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Abstract—Polar codes are the first binary linear block codes
provably achieving the symmetric capacity of arbitrary binary-
input discrete memoryless channels. However, in their original
design, their block length is limited to integer powers of two,
a constraint that may be relaxed by puncturing. In this work,
a novel construction of rateless codes based on punctured polar
codes is presented, that is, codes that offer flexible rates via length
adaption for a fixed dimension. While the approach presented
relies on puncturing, it may be based on arbitrary puncturing
methods. The rateless codes obtained work with standard polar
code encoders and decoders, and allow for ad-hoc switching of
the code rate without additional overhead.

I. INTRODUCTION

Polar codes (PCs) provide the first channel coding scheme
provably achieving the symmetric capacity of arbitrary binary-
input discrete memoryless channels (BDMCs). Thus, they have
received a lot of attention since their presentation [1]. By
providing explicit constructions, as well as low-complexity
encoding and decoding methods under which the symmetric
capacity of any BDMC is attained asymptotically, PCs give an
answer to a long-standing open question in information theory.
However, in their original form based on the two-dimensional
polarization kernel

F =

[
1 0
1 1

]
(1)

as in [1], possible block lengths are restricted to integer powers
of two.

Adaptions of the original PC construction have been pro-
posed to facilitate greater length flexibility as required in many
modern communication applications. As a first option, the two-
dimensional kernel F as in (1) may be replaced by other
kernels K ∈ Fm×m

2 [2], resulting in PCs of lengths mn

for some n ∈ N, where F2 := {0, 1} denotes the binary
finite field. Another approach is given by concatenated coding
schemes including PCs as inner or outer codes. Various such
schemes have been presented in the literature, concatenating
PCs with, e.g., Reed-Solomon (RS) codes [3], [4], low-
density parity-check (LDPC) codes [5], or Bose-Chaudhuri-
Hocquenghem (BCH) codes [6].

However, these modifications require substantial changes of
both the encoder and decoder structures. In addition to that,
neither of them is able to enhance length flexibility of PC
schemes to the desired extent. As a result, both puncturing
and shortening of PCs based on the standard kernel F have
been considered, allowing for fine-grained length adaptions of
PCs, cf., e.g., [5], [7], or [8].

In this work, we present a novel approach of constructing
rateless codes based on puncturing PCs which may be em-
ployed with standard successive cancellation (SC) decoding as
in [1] or successive cancellation list (SCL) decoding [9]. Such
rateless code will be given by a sequence of linear codes of
identical dimension but increasing lengths and thus decreasing
rates, such that each instance may be obtained by appropriately
puncturing a longer code of the sequence. As a result, this
requirement imposes constraints on the sequence of puncturing
patterns used for construction. Additional constraints result
from requiring compatibility with standard decoders, facilitat-
ing low-complexity decoding of the proposed constructions.
In addition to that, the construction approach is generic in the
sense that it may be based on arbitrary puncturing approaches.

Rateless codes provide a crucial building block for hy-
brid automatic repeat request with incremental redundancy
(HARQ-IR) schemes. HARQ-IR schemes present a way to ob-
tain capacity-achieving throughput efficiency, albeit potentially
introducing additional delays due to necessary retransmissions
[10], [11], [12]. Such schemes prove helpful in scenarios
where channel quality is fluctuating, or when only imperfect,
e.g., outdated, channel-state information (CSI) is available.

In general, codes for use in HARQ-IR schemes facilitate
adapting the number of parity bits sent, hence adapting the
code length N depending on the quality of the underlying
channel, for a fixed amount of K information bits. As a result,
via adjusting N , the rate of the channel code used may be
adapted to varying channel conditions. Furthermore, in case
of retransmissions due to decoding failures at the receiver,
only additional coded bits have to be provided, incrementally
equipping the channel decoder with additional redundancy to
enable successful decoding.

A first HARQ-IR scheme based on PCs is presented in [10],
building on the quasi-uniform puncturing (QUP) heuristic
presented in [13]. Another HARQ-IR scheme presented in [14]
builds on a rate-compatible family of PCs obtained by both
puncturing and extending a mother PC. Despite their simplic-
ity, both schemes show good throughput performance in the
simulations reported.

Other HARQ-IR schemes relying on PCs focusing on
achieving capacity on certain families of BDMCs have been
proposed. This includes the work of Li et al. [15], which
achieves the capacity of a general class of BDMCs totally
ordered by stochastic degradation, but adapts rates by adjusting
the dimension of the codes, and not by adapting the length
via, e.g., puncturing. In a similar fashion, [16] and [17] present



schemes that allow for incremental retransmissions of variable
lengths.

This paper is structured as follows. In Section II, we discuss
preliminaries of PCs and the puncturing approach used in this
work. Section III presents the proposed construction of rateless
codes based on puncturing PCs. We provide an example of a
rateless code constructed by the approach, and evaluate its
performance in Section IV. Section V concludes the paper.

II. PRELIMINARIES

A. Polar Codes

In [1], Arıkan presents a method to transform N = 2n,
n ∈ N, independent copies of a BDMC W : X → Y , with
input alphabet X = {0, 1}, and output alphabet Y , into a
set of N (virtual) channels {WN,i : i ∈ [N ]}, where we write
[N ] := {1, . . . , N} ⊂ N. This results in channels

WN,i : X → YN ×X i−1, (2)

also referred to as coordinate channels. These coordinate chan-
nels WN,i polarize in the sense that as N approaches infinity,
the fraction of indices i vanishes for which I(WN,i) neither
approaches 0 (useless channels) nor 1 (perfect channels). Here,
we follow [1] and write I(WN,i) to denote the symmetric
capacity of the channel WN,i, i.e., its mutual information
assuming uniformly distributed channel inputs. This effect is
referred to as channel polarization (CP) [1].

As N approaches infinity through powers of two, the
fraction of indices i such that I(WN,i)→ 1 is arbitrarily
close to I(W) [1]. If W is an output-symmetric channel, the
symmetric capacity I(W) is equal to its Shannon capacity.
Hence, PCs provide a coding scheme which is capacity-
achieving on the family of output-symmetric BDMCs.

To polarize N independent copies of a basic channel W
used for transmission, these copies are combined recursively
by linear operations on the information to transmit. Hence, this
recursion results in a linear code C, which forms codewords
containing N linear combinations

x = (x1, . . . , xN ) = uAGN,A (3)

of u ∈ FN
2 , where uA = (ui : i ∈ A) denotes a subvector of u

containing the information bits, and A ⊂ [N ] is the index set
providing the indices of these information positions.

A generator matrix GN,A of the code is obtained by
selecting rows gi, i ∈ A from GN = BNF⊗n. Here, BN is a
bit-reversal permutation, and F as in (1) is the default binary
polarization kernel [1]. This assigns fixed zero values to the
remaining elements uAc , where Ac = [N ] \ A denotes the
complement of A with respect to [N ]. These fixed positions
are referred to as frozen bits. Choosing A such that |A| = K,
we obtain a code of rate R = K

N .

B. Puncturing Polar Codes

Assuming a mother PC C of length N , a punctured PC C′
of length M < N is defined by a puncturing pattern P ⊂ [N ]
such that P := |P| = N −M . Finding an optimal puncturing
pattern P of cardinality P = N − M for a given mother

PC of length N and dimension K for targeting a desired
length M < N is an open problem [8], [18]. Consequently,
various heuristics have been proposed.

Puncturing of PCs was first considered in [5]. To optimize
performance of the punctured code under belief-propagation
(BP) decoding, the authors suggest to puncture positions
connected to the fewest number of stopping trees. A second
heuristic for constructing P is given by choosing N − M
positions from [N ] uniformly at random, as used in [8], [7],
and [19].

Another method referred to as QUP is presented in [13]. To
obtain an incidence vector describing the puncturing pattern
by this approach, the authors suggest to shuffle a vector
containing an appropriate number of ones via the bit-reversal
permutation BN . More formally, to construct a QUP pattern P
of cardinality P , an incidence vector p of P is constructed
as [13]

p = ( 1, . . . , 1

first P positions

, 0, . . . , 0) ·BN . (4)

Hence, we have

P = {j : pj = 1} ⊂ [N ] . (5)

For the constructions presented in this work we rely on
QUP, as it provides patterns resulting in very good code
performance, a claim supported by simulation results presented
in [18].

C. Construction

To construct a PC of a desired length N , an index set
A ⊆ [N ] indicating the positions used for information bits has
to be selected, in order to minimize the union bound on block
error under SC decoding [1].

An explicit recursion in the Bhattacharyya parameters of the
coordinate channels is given by Arıkan in [1], assuming the
basic channelW is a binary erasure channel (BEC). However,
as the output alphabets of the channels WN,i as given in (2)
grow exponentially in N , exact construction is of exponential
complexity for general channels. As a result, other approaches
are necessary to construct PCs for arbitrary BDMCs.

In [20], Mori and Tanaka suggest to estimate the bit
decision error probabilities P[ûi 6= ui] under SC decoding
by tracking corresponding message densities by a density
evolution (DE) on the factor graph (FG) representation of GN .
Other approaches rely on faithful estimations of the coordinate
channels [21], [22] or Monte Carlo constructions [1], [23].

To select an index set A for a punctured PC, the channel
parameters, e.g., the decision error probabilities or the Bhat-
tacharyya parameters, have to be estimated taking into account
the influence of the puncturing pattern. Punctured positions of
the codewords are omitted upon transmission and hence result
in a reduced code length, but are treated as erasures at decoders
designed for the mother code. In a practical system, channel
log-likelihood ratios (LLRs) corresponding to these erasures
take zero values.



However, these erasures change the characteristics of the
coordinate channels WN,i, and totally degrade P of them,
rendering P positions in u useless for information transmis-
sion [7], [24]. In this work, we follow [7] and refer to the
indices of totally degraded coordinate channels as incapable
(information) positions. At such an incapable position i, an
SC decoder has to resort to flipping a coin, as we have

I(WN,i) = 0 (6)

for the coordinate channel WN,i modeling the decision about
the estimate of ui.

As a result, modified constructions have to be employed
taking the choice of P into account. For the results presented
in this work, we perform DEs to select an index set A for a
given pattern P as in [7] or [13].

III. RATELESS CODES BASED ON PUNCTURED POLAR
CODES

We will consider encoding of a fixed number of K ∈ N in-
formation bits with a rateless code that offers T ∈ N different
rates. Such a code may hence allow for an HARQ-IR scheme
with a maximum number of T − 1 allowed retransmissions of
additional parity information for each block of K information
bits. Following, e.g., [15] or [25], in this work we consider a
rateless code to be represented by a rate-compatible family of
codes obtained via appropriate puncturing. We hence define
a rate-compatible family of codes as a set of binary linear
codes of increasing length, such that each code has the same
dimension and may be obtained by puncturing a longer code
of the family.

More formally, such a family

C := {Ct : t ∈ [T ]} (7)

consists of codes Ct : FK
2 → FNt

2 with lengths Nt ∈ N such
that Nt < Nt+1 for each t ∈ [T − 1], and rates Rt = K

Nt
.

Hence, we have Rt > Rt+1 for each t ∈ [T − 1].
Furthermore, the codes in C are nested in the sense that

for each consecutive pair of codes Ct, Ct+1 ∈ C, any code-
word xt ∈ Ct may be obtained from a codeword xt+1 ∈ Ct+1

by puncturing Nt+1−Nt positions from xt+1. As a result, in
an HARQ-IR scheme, at the t-th transmission, only Nt−Nt−1
additional bits have to be transmitted, given the receiver was
unable to decode after the (t − 1)-th transmission, usually
signaled by a NACK. Hence, in such a scheme, after the t-th
transmission, the channel decoder at the receiver attempts to
decode based on a noisy observation of a codeword xt.

To construct a family of rate-compatible codes by punctur-
ing a given (N,K) mother PC C, we construct a sequence of
nested puncturing patterns

P := {Pt ⊂ [N ] : t ∈ [T ]}, (8)

that is, a sequence of patterns that satisfy the nesting condition

Pt ⊃ Pt+1 for each t ∈ [T − 1] . (9)

Given such P, we obtain the codes

Ct =
{
xPc

t
: x ∈ C

}
(10)

for each t ∈ [T ] by puncturing codewords x ∈ C corre-
spondingly, where we write xPc

t
= (xj : j ∈ Pc

t ). The
code Ct is thus an (N − |Pt|, K) code, while the length
difference between Ct and Ct+1, i.e., the number of addi-
tional bits transmitted in the t-th retransmission, is given
by πt := |Pt \ Pt+1|. We note that not only T , the number
of different rates supported by the codes in C, but also the
allocation of length increments πt are design parameters for
the construction of C.

To accommodate for a simple encoder and decoder design,
a fixed index set A, such that |A| = K, for use with all
punctured codes Ct ∈ C is sought. As a result, encoding may
be accomplished by standard PC encoders for all codes Ct,
and only corresponding puncturing has to be applied in a
subsequent step. Furthermore, it facilitates the use of stan-
dard decoders, as it enables ad-hoc switching between codes,
i.e., switching to a different length and hence rate, without
reconfiguring the decoder or even informing it about the code
change. In addition to that, it immediately allows for the
implementation of HARQ-IR schemes based on C without
additional encoding, as only additional parity bits may be
transmitted, effecting a decreased rate at the decoder which
simply takes into account these additional parity bits for
decoding.

The following theorem characterizes the complexity of a
joint optimization of the index set A and pattern sequence P,
which may be proved by enumerating the search space. As the
number of combinations is already very large for moderate N ,
such a joint approach is clearly prohibitive.

Theorem 1. For a fixed T and a given sequence of length
increments {πt : t ∈ [T − 1]}, or equivalently, a fixed se-
quence of cardinalities for the puncturing patterns in P, the
complexity of constructing C by puncturing a mother PC of
length N = 2n, n ∈ N, by an exhaustive search under the
constraint of a common A encompasses the evaluation of

(
N

K

)(
N

|P1|

) T∏

t=2

(|Pt−1|
|Pt|

)
(11)

combinations of possible index sets A ⊂ [N ] and nested
puncturing patterns in P.

A. Construction Example

We illustrate our construction approach for T = 4 and
consequently construct a rateless code C supporting four
different rates for a fixed dimension K via length-adaption.
We base construction on a mother PC of length 28 = 256, and
target a dimension of K = 96. Table I gives the parameters
used for the codes Ct, where we use Pt := |Pt|. As a result,
we have length increments πt = 32 for t ∈ [3]. Hence, we
form C from three punctured versions of the mother PC, and
use the unpunctured mother PC as C4, i.e., P4 = ∅.



TABLE I
CODE PARAMETERS FOR THE CODES Ct FORMING A RATELESS CODE C

t 1 2 3 4
Nt 160 192 224 256
Pt 96 64 32 0
Rt

3
5

1
2

3
7

3
8

To form the corresponding sequence P of puncturing pat-
terns, we use QUP to obtain patterns Pt, which fulfill the
nesting constraint given in (9) by construction. Based on these
patterns, we then estimate the probabilities P[ûi 6= ui] via DE.
A stylized example of the different punctured versions of a
codeword x ∈ C4 is given in Figure 1, while the colors used
correspond to the performance results reported in Section IV.

IV. EVALUATION AND SIMULATION RESULTS

We evaluate the construction example given in Section III-A
under both SC and SCL decoding with a cyclic redundancy
check (CRC) as an outer code and a list size of 16. To
decode the resulting codes Ct with an SC decoder, we select
K = |A| = 96 positions for inclusion in A, while for CRC-
aided SCL decoding, we select |A| = 103 = K +7 positions,
to accommodate for an outer CRC code of length 7 with
generator polynomial g(x) = x7 + x3 + 1 as in [26].

For selecting A, we perform a DE taking into account the
largest puncturing pattern P1 of cardinality |P1| = 96. We do
so to ensure that no code in C suffers from catastrophic error
propagation under SC decoding due to incapable positions
falsely included in A. As the puncturing patterns satisfy the
nesting condition, a nesting of the corresponding sets indexing
incapable positions is implied. Hence, by assuming worst-
case puncturing with P1 for construction of A, we exclude
all incapable positions from A for all Nt, t ∈ [4].

Figure 2 reports simulation results to assess the performance
of the codes Ct ∈ C in terms of block error rate (BLER) as well
as bit error rate (BER) under both SC and CRC-aided SCL de-
coding. Under both decoders, with increasing length and thus
decreasing rate, performance improves drastically, while all
codes show a similar trend. The most heavily punctured code
C1 of length N1 = 160, rate R1 = 3

5 only shows acceptable
performance under SC decoding in a very high signal-to-noise
ratio (SNR) regime ( ), but benefits more from SCL than
the other codes ( ). In general, the results reported validate
the concept of using nested puncturing to construct rateless
codes from PCs that offer competitive performance over a wide
SNR range for a constant dimension K by adapting the code
rate via length adaption.

For evaluating the impact of incapable positions included
in the index set, we construct an alternative rateless code C
using the parameters as given in Table I, but base the index
set selection on a DE that only takes into account puncturing
pattern P3 of cardinality 32. Figure 3 gives the resulting
BLERs under both SC and CRC-aided SCL decoding as
above. We note that this index set selection results in a

xPc
1

xPc
2

xPc
3

Fig. 1. Stylized examples of the punctured versions of a codeword x ∈ C4 for
the codes Ct, t ∈ [3]. Colored areas indicate positions punctured according
to the respective puncturing pattern.

catastrophic error propagation in the SC decoder for C1 of
length N1 = 160, ( ), and also SCL decoding does not
improve the performance ( ).

However, when considering C2 of length N2 = 192,
SCL decoding ( ) overcomes the catastrophic performance
degradation observed under SC decoding ( ). While posi-
tions are included inA that become incapable when puncturing
with P2 (which can be checked easily by, e.g., the algorithm
presented in [7]), they do not cluster in consecutive sequences
long enough to render SCL decoding useless for the list size
of 16 used here. Hence, when list decoding is employed,
certain sequences of incapable positions may be included
in A without rendering the punctured code useless, thereby
providing additional flexibility for selecting A.

V. CONCLUSION

We present a generic construction of rateless codes by
puncturing PCs. By construction, the codes may be decoded
with standard PC decoders, and they do not incur additional
signaling overhead for ad-hoc rate and length switching. Albeit
our approach may be based on arbitrary puncturing methods
for PCs, we present an example of our construction based
on QUP. Simulations reported for SC and CRC-aided SCL
decoding validate our approach, as the resulting codes provide
good performance over a wide SNR range.

We note that decreasing the length increments and increas-
ing the number of codes easily allows for rateless constructions
offering rates on a finer scale based on the presented approach.
In addition to that, we note that SCL decoding offers the po-
tential for relaxed index set selection approaches that consider
incapable information positions to a certain extent, depending
on the list size.
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