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Abstract

We consider a full-duplex (FD) relaying network operating with finite blocklength (FBL) codes. Based on Polyanskiy’s FBL
model, we characterize the FBL reliability of the relaying network under both decode-and-forward (DF) and amplify-and-forward
(AF) relaying schemes. Following the model, we provide reliability-optimal designs via optimal power allocation for both schemes.
In particular, for the FD DF relaying scheme, we prove that the (tightly approximated) overall error probability is convex in the
transmit power at the relay. In addition, we show that minimizing the overall error probability of the FD AF relaying is equivalent
to maximizing the overall signal to interference plus noise ratio (SINR), and further prove that this SINR is pseudo-concave in
the transmit power of the FD AF relay. Via numerical analysis, we validate our analytical model and illustrate the performance
of the considered FD relaying networks with different latency constraints, power levels of the residual loop interference, and data
packet sizes. Moreover, we compare the performances of FD AF and FD DF relaying schemes, while the performance of direct
transmission is provided as a reference.
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I. INTRODUCTION

Relaying is known as a fundamental technique to enhance the performance of wireless networks. By deploying a third
transceiver as the relay, the destination likely receives a much stronger signal forwarded by the relay in comparison to the
direct transmission by the source. This leads to improvements in terms of coverage, throughput and transmission reliability [1]–
[4]. On the other hand, for the transmissions of data packets with certain latency constraints, (if equal time division is considered)
a two-hop relaying halves the transmission time (and therefore the blocklength) compared to the direct transmission. In other
words, in comparison to the direct transmission, relaying actually introduces a tradeoff between the received signal power and
transmission blocklengths.

In conventional relaying networks, the relay operates in a half-duplex mode [2]–[4], where the transmissions of the two
hops (i.e., the transmission from the source to the relay and the transmission from the relay to the destination) are operated
in different time-frequency resources. By applying advanced self-interference cancellation [5], [6], a full-duplex (FD) relay
enables the transmission of the two hops simultaneously, i.e., in the same time-frequency resource. In particular, the FD relaying
has been shown to be more promising to achieve higher throughput compared to conventional half duplex systems.

However, all the above performance advantages of relaying are conducted under the ideal assumption of communicating
arbitrarily reliably at rates close to Shannon’s channel capacity. They thus implicitly assume an infinite blocklength for the
transmission, which does not allow for the accurate assessment of the performance in networks operating with short blocklengths
to satisfy the low-latency requirements. In the finite blocklength (FBL) regime, the error probability in communication is not
negligible. Early in 1962, a normal approximation of the coding rate was presented in [7]. Recently, an achievable upper bound
on the coding rate is identified in [8] for a single-hop transmission system, taking the error probability into account. The FBL
performance characterization of [8] has been extended to Gilbert-Elliott channels [9], quasi-static flat-fading channels [10]–[12],
mutiple access networks [13]–[15]. More recently, the FBL performance of a half-duplex (HD) relay network was analytically
investigated in [16]–[19].

Most existing studies addressing the FBL performance of relaying are under the assumption of a HD relaying principle,
while the FBL performance analysis of FD relaying networks are missing. Nevertheless, the approximated FBL throughput
has been recently addressed in [20], where the a linear approximation of the Q-function in the FBL error probability model
is adopted, i.e., it approximates the error probability in the reliable region to zero. In other words, an fundamental FBL
performance characterization of the FD relaying with respect to reliability (addressing the interests of high-reliability and
low-latency networks) and the reliability-optimal resource allocation designs are still open problems.

In this work, we consider a FD relaying network supporting high-reliability low-latency communications, where the relay
works under decode-and-forward (DF) and amplify-and-forward (AF) schemes. We characterize the reliability models for both
the FD DF relaying and FD AF relaying and provide corresponding reliability-optimal designs by applying optimal power
allocation. A numerical comparison between the two relaying schemes shows that the FD DF relaying generally provides a
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higher reliability than the FD AF relaying for applications with a small packet size and a low-latency (short blocklength)
constraint, while FD AF relaying is more preferred for transmissions with relatively larger data packets.

The remaining of the paper is organized as follows. In Section II, we first describe our FD relaying system model and review
the FBL performance model. Subsequently, in Section III we study the achievable reliability of both the FD DF relaying and
FD AF relaying under certain latency and power constraints. The numerical results are presented in Section IV, and the whole
work is summarized in Section V.

II. PRELIMINARIES

In this section, we first describe our system model. Subsequently, the FBL performance model is reviewed.

A. System model

We consider a simple scenario with a source S, a destination D and a FD relay R as schematically shown in Fig. 1. It
is assumed that the direct link from S to D is attenuated while the communication from S to D only be established via the
two-hop relaying.

h1 h2

Source Relay Destination

hI

Fig. 1. Example of the considered two-hop FD relaying scenario.
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Fig. 2. Frame structures of the considered FD DF and DF AF relaying scenarios.

In a (two-hop) transmission period, a data packet with size D (bits) at S is transmitted. In particular, the data transmission
is required to be finished under a latency constraint M (symbols). In addition, we consider a reliable transmission scenario,
i.e., the error probability of the data transmission via the relay should be significantly lower than 10−1.

In addition, both the AF and DF relaying schemes are considered, which result in different frame structures as shown in
Fig. 2. The AF type of relay is also known as a repeater, which receives the radio frequency (RF) signals from the source, and
amplifies and forwards the RF signals to the destination. Therefore, a FD AF relay could forward the received symbols of the
code block immediately in a symbol level. Denoted by n the smallest amount of symbols can be recognized and forwarded
by the FD AF relay. For a ideal case, the forwarding process of the FD AF relay operates per symbol, i.e., n = 1. In addition,
we have mAF = M − n. Under the DF scheme, the relay needs to receive all the symbols of the first hop transmission for
decoding and then forwards the data packet to the destination subsequently. This overcomes the drawback in the AF relaying of
deteriorated received signal-to-interference-plus-noise ratio (SINR) caused by amplification of self-interference and noise [21].
On the other hand, the disadvantage of the FD DF relay is that it is not able to receive and forward the same data packet
(carried by one codeword with a given length) at the same time. Hence, the blocklength of the two relaying hops under the
DF scheme, denoted by mDF, satisfies 2mDF =M .

Denote by h1 and h2 the channel coefficients of the S-R backhaul link and R-D relaying link, and denote by Li and zi the
gains of the path-loss and the channel fading. Then, we model |hi|2 = Lizi, i = 1, 2, where the fading gains are assumed to
be constant in a transmission period. In addition, due to imperfect interference cancellation, the loop interference at the FD
relay is significantly but not completely reduced. Denote by hRI the residual loop interference at the relay. We assume perfect
channel state information (CSI) at the receivers and in particular at the source. In addition, the total power budget/constraint
for transmitting a data packet in a transmission period is Ptot, while the transmit power at the source and the relay are denoted
by pS and pR, respectively.

For both the DF and AF schemes, the received signals (symbols) at R share the same expression, given by

y1 =
√
pSh1x+

√
pRhRIxRI + w1, (1)

where x is the transmitted signal (symbol) and xRI is the interference signal. Both x and xRI have unit power. In addition,
w1 represents the additive white Gaussian noise (AWGN) in the S-R link with power σ2

1 . Then, the signal to interference plus
noise ratio (SINR) at the relay is

γ1 =
pS|h1|2

pR|hRI|2 + σ2
1

(2)
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On the other hand, the expressions of the received signals at D are different under the DF and AF schemes. In particular,
the received signal at D under the DF scheme is given by1

yDF,2 =
√
pRh2x+ w2, (3)

where w2 is the AWGN in the S-R link with power σ2
2 . The SNR of yDF,2 is given by

γDF,2 =
pR|h2|2

σ2
2

. (4)

For the AF relaying case, the relay simply amplifies and forwards y1, which results in a received signal at D given by

yAF,2 = (
√
pSh1x+

√
pRhRIxRI + w1)

√
GpRh2 + w2, (5)

where G = 1
pS|h1|2+pR|hRI|2+σ2

2

is the gain of the amplifier. Hence, the SINR of the received signal at the destination is

γAF,2 =
GpSpR|h1|2|h2|2

Gp2R|hRI|2|h2|2 +GpR|h2|2σ2
1 + σ2

2

=
pSpR|h1|2|h2|2

p2R|hRI|2|h2|2+pR|h2|2σ2
1+σ

2
2

(
pS|h1|2+pR|hRI|2+σ2

2

) . (6)

B. The FBL performance model

In reference [8], the authors analyzed the performance in the FBL regime by applying the normal approximation. In
comparison to the Shannon capacity bound, the finite blocklength model is more accurate when the blocklength is finite/short.
In addition, the third-order term in the normal approximation for the AWGN channel is further addressed in [22]. For an
AWGN channel, the coding rate r (in bits per channel use) with error probability 0 < ε < 1, signal-to-noise ratio (SNR) γ,
and blocklength m is shown to have the following asymptotic expression [22]:

r = R (γ, ε,m) ≈ C (γ)−
√
V (γ)

m
Q−1 (ε) +

logm

m
, (7)

where C (γ) = log (1 + γ), V (γ) = γ(γ+2)

(γ+1)2
log2e and Q (x) =

∫∞
x

1√
2π
e−t

2/2dt is the Gaussian Q-function.
Form (7), the (block) error probability can be expressed as:

ε = P (γ, r,m) ≈ Q

(
C (γ) + logm

m − r√
V (γ)/m

)
. (8)

In this paper, we apply the above approximations for investigating the finite blocklength performance of the FD AF and
FD DF relaying schemes. As these approximations have been shown to be accurate for a sufficiently large value of m [8], for
simplicity we will employ them as the rate and error expressions in our analysis.

III. ACHIEVABLE RELIABILITY OF FD RELAYING UNDER LATENCY AND POWER CONSUMPTION CONSTRAINTS

In this section, we develop the reliability models of both FD DF and FD AF relaying schemes. In particular, we minimize
the overall error probability of the two-hop transmission by applying optimal power allocation under a given latency constraint
M and a power consumption constraint Mptot. We first discuss the FD DF relaying scheme and subsequently address the AF
scheme.

A. Achievable FBL Reliability of FD DF Relaying

According to (2) and (8), the decoding error probability at the FD DF relay is obtained by εDF,1 = P
(
γ1,

2D
M , M2

)
.

Similarly, the decoding error probability at the destination is εDF,2 = P
(
γDF,2,

2D
M , M2

)
. Hence, the overall error probability

of transmitting a data packet via the two-hop FD DF relaying is given by

εDF = εDF,1 + εDF,2 − εDF,1εDF,2

≈ εDF,1 + εDF,2,
(9)

while the approximation is tight due to the fact that εDF,1+εDF,2 � εDF,1εDF,2 holds as we consider a high reliability network
with max{εDF,1, εDF,2} < εDF � 10−1. In the following, we consider minimizing εDF,1 + εDF,2 to obtain the achievable
reliability of the FD DF scheme.

1It should be pointed out that the DF relay only forwards the data packet to D when it decodes the signal form S successfully in the first hop. Due to the
FBL, errors possibly occurs in this hop. The probability of the error will be later on discussed in Section III.
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∂wDF,i

∂γi
=

2log2e

M

(1 + γi)
2 −

(
1 + log (1 + γi) +

log(M/2)
M/2 − 2D

M

)
V (γi)

3
2 (1 + γi)

3
≥ 2log2e

M

(1 + γi)
2 − (1 + log (1 + γi))

V (γi)
3
2 (1 + γi)

3
. (13)

∂w2
DF,i

∂γi2
=

4log4e

M2

(
(1+γi)

2−1
)1
2

(
(1+γi)

2−1
)(

2 (1+γi)− 1
1+γi

)
−3 (1+γi)

(
(1 + γi)

2−1−log (1 + γi)− log(M/2)
M/2 + 2D

M

)
V (γi)

3
(1+γi)

6

=
4log4e

M2

(
(1 + γi)

2−1
)1
2
−(1 + γi)

2
+ 1

(1+γi)
2 + 3

(
log (1 + γi) +

log(M/2)
M/2 − 2D

M

)
V (γi)

3
(1 + γi)

5

≤ 4log4e

M2

(
(1 + γi)

2 − 1
)1
2

V (γi)
3
(1 + γi)

5

[
−(1 + γi)

2
+

1

(1 + γi)
2 + 3 log (1 + γi)

]
.

(14)

Obviously, εDF,1+ εDF,2 is influenced by the choices of PS and PR. Note that under the power consumption constraint, we
have M

2 PS +
M
2 PR =MPtot, i.e., PS +PR = 2Ptot. Hence, the achievable reliability of the FD DF relaying can be obtained

by solving the following optimization problem

min
PR

εDF,1 + εDF,2

s.t. PS = 2Ptot − PR > 0,
PR > 0.

(10)

To solve Problem (10), we provide the following proposition

Proposition 1. Considering a FD DF relaying network supporting a reliable transmission where target error probability
εDF ≤ 10−1 and the SNR/SINR of each link γi ≥ 0 dB hold, the objective of Problem (10) is convex in PR.

Proof. According to (9), we prove the proposition by showing ∂2εDF,i

∂PR
2 ≥ 0 for link i, i = 1, 2. Based on (8), we have

∂εDF,i

∂γi
=

1√
2π

exp

(
−
w2

DF,i

2

)
∂wDF,i

∂γi
, (11)

∂2εDF,i

∂γi2
=

1√
2π

exp

(
−
w2

DF,i

2

)(
wDF,i

(
∂wDF,i

∂γi

)2
−∂

2wDF,i

∂γi2

)
, (12)

where wDF,i(γi) =
C(γi)−2D/M√

2V (γi)/M
. In addition, the first and second order derivatives of wDF,i to γi are given in (13) and (14) on

top of next page, where the inequalities hold due to that fact that according to (7) it holds C (γ)+ logm
m −r =

√
V (γ)
m Q−1 (ε) ≥ 0

for ε < 0.5. Denote f(x) = x2 + 2x− log (1 + x) , x ∈ [0,+∞). Since f(0) = 0 and f ′(x) = 2x+ 2− 1/(1 + x) < 0 hold,
we have f(x) ≥ 0, x ∈ [0,+∞). Applying this to (13), we have ∂wDF,i

∂γi
≥ 0, since γi ∈ [0,+∞) and therefore (1 + γi)

2 −
(1 + log (1 + γi)) = γi

2+2γi−log (1 + γi) > 0. In addition, it can be also shown that −(1 + γi)
2
+ 1

(1+γi)
2 + 3 log (1 + γi) ≤

0 for γi > 1. Hence, ∂w
2
DF,i

∂γi2
≤ 0 holds. Combining ∂wDF,i

∂γi
≥ 0 and ∂w2

DF,i

∂γi2
≤ 0 to (11) and (12), ∂εDF,i

∂γi
≥ 0 and ∂2εDF,i

∂γi2
≥ 0.

So far, we have studied the relationship between εDF,i and γi. Next, let us consider the relationship between γi and PR for
i = 1, 2. Combining PS + PR = 2Ptot with (2), we have γ1 = (2ptot−pR)|h1|2

pR|hRI|2+σ2
1

. Then, ∂2γ1
∂PR

2 =
σ2
1 |h1|2|hRI|2+2ptot|h1|2|hRI|4

(pR|hRI|2+σ2
1)

4 ≥ 0

holds. In addition, based on (4), we have ∂2γ2
∂PR

2 = 0.
Combining the above results together, for i = 1, 2. we have

∂2εDF,i

∂PR
2 =

∂2εDF,i

∂γi2︸ ︷︷ ︸
≥0

(
∂γi
∂PR

)2

︸ ︷︷ ︸
≥0

+
∂εDF,i

∂γi︸ ︷︷ ︸
≥0

∂2γi

∂PR
2︸ ︷︷ ︸

≥0

≥ 0. (15)

According to Proposition 1, there exists a global optimal solution to Problem (10), which can be solved efficiently via convex
optimization tools [23].

B. Achievable FBL Reliability of FD AF Relaying

According to (8), the overall error probability of the transmission via a DF AD relay is given by

εAF = P
(
γAF,2,

D

M − n
,M − n

)
. (16)
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Fig. 3. The impact of power allocation on the SINR of FD AF relaying.

We consider to minimize the error probability by applying optimal power allocation, which is formulated as

min
pR

εAF

s.t. pS = M
M−nptot − pR > 0,

pR > 0,

(17)

where the first constraint is due to (M − n)pS + (M − n)pR =Mptot.
According to the proof of Proposition 1, it is clear that the error probability given in (8) is decreasing in the corresponding

SNR/SINR. Hence, the solution to Problem (17) is same as maximizing γAF,2, which is given by

max
pR

γAF,2

s.t. pS = M
M−nptot − pR > 0,

pR > 0.

(18)

Proposition 2. Problem (18) is a pseudo-convex problem.

Proof. By substituting pR = M
M−nptot − pS into Equation (6), we have γAF,2 = A(pR)

B(pR) where

A(pR) = −pR2 · |h1|2|h2|2 + pR · M
M−n |h1|

2|h2|2ptot and B(pR) = p2R ·|hRI|2|h2|2+pR ·
(
|h2|2σ2

1 − |h1|
2
σ2
2 + |hRI|2σ2

2

)
+(

M
M−nptot|h1|

2
+ σ2

2

)
. Note that both A(pR) and B(pR) are quadratic functions with respect to pR. It is easy to show that

A(pR) is concave in pR and B(pR) is convex in pR, respectively. According to the results in Section 3.4.5 of [23], γAF,2 is
pseudo-concave in pR under the constraint pS+pR = M

M−nptot. Hence, Problem (18) is pseudo-concave and can be efficiently
solved by Dinkelbach algorithm (in polynomial time) [24].

IV. NUMERICAL RESULTS

In this section, we provide numerical results to validate our analytical model and evaluate the system performance. In
particular, the reliability performances of both the FD AF relaying and FD DF relaying are compared to the direct transmission
with blocklength M , SNR γdirect =

ptot|hdirect|2
σ2
2

, where the error probability of the direct transmission is given by εdirect =
P
(
γdirect,

D
M ,M

)
. In all our numerical analysis, we consider the following parameter setups: First, we set the distances from

the source to the relay and from the relay to the destination to d1=d2=200 m, and we assume a linear topology where the
distance of the direct transmission is given by d1 + d2 = 400 m. In addition, we adopt the general pathloss model from [25],
which is given by Li =L(d0) + 10α · log( did0 ) , where L(d0) is determined by the free space pathloss at reference distance
d0 = 100m, and the pathloss exponent is set to α = 3.5. Moreover, we consider the unit transmit power Ptot = 1 and set the
noise power to −100 dBm. The power of the residual loop interference is set to −95 dBm. Finally, we set M = 200 symbols
and D = 200 bits (while we vary them in Fig. 5 and Fig. 7).

We start with Fig. 3 to study the impact of the power allocation on the SINR γAF,2 in the FD AF relaying scheme. As shown
in the figure, the SINR is pseudo-concave in the percentage of power allocated to the relay, which confirms Proposition 2. In
addition, a shorter length of n results in a lower SINR. This is due to the fact that the total power consumption for transmitting
a packet with size D is limited by Mptot. A short n indicates a long blocklength of each hop of relaying, given by M − n,
thus reducing the (per symbol) transmit power of the two hops, i.e., pS+pR = M

M−nptot is reduced as n deceases. As a result,
the received SINR at the destination is weakened.

Then, we discuss the corresponding reliability results of Fig. 3. These results are provided in Fig. 4 where the performance
of the FD DF relaying and the direct transmission are also presented. From the figure, we observe that the direct transmission
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Fig. 5. The impact of latency constraint M on the achievable reliability.

is not preferred in a reliable transmission scenario. In addition, the overall error probabilities of FD AF relaying (with different
lengths of n) are generally lower than the FD DF relaying. Moreover, it matches with Proposition 1 that the overall error
probability of the FD DF relaying is convex in the power allocated to the relay. Furthermore, although it is shown in Fig. 3
that a small n results in a lower achievable SINR, having a small n leads also to a low coding rate (given by D/(M − n)) of
each hop of the FD AF relaying. As a result, it can be observed from Fig. 4 that for the FD AF relaying, a shorter n makes the
transmission more reliable. Actually, this indicates that it is a promising way to improve the reliability of the FD AF relaying
by reducing n, i.e., the gain from decreasing the coding rate is higher than the loss of the SINR. Furthermore, under the FD
AF scheme, the optimal decisions of power allocation are different for the scenarios with different values of n. In particular,
a relatively lower pR is preferred when n is short.

Next, we study the achievable (optimal) overall error probability over the power allocation in both the FD AF and FD DF
relaying schemes. We vary the latency constraint M in Fig 5, while increasing the packet size with M , i.e., D = k ·M,k =
1.1, 1.3. On the one hand, the reliability of the direct transmission is relatively constant as M increases. On the other hand, all
overall error probability curves of FD relaying are decreasing in M but with different slopes. In particular, the FD DF relaying
is relatively more sensitive than the FD AF relaying in increasing M , i.e., the FD DF curves are relatively more steeper. In
addition, for both FD AF and FD DF relaying schemes, the scenarios with relatively shorter packet sizes gain more from
increasing M , i.e., curves representing the scenario with D = 1.1M are steeper than the ones with D = 1.3M .

We investigate the impact of the residual loop interference on the reliability performance in Fig. 6, where we vary the power
of the residual loop interference from −105 dBm to −90 dBm. Noting that the noise power in the simulation is set to −100
dBm, the figure actually illustrates the impacts of the residual interference when it is higher or lower than the noise power.
First of all, as expected, a lower residual interference introduces a higher reliability for both the two FD relaying schemes. In
particular, when the packet size is relatively smaller, the reliability enhancement by reducing the residual interference is more
significant, i.e., the slopes of the curves with D = 200 bits are steeper than the curves with D = 300 bits. This results actually
suggests for applications with small packets but high reliability requirements, it is more beneficial to spend additional cost to
achieve a better interference cancellation. More surprisingly, we observe that when the packet size is relatively larger, the FD
AF relaying becomes more reliable than the FD DF relaying.
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Fig. 7. The impact of the packet size on the achievable reliability. In the simulation, we set the residual loop interference to −100 dBm.

The results in Fig. 6 actually indicate that the relationship between the FD AF relaying and FD DF relaying is strongly
influenced by the packet size. This motivates us to further compare the two relaying schemes in Fig. 7 by varying the packet
size, while different setups of M are considered. It matches well with Fig. 6 that the FD AF relaying is possible to be more
reliable than the FD DF relaying. In particular, the FD DF relaying is more reliable in the relatively lower error probability
region. At the same time, when the coding rate is such high that the system becomes relatively less highly reliable, the FD
AF relaying is more preferred, i.e., in the region above the crossing point between the curves in each pair. Finally, it should
pointed out that the region (in which the FD AF relaying is in a dominant position) expands as M increases, i.e., the crossing
point between the curves of the two relaying schemes is moving to the lower error probability region as M increases.

V. CONCLUSION

In this work, we characterized the reliability in the FBL regime for a network operating with FD DF and FD AF relaying
schemes. Following the characterizations, we provided optimal power allocation designs for both the two relaying schemes to
minimize the overall error probability under latency and power constraints. In particular, we have proved that under the FD
DF relaying scheme the (approximated) overall error probability is convex in the transmit power at the relay. In addition, we
showed that minimizing the overall error probability of the FD AF relaying is equivalent to maximizing the overall SINR, and
this SINR has been proved to be a pseudo-convex function of the transmit power at the FD AF relay. All the provided analytical
models have been validated by numerical results. In particular, by numerical analysis, the direct transmission has been shown
to be not preferred in reliable transmission scenarios. Moreover, the FD DF relaying generally provides a higher reliability
performance than the FD AF relaying for applications with a small packet size and a low-latency constraint (corresponding to
a short blocklength). In particular, the region, within which the FD DF relaying outperforms the FD AF relaying, is squeezed
as the latency constraint becomes loose.
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