non-probabilistic state-of-the-art
method for network ternarization is Trained Ternary Quantization (Zhu et al., 2016) which uses full-
precision shadow weights during training, but quantized forward passes. Additionally it learns a
(non-symmetric) scaling per layer for the non-zero quantization values, similar to our learned quan-
tization level a. While the method achieves impressive accuracy, the sparsity and thus pruning rates
are rather low (between 30% and 50% sparsity) and the first and last layer need to be kept with full
precision.

6 DISCUSSION

A potential shortcoming of our method is the KL divergence approximation (Sec. 3.3). While the
approximation is reasonably good on the relevant range of θ- and σ-values, there is still room for
improvement which could have the benefit that weights are drawn even more tightly onto the quan-
tization levels, resulting in lower accuracy loss after quantization and pruning. Since our functional

10

Published as a conference paper at ICLR 2018

approximation to the KL divergence only needs to be computed once and an arbitrary amount of
ground-truth data can be produced, it should be possible to improve upon the approximation pre-
sented here at least by some brute-force function approximation, e.g., a neural network, polynomial
or kernel regression. The main difficulty is that the resulting approximation must be differentiable
and must not introduce significant computational overhead since the approximation is evaluated
once for each network parameter in each gradient step. We have also experimented with a naive
Monte-Carlo approximation of the KL divergence term. This has the disadvantage that local repa-
rameterization (where pre-activations are sampled directly) can no longer be used, since weight
samples are required for the MC approximation. To keep computational complexity comparable,
we used a single sample for the MC approximation. In our LeNet-5 on MNIST experiment the MC
approximation achieves comparable accuracy with higher pruning rates compared to our functional
KL approximation. However, with DenseNet on CIFAR-10 and the MC approximation validation
accuracy plunges catastrophically after pruning and quantization. See Sec. A.3 in the Appendix for
more details. Compared to similar methods that only consider network pruning, our pruning rates
are significantly lower. This does not seem to be a particular problem of our method since other pa-
pers on network ternarization report similar or even lower sparsity levels (Zhu et al. (2016) roughly
achieve between 30% and 50% sparsity). The reason for this might be that heavily quantized net-
works have a much lower capacity compared to full-precision networks. This limited capacity might
require that the network compensates by effectively using more weights such that the pruning rates
become significantly lower. Similar trends have also been observed with binary networks, where
drops in accuracy could be prevented by increasing the number of neurons (with binary weights) per
layer. Principled experiments to test the trade-off between low bit-precision and sparsity rates would
be an interesting direction for future work. One starting point could be to test our method with more
quantization levels (e.g., 5, 7 or 9) and investigate how this affects the pruning rate.

REFERENCES

David F Andrews and Colin L Mallows. Scale mixtures of normal distributions. Journal of the
Royal Statistical Society. Series B (Methodological), pp. 99–102, 1974.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural networks. arXiv preprint arXiv:1505.05424, 2015.

Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks: Training deep neural networks with weights and activations constrained to+ 1
or-1. arXiv preprint arXiv:1602.02830, 2016.

Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley & Sons, 2006.

Misha Denil, Babak Shakibi, Laurent Dinh, Nando de Freitas, et al. Predicting parameters in deep
learning. In Advances in Neural Information Processing Systems, pp. 2148–2156, 2013.

Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, and Steffen Udluft. Learning
and policy search in stochastic dynamical systems with bayesian neural networks. arXiv preprint
arXiv:1605.07127, 2016.

Stefan Depeweg, José Miguel Hernández-Lobato, Finale Doshi-Velez, and Steffen Udluft. Un-
certainty decomposition in bayesian neural networks with latent variables. arXiv preprint
arXiv:1706.08495, 2017.

Mário Figueiredo. Adaptive sparseness using jeffreys prior. In Advances in neural information
processing systems, pp. 697–704, 2002.

Yarin Gal. Uncertainty in deep learning. PhD thesis, PhD thesis, University of Cambridge, 2016.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model
uncertainty in deep learning. arXiv:1506.02142, 2015.

Yarin Gal, Jiri Hron, and Alex Kendall. Concrete dropout. arXiv preprint arXiv:1705.07832, 2017.

Tim Genewein and Daniel A Braun. Occam’s razor in sensorimotor learning. Proceedings of the
Royal Society of London B: Biological Sciences, 281(1783):20132952, 2014.

11

Published as a conference paper at ICLR 2018

Tim Genewein, Felix Leibfried, Jordi Grau-Moya, and Daniel Alexander Braun. Bounded rational-
ity, abstraction, and hierarchical decision-making: An information-theoretic optimality principle.
Frontiers in Robotics and AI, 2:27, 2015.

Alex Graves. Practical variational inference for neural networks. In NIPS, pp. 2348–2356, 2011.

Peter D Grünwald. The minimum description length principle. MIT press, 2007.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. In
Advances In Neural Information Processing Systems, pp. 1379–1387, 2016.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. ICLR 2016, 2016.

Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Shijian Tang, Erich Elsen, Bryan Catanzaro, John
Tran, and William J Dally. Dsd: Regularizing deep neural networks with dense-sparse-dense
training flow. ICLR 2017, 2017.

Babak Hassibi and David G Stork. Second order derivatives for network pruning: Optimal brain
surgeon. In Advances in Neural Information Processing Systems, pp. 164–171, 1993.

José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation for scalable learn-
ing of bayesian neural networks. In International Conference on Machine Learning, pp. 1861–
1869, 2015.

Matthew D Hoffman and Matthew J Johnson. Elbo surgery: yet another way to carve up the varia-
tional evidence lower bound. In Workshop in Advances in Approximate Bayesian Inference, NIPS
2016, 2016.

Matthew D Hoffman, Carlos Riquelme, and Matthew J Johnson. The beta-vaes implicit prior. In
Workshop on Bayesian deep learning, NIPS 2017, 2017.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. 2017.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quantized
neural networks: Training neural networks with low precision weights and activations. arXiv
preprint arXiv:1609.07061, 2016.

Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size.
arXiv preprint arXiv:1602.07360, 2016.

John Ingraham and Debora Marks. Variational inference for sparse and undirected models. In
International Conference on Machine Learning, pp. 1607–1616, 2017.

Theofanis Karaletsos and Gunnar Rätsch. Automatic relevance determination for deep generative
models. arXiv preprint arXiv:1505.07765, 2015.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. ICLR, 2014.

Diederik P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparame-
terization trick. In Advances in Neural Information Processing Systems, pp. 2575–2583, 2015.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In D. S. Touretzky (ed.),
Advances in Neural Information Processing Systems, pp. 598–605. 1990.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

12

Published as a conference paper at ICLR 2018

Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks. arXiv preprint arXiv:1605.04711,
2016.

Christos Louizos, Karen Ullrich, and Max Welling. Bayesian compression for deep learning. Ad-
vances in Neural Information Processing Systems, 2017.

David JC MacKay. Probable networks and plausible predictions - a review of practical bayesian
methods for supervised neural networks. Network: Computation in Neural Systems, 6(3):469–
505, 1995.

David JC MacKay. Information theory, inference and learning algorithms. Cambridge university
press, 2003.

Toby J Mitchell and John J Beauchamp. Bayesian variable selection in linear regression. Journal of
the American Statistical Association, 83(404):1023–1032, 1988.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout sparsifies deep neural
networks. ICML 2017, 2017.

Radford M Neal. Bayesian Learning for Neural Networks. PhD thesis, University of Toronto, 1995.

Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Structured bayesian
pruning via log-normal multiplicative noise. arXiv preprint arXiv:1705.07283, 2017.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European Conference on Computer
Vision, pp. 525–542. Springer, 2016.

Jorma Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, 1978.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther.
How to train deep variational autoencoders and probabilistic ladder networks. arXiv preprint
arXiv:1602.02282, 2016.

Daniel Soudry, Itay Hubara, and Ron Meir. Expectation backpropagation: Parameter-free train-
ing of multilayer neural networks with continuous or discrete weights. In Advances in Neural
Information Processing Systems, pp. 963–971, 2014.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. Journal of machine learning
research, 15(1):1929–1958, 2014.

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel Emer. Efficient processing of deep neural
networks: A tutorial and survey. arXiv preprint arXiv:1703.09039, 2017.

Naftali Tishby, Fernando C Pereira, and William Bialek. The information bottleneck method. arXiv
preprint physics/0004057, 2000.

Jakub M Tomczak and Max Welling. Vae with a vampprior. arXiv preprint arXiv:1705.07120, 2017.

Karen Ullrich, Edward Meeds, and Max Welling. Soft weight-sharing for neural network compres-
sion. ICLR 2017, 2017.

Sida Wang and Christopher Manning. Fast dropout training. In Proceedings of the 30th International
Conference on Machine Learning (ICML-13), pp. 118–126, 2013.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 681–688,
2011.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Train-
ing low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization. arXiv
preprint arXiv:1612.01064, 2016.

13

Published as a conference paper at ICLR 2018

A APPENDIX

A.1 VISUALIZATION OF DENSENET WEIGHTS AFTER VNQ TRAINING

See Fig. 3.

Figure 3: Visualization of distribution over DenseNet weights after training on CIFAR-10 with
VNQ. Each panel shows one (convolutional or dense) layer, starting in the top-left corner with the
input- and ending with the final layer in the bottom-right panel (going row-wise, that is first moving
to the right as layers increase). The validation accuracy of the network shown is 91.68% before
pruning and quantization and 91.17% after pruning and quantization.

14

Published as a conference paper at ICLR 2018

A.2 LOCAL REPARAMETERIZATION

We follow Sparse VD (Molchanov et al., 2017) and use the Local Reparameterization Trick (Kingma
et al., 2015) and Additive Noise Reparmetrization to optimize the stochastic gradient variational
lower bound LSGVB (Eq. (2)). We optimize posterior means and log-variances (θ, log σ2) and the
codebook level a. We apply Variational Network Quantization to fully connected and convolutional
layers. Denoting inputs to a layer with AM×I , outputs of a layer with BM×O and using local
reparameterization we get:

bmj ∼ N (γmj , δmj); γmj =

I∑
i=1

amiθij , δmj =

I∑
i=1

a2miσ
2
ij

for a fully connected layer. Similarly activations for a convolutional layer are computed as follows

vec(bmk) ∼ N (γmk, δmk); γmk = vec(Am ∗ θk), δmk = diag(vec(A2
m ∗ σ2

k)),

where (·)2 denotes an element-wise operation, ∗ is the convolution operation and vec(·) denotes
reshaping of a matrix/tensor into a vector.

A.3 KL APPROXIMATION FOR QUANTIZING PRIOR

Under the quantizing prior (Eq. (12)) the KL divergence from the log uniform prior to the mean-
field posterior DKL(qφ(wij)||p(wij)) is analytically intractable. Molchanov et al. (2017) presented
an approximation for the KL divergence under a (zero-centered) log uniform prior (Eq. (5)). Since
our quantizing prior is essentially a composition of shifted log uniform priors, we construct a com-
position of the approximation given by Molchanov et al. (2017), shown in Eq. (7). The original
approximation can be utilized to calculate a KL divergence approximation (up to an additive con-
stant C̃) from a shifted log-uniform prior p(wij) ∝ 1

|wij−r| to a Gaussian posterior qφ(wij) by
transferring the shift to the posterior parameter θ

DKL

(
q{θij ,σij}||p(wij) ∝

1

|wij − r|

)
= DKL

(
q{θij−r,σij}(wij)||p(wij) ∝

1

|wij |

)
+ C̃, (18)

For small posterior variances σ2
ij (σij � r) and means near the quantization levels (i.e., |θij | ≈ r),

the KL divergence is dominated by the mixture prior component located at the respective quanti-
zation level r. For these values of θ and σ, the KL divergence can be approximated by shifting
the approximation FLU,KL(θ, σ) to the quantization level r, i.e., FLU,KL(θ ± r, σ). For small σ
and values of θ near zero or far away from any quantization level, as well as for large values of σ
and arbitrary θ, the KL divergence can be approximated by the original non-shifted approximation
FLU,KL(θ, σ). Based on these observations we construct our KL approximation by properly mixing
shifted versions of FLU,KL(θ ± r, σ). We use Gaussian window functions Ω(θ ± r) to perform this
weighting (to ensure differentiability). The remaining θ domain is covered by an approximation
located at zero and weighted such that this approximation is dominant near zero and far away from
the quantization levels, which is achieved by introducing the constraint that all window functions
sum up to one on the full θ domain. See Fig. 2 for a visual representation of shifted approximations
and their respective window functions.

A.3.1 APPROXIMATION QUALITY

We evaluate the quality of our KL approximation (Eq. (16)) by comparing against a ground-truth
Monte Carlo approximation on a dense grid over the full range of relevant θ and σ values. Results
of this comparison are shown in Fig. 4. Alternatively to the functional KL approximation, one could
also use a naive Monte Carlo approximation directly. This has the disadvantage that local reparam-
eterization can no longer be used, since actual samples of the weights must be drawn. To assess the
quality of our functional KL approximation, we also compare against experiments where we use a
naive MC approximation of the KL divergence term, where we only use a single sample for approx-
imating the expectation to keep computational complexity comparable to our original method. Note
that the “ground-truth” MC approximation used before to evaluate KL approximation quality uses
many more samples which would be prohibitively expensive during training. To test for the effect of

15

Published as a conference paper at ICLR 2018

Figure 4: Quantitative analysis of the KL approxmiation quality. The top panel shows the “ground-
truth” (computed via computationally expensive Monte Carlo approximation), the middle panel
shows our approxiomation (Eq. (16)) and the bottom panel shows the difference between both. The
maximum absolute error between our approximation and the ground-truth is 1.07 nats.

local reparameterization in isolation we also show results for our functional KL approximation with-
out using local reparameterization. The results in Table 3 show that the naive MC approximation
of the KL term leads to slightly lower validation error on MNIST (LeNet-5) (with higher pruning
rates) but on CIFAR-10 (DenseNet) the validation error of the network trained with the naive MC
approximation catastrophically increases after pruning and quantizing the network. Except for re-
moving local reparameterization or plugging in the naive MC approximation, experiments were ran
as described in Sec. 4.

Table 3: Comparing the effects of local reparameterization and naive MC approximation of the KL
divergence. “func. KL approx” denotes our functional approximation of the KL divergence given by
Eq. (16). “naive MC approx” denotes a naive Monte Carlo approximation that uses a single sample
only. The first column of results shows the validation error after training, but without pruning and
quantization (no P&Q), the next column shows results after pruning and quantization (results in
brackets correspond to the validation error without pruning and quantizing the first layer).

Setting val. error no P&Q [%] val. error P&Q [%] |w 6=0|
|w| [%]

LeNet-5 on MNIST
local reparam, func. KL approx 0.67 0.73 28.3

no local reparam, func. KL approx 0.69 0.91 12.4
no local reparam, naive MC approx 0.6 0.69 8.8

DenseNet on CIFAR-10
local reparam, func. KL approx 8.32 8.83 (8.78) 46

no local reparam, naive MC approx 20.75 77.71 (75.74) 60.7

Inspecting the distribution over weights after training with the naive MC approximation for the KL
divergence, shown in Fig. 5 for LeNet-5 and in Fig. 6 for DenseNet, reveals that weight-means tend
to be more dispersed and weight-variances tend to be generally lower than when training with our
functional KL approximation (compare Fig. 1 for LeNet-5 and Fig. 3 for DenseNet). We speculate
that the combined effects of missing local reparameterization and single-sample MC approximation
lead to more noisy gradients.

16

Published as a conference paper at ICLR 2018

-0.25 0 0.25
10

5

0
lo

g
2

conv_1
n = 500

-0.25 0 0.25

de
ns

ity

-0.1 0 0.1

conv_2
n = 25000

-0.1 0 0.1

-0.05 0 0.05

dense_1
n = 400000

-0.05 0 0.05

-0.25 0 0.25

dense_2
n = 5000

-0.25 0 0.25

(a) No local reprametrization, functional KL ap-
proximation given by Eq. (16).

-0.25 0 0.25
10

5

0

lo
g

2

conv_1
n = 500

-0.25 0 0.25

de
ns

ity

-0.25 0 0.25

conv_2
n = 25000

-0.25 0 0.25

-0.2 0 0.2

dense_1
n = 400000

-0.2 0 0.2

-0.25 0 0.25

dense_2
n = 5000

-0.25 0 0.25

(b) No local reparameterization, naive MC approxi-
mation for KL divergence.

Figure 5: Distribution of weights after training without local reparameterization but with functional
KL approximation (a) and after training with naive MC approximation (b). Top rows: scatter plot of
weights (blue dots) per layer. Bottom row: corresponding density.

Figure 6: Visualization of distribution over DenseNet weights after training on CIFAR-10 with naive
MC approximation for the KL divergence (and without local reparameterization). Each panel shows
one layer, starting in the top-left corner with the input- and ending with the final layer in the bottom-
right panel (going row-wise, that is first moving to the right as layers increase). Validation accuracy
before pruning and quantization is 79.25% but plunges to 22.29% after pruning and quantization.

17

Published as a conference paper at ICLR 2018

A.4 REUSING THE KL APPROXIMATION FOR ARBITRARY CODEBOOKS

We show that the KL approximation (Eq. (16)), developed for a fixed reference codebook, can be
reused for arbitrary codebooks as long as codebook learning is restricted to learning a multiplicative
scaling factor. Without loss of generality we consider the case of ternary, symmetric codebooks6

cr = [−r, 0, r]; pcr (w) =

3∑
k=1

ak
|w − cr,k|

(19)

where r ∈ R+ is the quantization level value and pcr denotes a sparsity-inducing, quantizing prior
over weights (sparsity is induced because one of the codebook entries is fixed to 0). We denote
cr as the reference codebook for which we design the KL approximation DKL(qφ(w)||pcr) =
FKL(θ, σ, cr) (Eq. (16)). This approximation can be reused for any symmetric ternary codebook
ca = [−a, 0, a] with quantization level a ∈ R+. The latter can be seen by representing ca with
the reference codebook and a positive scaling factor s > 0 as ca = scr, s = a/r. This re-scaling
translates into a multiplicative re-scaling of the variational parameters θ and σ. To see this, consider
the prior pca , based on codebook ca:

pca(w) =
1

Z

3∑
k=1

ak
|w − ca,k|

=
1

Z

3∑
k=1

ak
|w − scr,k|

. (20)

The KL divergence from a prior based on the codebook ca to the posterior qφ(w) is given by

DKL(qφ(w)||pca(w)) =

∫
qφ(w) log

qφ(w)∑3
k=1

ak
|w−ca,k|

dw + C

=

∫
qφ(w) log

qφ(w)
1
s

∑3
k=1

ak
|ws −cr,k|

dw + C | subst. z =
w

s
,dw = sdz

=

∫
qφ(sz) log

qφ(sz)
1
s

∑3
k=1

ak
|z−cr,k|

sdz + C. (21)

Since qθ(sz) is Gaussian, the scaling s can be transfered into the variational parameters φ = (θ, σ):

qφ(sz) = N (s; θ, σ2) =
1

s
N (z;

θ

s
,
σ2

s2
) =

1

s
qφ̂(z),

with φ̂ = (θs ,
σ
s). Inserting into Eq. (21) yields:

DKL(qφ(w)||pca(w)) =

∫
1

s
qφ̂(z) log

1
sqφ̂(z)

1
s

∑3
k=1

ak
|z−cr,k|

sdz + C.

=

∫
qφ̂(z) log

qφ̂(z)∑3
k=1

ak
|z−cr,k|

dz + C.

= DKL(qφ̂(w)||pcr (w)) + C. (22)

Thus,DKL(qφ(w)||pca(w)) = DKL(qφ̂(w)||pcr (w))+C ≈ FKL(θ/s, σ/s, cr), where FKL is given
by Eq. (16). This means that the KL approximation can be used for arbitrary ternary, symmetric
codebooks of the form ca = [−a, 0, a] = scr because the scaling factor s translates into a re-scaling
of the variational parameters φ̂ = (θs ,

σ
s).

6Note that indices ij have been dropped for notational brevity from the whole section. However, throughout
the section we refer to individual weights wij and their variational parameters θij and σij

18

	Introduction
	Preliminaries
	Why Bayes for compression?
	Variational Bayes and reparameterization
	Variational inference via Dropout training
	Pruning units with large dropout rates
	Sparsity inducing priors

	Variational Network Quantization
	A quantizing prior
	Post-Training Quantization
	KL divergence approximation

	Experiments
	LeNet-5 on MNIST
	DenseNet on CIFAR-10

	Related work
	Discussion
	Appendix
	Visualization of DenseNet weights after VNQ training
	Local Reparameterization
	KL approximation for quantizing prior
	Approximation quality

	Reusing the KL approximation for arbitrary codebooks

