
Comparison of Q-Learning and Genetic Algorithm
for Narrow-Band Cognitive Radio Networks

Apurva
Communication Systems

Fraunhofer FKIE
Wachtberg, Germany

apurva.apurva@rwth-aachen.de

Stefan Couturier
Communication Systems

Fraunhofer FKIE
Wachtberg, Germany

stefan.couturier@fkie.fraunhofer.de

Michael Reyer
Institute for Theoretical Information

Technology
RWTH

Aachen, Germany
reyer@ti.rwth-aachen.de

Abstract—Narrow-band communication is widely used in
military operations. Due to the limited bandwidth, efficient
usage of the available spectrum with limited overhead is re-
quired. In this work, we present an efficient Dynamic Spectrum
Management model for distributed multi-hop networks using
narrow-band waveform. The system design is made robust using
a collaborative feedback technique. Each node maintains a
channel availability matrix and historical channel performance
information based on this feedback. The channel allocation
and radio parameters are optimized using Genetic Algorithm
and Q-Learning algorithm. We observe that the robust system
design, along with Genetic Algorithm and Q-Learning, efficiently
mitigates the interference impact on a transmission link and
consequently improves the overall transmission success rate and
throughput for an end-to-end transmission.

Index Terms—Cognitive Radio Network, Multi-Hop, Dis-
tributed, Narrowband, Q-Learning, Genetic Algorithms

I. INTRODUCTION

Tactical networks used in military often suffer from a higher
probability of disturbances due to node mobility, interference,
congestion etc. In a multi-hop tactical network, for a single
transmission there are multiple transmission links. This leads
to an additional challenge of an extended interference area,
making it more susceptible to communication failure. There-
fore, optimization for end-to-end communication is required
[1].

Cognitive Radio Networks (CRN) are a promising solution
to this issue. They have revolutionized the spectrum usage by
introducing flexibility in reconfiguration of the radio parame-
ters, e.g. the frequency for transmission. Hence, as compared
to the traditional fixed spectrum allocation policy, the concept
of Dynamic Spectrum Management (DSM) - facilitated by
CRN - incorporates intelligence in the network nodes to
perceive the RF environment and make use of the spectrum in
line with the network goals [2]. Here, we study the application
of DSM, in particular to a multi-hop network using a narrow
band waveform.

DSM entails overhead in terms of the information ex-
changed between nodes to facilitate the dynamic usage e.g.
exchange of information regarding the present spectrum avail-
ability, the next frequency to use, possible interference etc.
For narrow-band CRN, the bandwidth is small. Hence, this

overhead must be minimized for any efficient communication
to happen.

In this work, we first introduce the system design to
facilitate DSM in a multi-hop network with little overhead. For
an end-to-end transmission, each node is able to monitor the
channels independently as well as receive feedback from other
nodes about the channel availability and quality information
(e.g. Signal to Noise and Interference Ratio (SNIR) that can
be achieved compared to other frequencies). Thus, the short-
term channel performance in the vicinity is identified and the
transmission is recovered as soon as interference is detected
on any of the links with much less overhead.

In addition to that, the DSM solution is capable of learning;
i.e. the more information about the spectrum is available over
time, the higher transmission success rate and throughput
performance is achieved. Thus, the long-term channel be-
haviour is optimized. For this purpose, we decided to use two
of the widely used algorithms in decision making, Genetic
Algorithm (GA) and reinforcement learning.

GA benefits from parallel evaluation of different dimensions
and handling of constraints and is therefore a suitable choice
for our problem [3]. Alternatively, reinforcement learning
employs a learning strategy suitable to a continuously varying
environment by taking actions and observing the reward.
Q-Learning is a type of reinforcement learning where the
transition probabilities to the next state are unknown [4]. In
this paper, we analyze the two different approaches - GA
and Q-Learning. Both approaches will be compared regarding
their performance in a CRN.

Section II provides an overview about the related work. In
section III, the system and its protocols to facilitate DSM in
a multi-hop network are described. The Q-Learning and GA
approaches developed for this paper are given in section IV.
Section V presents some simulation results on the system, and
section VI summarizes our findings.

II. RELATED WORK

In this paper several concepts known from literature are
used, which mainly address the MAC layer and the decision
making of the CRN nodes. This section introduces the con-
cepts and the background of our work.



Our system adapts the principles of the Logical Link
Control (LLC) and the Media Access Control (MAC) layer
of the NATO narrow-band waveform (NBWF) described in
[5]. For applying DSM to the NBWF we need to consider
the MAC strategies to transmit control information reliably
[6]. This can either be done in a Common Control Channel
(CCC) for all nodes, as proposed in [7], or by using multiple
control channels, as described in [8]. We need to consider the
constraint of using a single radio. As described in [9], control
information exchange is often separated from user data traffic
in a timely manner. Similar to [9], our system is organized
in a way to separate control information exchange from user
data exchange by providing specific time slots to each node
for transmitting control information.

GA has widely been used in CRN and various solutions
are available in literature. However, we observe that there
is comparatively less focus on tactical networks which as
stated previously can be multi-hop and distributed. E.g. in
[10], the authors present a joint sensing and channel allocation
problem. However, it entails the need of a cluster head which
is not suitable for a distributed set-up in a tactical network.
In [11], [12] and [13] the decision-making is limited to a pair
of nodes, without the possibility of extending it to multi-hop
scenarios. However, in [14], the authors formulate a matrix
based GA implementation for multiple user case. Although,
this is suitable for a centralised network structure and is
not formulated for a multi-hop network, it is a good study
for multiple user network. The authors in [13] use GA and
optimize network throughput by solving a single objective.
GA can also be formulated to optimize multiple objectives si-
multaneously. In [15], the selection of transmission parameters
such as frequency, power, modulation etc. based on multiple
objectives is demonstrated using GA. However, the authors
focus only on the adaptation problem and do not demonstrate
the communication protocol or the system design and the work
is not extended to a multi-hop scenario. The authors in [16],
solve a multiple objective problem using GA in a multi-hop
scenario. However, the solution is on a network level and
does not consider a distributed network. In this work, we
demonstrate the how each node in a multi-hop network can
individually make decisions based on its RF environment and
yet co-ordinate for successful end-to-end transmission.

In [17], the various use cases of reinforcement learning
including Q-Learning in DSM are studied. In [18], the channel
selection is done based on the Q-values but no other trans-
mission parameter is considered in this approach.The authors
of [19] propose three different variations of Q-Learning algo-
rithms for improving the success of transmissions. The results
show that exploitation of actual channel condition improve
the network performance. In [20], the authors demonstrate
the stateless Q-Learning where the Q-value is associated
with different channels. Both approaches, the exploitation of
the channel conditions and the stateless Q-Learning concept,
have been used for our research, but the algorithms behind
them were adapted to our needs, as further described in
Section III. In [21], the choice of transmission parameters

such as frequency and modulation is done based on Q-
Learning. However, it does not consider decision making and
implementation for multi-hop network.

III. SYSTEM DESCRIPTION

Fig. 1. Network Diagram

The network model consists of a network of primary users
and a network of secondary users. In Fig. 1, the network
diagram with three primary transmitters and five secondary
hosts is shown. The primary network can be any network
operating in VHF (Very High Frequency) radio band, i.e.
its transmitters occupy some of the frequency bands which
could be used by the secondary network. We focus our study
on the design of DSM capable secondary network which is
able to sustain communication in the face of interference
from the primary transmission. In the subsequent sections, the
complete network design for a secondary multi-hop CRN for
opportunistic spectrum access and management is presented.
Any DSM capable system should be capable of four tasks [2]:
• Sense the spectrum to determine spectrum opportunities.
• Negotiate transmission parameters using control sig-

nalling.
• Decide the optimal transmission parameters including the

transmission channel.
• Vacate the channel on the appearance of the primary and

continue its service with minimal disruption.
To accomplish these tasks, the communication framework

including the frame structure, channel negotiation, and data
transmission for a half-duplex cognitive node is developed.
As described above, the design is based on the link layer of
the NATO NBWF described in [5] with the following details:
• Band of operation is the VHF radio band.
• Channel bandwidth is 25 kHz.
• Opportunistic spectrum access by secondary users.
• Single radio (half-duplex communication) on a single

channel at a time.
• Time-slot based transmission with a frame length of

202.5ms constituted of nine time slots.

A. Assumptions

The main aim of this work is to demonstrate the efficiency
of multi-hop transmission in narrow-band for an end-to-end
transmission. Therefore, we make certain assumptions for
simplicity of design and analysis.



• The CCC has a fixed frequency that is not interfered.
• The routing path is fixed.
• The free-space path loss model is used.
• The system is synchronized, and there is no multipath

time delay.
• No co-operation between the primary and secondary

network.

B. Frame Structure

The frame structure defines the resources in time and
frequency, based on the link layer design of the NBWF [5].
To segregate the tasks of DSM, different logical channels are
defined as shown in Fig. 2.

Fig. 2. Exemplary Frame Structure for an Even Hop Node

The CCC is used for the exchange of control messages
for communication initiation, termination or other control
signaling purposes. As all nodes use the same control channel
frequency, each node has a fixed control slot for transmission
to avoid interference. The control slots are the first three slots
of the Control Sub-Frame (CSF), where a CSF block defines
the number of CSF frames required for all the nodes in a
network to be assigned a control slot. The CSF blocks are
interleaved with a Sensing Sub-Frame (SSF), where a SSF
is a frame where the first three slots are used for sensing. In
each slot, a node senses one channel to check if it is occupied
or not. A block of SSFs refers to the total number of SSFs
required to sense all channels in the system. An exemplary
frame sequence for an even hop node in a network with six
nodes (N0 to N5) and 16 channels (C0 to C15) is shown in
Fig. 3.

Since the communication is half-duplex, different time-slots
are required for transmission and reception. The transmission
and reception channels shown in this figure are for an even
hop node. For the next hop nodes (odd hop), the position of
the transmission and reception channel will be reversed which
will be explained further in sub-section III-C.

The frequency for the transmission channel is not fixed, but
is negotiated with the next hop node(s), and for the reception
channel, it is negotiated with the previous hop node(s). In the
example in Fig.2, the transmission frequency is F1, while the
reception frequency is F2.

C. Data Flow

In the previous sub-sections, the tasks with a DSM perspec-
tive were identified and segregated by defining the activities
and resources. In the subsequent sub-sections, the communi-
cation flow based on the activities and resources mentioned

Fig. 3. Frame Sequence for an Even Hop Node

above will be presented. We first look at the control message
exchange for the communication set-up, which is exemplarily
shown in Fig. 4.

Fig. 4. Data Flow

The communication flow consists of exchange of control
messages between the hops to negotiate the channel for
transmission.

Transmission setup: The source node broadcasts a channel
request message on CCC to the next hop to initiate com-
munication. The subsequent hops send a combined channel
request response in response to the request from the previous
hop and to initiate a request to the next hop. These are
broadcast messages with the channel status information i.e.
if the channels are interfered (I), free (F) or occupied (O)
as observed by the node. All the neighbouring nodes update
their availability matrix based on this information as shown
in Fig. 5 which is the availability matrix for Node A. In this
figure channel 2 is a suitable choice for Node A as it is free
for itself and its next-hop Node R1 (see Fig. 1)

ACK messages are exchanged between the hops to finalize
the channels to be used and OK message is used to confirm the
end-to-end channel negotiation between hops. For data trans-
mission in half duplex communication, separate transmission
and reception slots are defined. However, it may be noticed



Fig. 5. Availability Matrix

that one node is transmitting (e.g. an even hop) and the next
hop (i.e. an odd numbered hop in the transmission path) is
receiving and vice versa.

Transmission start: Therefore, in order to allow for time
critical services, the even hops can transmit simultaneously
and the odd hops can transmit simultaneously, as long as they
do not interfere with each other’s communication (i.e., use
different frequencies for transmission). E.g., for a transmission
between Node A and B (see Fig. 6), the even hops A-R1
and R3-B can transmit simultaneously at the time instant ’t’.
The odd hop R1-R3 will transmit at the next time instant.
In a complex environment, the even and odd hops can be
determined based on the Time-to-Live (TTL) value which
is decremented at each hop. The transmitted packets are
acknowledged collectively to reduce control overhead (e.g., as
shown in Fig. 4, packets ’Data1’ to ’Data3’ are acknowledged
collectively by ’Data Received 1-3’ by ’Node R1’) .

Fig. 6. Half-duplex transmission scheme

Transmission end: When all data has been sent and its re-
ception has been acknowledged, a specific message indicating
the end of the transmission is sent.

Problem handling: During an ongoing communication,
when the AckTimeout timer expires (i.e. acknowledgement
for the packets sent is not received), Channel Switch message
is broadcast to change the channel. Channel Switch message
can also be initiated if the channels conditions degrade.

IV. DYNAMIC SPECTRUM MANAGEMENT
ALGORITHMS

The design of the dynamic spectrum management algo-
rithms is influenced by the network architecture and the main
goal to be achieved. Firstly, it can be observed that the net-
work architecture is distributed and that it supports multi-hop
communications. Therefore, each node should have individual
decision-making capability. Secondly, the main goal is to op-
timize and improve the secondary network performance based
on the cognitive decision making capability of the secondary
node. In a multi-hop secondary network with an extended
interference area for a single transmission link, the chance
of transmission failure is high, as there is no fixed available

channel for transmission. Therefore, the packet success rate
for the transmissions characterizes the performance of the
network.

The packet success rate can be improved by reducing the
interference and subsequently improving the SNIR, decreasing
the Packet Error Rate (PER), and improving the throughput.
This is achieved by optimizing frequency, transmission power,
and modulation scheme. However, some of these objectives
conflict with each other. E.g., higher throughput would require
a higher modulation scheme. However, a higher modulation
scheme may lead to an increased Bit Error Rate (BER)
and consequently an increased PER. Similarly, increased
transmission power may lead to increased interference with
other nodes of the secondary network, thus countering any
improvement in the system.

Consequently, dynamic spectrum access is combined with
the problem of network optimization. In our problem we use
the performance metrics such as PER, SNIR and throughput
and formulate this as a multi-objective optimization problem:

max
x∈X

f(x) (1)

where,

f(x) =
(
1− PER(x)avg

)
∗ SNIR(x)avg ∗ Throughput(x)avg

(2)
X is the feasible set of decision vectors including transmission
power, frequency, and modulation scheme.

In our system, there are 16 frequency channels and four
different modulation schemes. In addition to that, we define a
set of eight different transmission powers, which can be set by
the DSM algorithm. Fig. 7 shows a binary encoding of these
transmission parameters, which will be used for the GA.

The system performance is looked at every time instance m
(where, m ∈ N). For each time instance m a node is in a state
xm. Each performance metric i.e. PER, SNIR, and throughput,
is measured by the receiver during an ongoing transmission
and sent as a feedback to the transmitter in the cumulative
acknowledgement for the received packets i.e. in the DATA
RECEIVED message (see Fig. 4). These metric values are
assessed (Metricm) at the time instances and a moving average
value of each performance metric for the state xm is calculated
and indicated by Metric(xm)avg . The transmitter uses this
average value instead of the instantaneous values in order to
make the function f(x) (as defined in Equation(2)) immune to
small disturbances. The average value is updated as follows:
For xm = x,

Metric(x)avg ← 0.8 ∗Metricm(x) + 0.2 ∗Metric(x)avg , (3)

if it is at least the second occurrence of x
or,

Metric(x)avg = Metricm . (4)

Two algorithms, namely the Genetic Algorithm and Q-
Learning, which have been adapted to the constraints of a
secondary network, are used to solve this multi-objective



optimization problem. Figuratively speaking, these algorithms
learn the long-term channel behavior. Thus, in combination
with the immediate or short-term channel availability informa-
tion (channel sensing information or via control information
from neighbours), an efficient DSM algorithm is obtained.
Each node in the transmission path can take decision based
on these algorithms. The transmitting nodes can decide the
transmission parameters at the beginning of a transmission
and trigger a state change whenever a better state is available.
However, there is a cost associated with the change in state in
terms of signalling overhead. Hence, in order to minimize the
overhead, a change in state is triggered only when a channel
is interfered.

A. Genetic Algorithm (GA)

GA is a metaheuristic used in optimization and search
problems that follows Darwin’s principle of natural selection
and evolution. GA is well suited to multi-objective opti-
mization problems due to the capability of GA to evaluate
the objective function in different dimensions in parallel and
to handle constraints [3]. In context to the multi-objective
optimization problem for DSM, a population of chromosomes
is generated, where each chromosome encodes a candidate
solution (see Fig. 7) [15]. For example, the binary code for a
chromosome in Fig. 7 encodes a frequency channel number
11, transmission power step 6 and modulation code number
2 i.e. 16-QAM, as BPSK, QPSK, 16-QAM and 64-QAM
are encoded by 0, 1, 2 and 3. Each bit in the binary code
represents the gene of the chromosome. Any change in the
binary code will lead to a new combination of frequency
channel number, transmission power and modulation scheme.
E.g. Fig. 7 can be understood as follows:
x = (101111010), X ∈ {0, 1}9, where the bits encode the

decision variables.

Fig. 7. Binary encoding of transmission parameters

For an end-to-end transmission, the following steps take
place at each hop between a transmitter-receiver pair:
• Transmitter sends data to the receiver.
• Receiver on receiving the data calculates the performance

metric (i.e. PER, SNIR and throughput).
• Receiver sends these metric values with the acknowl-

edgement of the received data as a feedback.
• Transmitter updates these metric values for the tuple of

transmission parameters (frequency, transmission power,
and modulation scheme) for the ongoing transmission.

For our system, we determine the fitness based on observed
network values of the performance metric, instead of theoreti-
cal values. The fitness of each chromosome is evaluated using
an objective function that characterizes the solution. Equa-
tion (2) gives the function that has been used in this work. The

population undergoes selection, crossover and mutation. The
parent chromosomes are selected based on fitness proportional
selection. The selected parents perform crossover to produce
offspring. The new generation is created by removal of less
fit individuals and introduction of offspring in the population.
The chromosomes are driven towards an optimal solution by
the process of repeated operations of selection, crossover, and
mutation or any other operation defined to make the process
more robust. One iteration of the algorithm is performed every
time any update in the performance metric for the transmission
parameter is observed.

As discussed previously, an important aspect in DSM for
the secondary network is the availability of channels. A basic
GA works on the principle of convergence with the population
moving towards an optimal solution. However, the algorithm
may converge towards an unavailable channel specially if
the population is too small, i.e. the last performance of the
chromosome might be good, but the channel could have
recently been occupied, for which the performance metrics
can only be obtained when transmission is already initiated on
this channel. E.g., the GA population converged to a solution
of frequency channel value 3, power 1.3 mW and modulation
16-QAM. However, if spectrum sensing declares channel 3 to
be interfered at present for the node, the solution cannot be
used. Therefore, additional operations are defined to prevent
this.

In this work, we propose a continuously adaptive GA. In
order to make population diverse and valid, two additional
operations have been introduced. First, uniqueness of individ-
uals is maintained in the population after every generation to
avoid the domination of the population by a certain solution
and subsequent invalidation due to unavailability of channels.
Second, removal of unfit individuals or individuals consisting
of unavailable channels is carried out in every generation.
New random individuals that are fit (channels are free) are
introduced in the population to keep the population size
constant. If enough fit individuals are not available, random
individuals are added. However, for this use case, the the
secondary network is not limited by number of available
channels as our primary focus is to observe the algorithm
behaviour in learning and selection of optimal transmission
parameters and seamless continuity of services for an end-
to-end transmission on observing any interference from the
primary network.

The algorithm progresses by using sub-optimal results and
gradually learning and moving towards optimal results, as
more long-term information about the channels is observed.
When the acknowledgement for the transmitted packets are
not received in time, a channel switch message is broadcast
by the transmitter with the decision variable solution in the
form of the fittest chromosome.

B. Q-Learning

Q-Learning is a model free reinforcement-learning algo-
rithm that is based on the goal of finding an optimal policy that
determines actions to different states. A policy is a function



that takes states as inputs and suggests actions. An optimal
policy in Q-Learning maximizes the expected cumulative
discounted reward of being in a particular state and taking
an action (quality of an action), including the reward for the
current state and all the successive states. The algorithm learns
the instant rewards by interacting with the environment and
then estimating the Q-Value for each state-action pair by value
iteration. The estimate gets better over time as more states are
explored and the information of the Q-Value of these state-
action pairs is propagated to the other pairs. The action can
be taken based on informed decision according to the optimal
policy (also known as exploit) or can be randomly taken to
explore new states and learn. This is known as the ε-Greedy
policy, where the decision to explore or exploit can be taken
based on the probability ε [4].

Unlike GA, where transmitter only made the decision of
choosing the transmission parameters, each transmitter in
this case can make two decisions. Firstly, when to change
the channel and secondly, which transmission parameters to
choose. Each state in Q-Learning is a tuple of frequency,
modulation and power. Just as mentioned previously in GA,
The transmitter interacts with the environment, receives feed-
back from the receiver in the form of performance metric.
The action to take is based on the Q-Value. In this work, two
variations of the modified Q-Learning are introduced. We first
explore the quality of the action of going from one state to
another, referred to as the Double State QL Switch. Second,
we explore the possibility where the quality of the action is
defined by the quality of transmission in a particular state,
referred to as the Single State QL Switch adapted from the
stateless Q-Learning mentioned in [20].

With respect to our optimization problem, the state, action,
reward and Q-Value are as follows:

State x ∈ X
Action Change x by policy π(x) ∈ X
Reward

R(x) = f(x) ∗ η (5)

where

η =
Packets acknowledged in transmission interval
Total packets sent in the transmission interval

and f(x) from (2).
Q Value

• Single State

Q̂ (xn) ← (1− α) Q̂ (xn)+

α
(
R (xn) + γmaxx Q̂ (x)

) (6)

• Double State

Q̂ (xn−1, xn) ← (1− α) Q̂ (xn−1, xn)+

α
(
R (xn) + γmaxx Q̂ (xn, x)

) (7)

where α ∈ (0,1] is the learning rate,
γ ∈ [0,1] is the discount factor, and
n is the time instance of transmission in one state.

Optimal Policy at each time instance is given by

• Single State QL Switch

π∗ (x) = argmaxxQ (x) (8)

• Double State QL Switch

π∗ (x) = argmaxxQ (xn−1, x) (9)

Following would be the steps between a transmitter receiver
pair at each hop:
• The transmitter receives the performance metric values

in feedback from the receiver.
• The transmitter calculates and stores, the instantaneous

reward based on (5).
• Q-Value is calculated based on (6) or (7).
• When required, depending on the optimal policy given

in (8) or (9), the transmission parameters are chosen by
the transmitter as the next state.

Although the Q-Value takes into account the long-term re-
ward for a secondary network, a quick recovery in case of
appearance of the primary user is necessary. By weighing
the function with η, the reward function starts degrading
when no acknowledgement is received for the transmitted
packets and a switch can be made earlier in time. Hence,
the transmitter decides on when to vacate the channel as well
as the transmission parameters in this case.

The states that include unavailable channels (which are
either occupied by neighbors or have been sensed to be
occupied by the primary user recently) or the states that have
not been visited, the knowledge base in the node does not
have any new statistics, as no new transmission has yet been
made on these channels. Hence, the rewards do not reflect the
correct picture. The only information about these channels or
states is reflected in the availability matrix, which is updated
based either on sensing or on information from the neighbors.
It is evident that these states will not be chosen as the next
states. Therefore, the Q-value update, and thus, its optimal
policy selection (during the exploit phase of the ε-Greedy
policy) is restricted to valid states at that time instance. So,
as the gradient of the Q-value function falls below a certain
threshold, channel switch is initiated.

V. SIMULATION RESULTS

The simulation model is implemented in OMNeT++ using
the INET framework. The model includes a primary network
consisting of 16 pairs of transmitter and receiver. Transmission
is based on a two state Markov model. Each pair further
communicates on a fixed frequency and, therefore, simulates
the channel behavior as seen by the secondary nodes. Hence,
there are 16 i. i. d. non-overlapping channels of bandwidth
25 kHz from 50.05 MHz to 50.8 MHz. The number of primary
transmitter-receiver pairs can be increased for simulating a
higher number of channels.

As depicted in Fig. 1, the secondary network consists of
four nodes, which try to exchange information over multiple



hops. The secondary user source node also transmits based
on a two-state Markov model. For analysis purposes, we have
simulated only one ongoing transmission in the secondary
network at a time.

The primary user activity has been modeled to simulate a
slowly varying channel condition compared to the secondary
user activity. In addition, enough channels are available (not
interfered by primary) to the secondary network, considering
the channel requirement of three transmission links in this
model. This is because the focus of the work is to select the
best possible channel opportunity for performance maximiza-
tion and to provide seamless spectrum mobility in case of
interference on the channel.

A. Parametrization of Genetic Algorithm (GA)

Regarding GA, an important parameter is the population
size. We assessed the transmission success under varying
population sizes for multi-hop transmissions. The simulation
has been run for a simulation time of 6000s and averaged over
40 simulations. The average of the packet success rate gives
the number of successfully received packets compared to the
number of sent packets. The efficiency also regards the amount
of control messages and thus shows the ratio of successful user
traffic to all user traffic including control traffic.

Fig. 8. Multi-hop transmission success under varying population sizes

The results are shown in Fig. 8. A small population size
leads to poor performance. The performance does not vary
significantly after a population size of 30. Consequently,
we used this value for the performance simulations in the
following section. Generally, the optimal population sizes
may vary with the size of the chromosomes and the required
number of hops in relation to the number of available (non-
interfered) channels.

B. Performance comparison

For comparing the performance of the algorithms, we
created a scenario with multi-hop communication and varying
interference on all channels dynamically by inducing mobility
in primary users. This scenario was then run several times
for five different cases - no DSM, brute force search, GA,
and Q-Learning with Single and Double State approach.
In the no DSM case, we randomly selected a channel at
the beginning of each transmission and remained there until
the end of the transmission. Brute force search is a greedy

algorithm, where the next best state (highest f(x)) out of
the available states (states for which the channels are neither
interfered nor occupied) based on the measurements stored in
the database, is used for the next transmission. Brute force
search is disadvantageous in higher search space scenarios
due to its high computational complexity. GA limits the search
space to its population size and would be advantageous even in
high search space scenarios that include multiple transmission
parameters. Also, brute force does not take into consideration
the long term channel behaviour which is taken into account
in Q-Learning. The results of the performance comparison are
shown in Fig. 9.

Fig. 9. Performance comparison

The results for the no DSM case show almost a complete
loss of communication. The DSM solutions manage to identify
spectrum holes and to use them for their transmissions. We
may conclude that the GA and Single State Q-Learning
perform better than the Double State Q-Learning algorithm.
Both the GA and the Single State Q-Learning are able to
achieve performance similar to brute force search. This can
also be seen when looking at the throughput of the nodes,
as e.g. depicted for relay node R3 in Fig. 10. The figure
shows the average throughput at node R3 for the different
DSM algorithms, taken from one iteration of the performance
simulation. It can be observed that curves for brute force, GA,
and Single State Q-Learning are similar, while the curve for
Double State Q-Learning shows a significantly lower average
throughput.

Fig. 10. Throughput at relay node R3



C. Discussion

A possible reason for the worse performance of the Double
State Q-Learning may be that the Q-Values, which are the
basis for the decision about the next state, are dependent on
both the current state and the next state. Hence, the state
space for decision-making is squared. Consequently, it will
take much more time until all possible options in Q-Learning
have been explored and can be used for decision-making. In
addition to that, the ε-Greedy policy parameter is yet to be
analyzed.

An important aspect to notice is that our network does
not take into account energy efficiency. Hence, the fittest
chromosomes tend towards using higher transmission power.
However, as the system is extended to allow for multiple
simultaneous transmissions, an increased transmission power
also leads to increased system interference and thus, the fittest
chromosomes tend towards using smaller transmission power.

We also considered perfect channel conditions where the
system is synchronised, there is no multi-path delay with the
free space pathloss model. It is believed that system can be
extended to other pathloss models for urban environment.
However, CCC needs to be designed to avoid loss of com-
munication when it is interfered and system performance is
to be measured including these constraints.

VI. SUMMARY AND OUTLOOK

In this paper, we have introduced the system design for
a DSM secondary network in VHF band in a half-duplex
scenario. Two algorithms – GA and Q-Learning – were
explored to learn the radio environment and to make informed
decision on radio parameters. For GA, it has been observed
that the population size and the diversity of population are
very important to prevent the population from getting inval-
idated due to channel unavailability. On the other hand, a
large population will increase the computational complexity
while searching for a valid candidate. On average, the GA
and the Single State Q-Learning outperform the Double State
Q-Learning. They even achieve a performance quite similar
to brute force. Yet, GA is more efficient, as it does not need
to take into account the objective function of all transmission
parameter sets, but only of a selected subset. Q-Learning is
beneficial compared to brute force, as it provides a long-term
learning capability and does not only consider the most recent
objective value. However, both GA and Q-Learning show
significant improvement over a multi-hop secondary network
without any DSM capability in terms of both success rate and
efficiency.

In the future, the performance of the algorithms will have to
be measured under multiple simultaneous transmissions in the
network. Furthermore, the parameters to introduce dynamic
switching for GA need to be explored and tuned further for
Q-Learning to improve the performance.
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[1] S. Couturier, T. Bräysy, B. Buchin, J. Krygier, V. Le Nir, N. Smit,
T. Tuukkanen, and E. Verheul, “End-to-end optimization for tactical

cognitive radio networks,” in 2018 International Conference on Military
Communications and Information Systems (ICMCIS), pp. 1–8, 2018.

[2] I. F. Akyildiz, W. Lee, M. C. Vuran, and S. Mohanty, “A survey on spec-
trum management in cognitive radio networks,” IEEE Communications
Magazine, vol. 46, pp. 40–48, Apr. 2008.

[3] D. Coley, An Introduction to Genetic Algorithms for Scientist and
Engineers. June 2014.

[4] B. Jang, M. Kim, G. Harerimana, and J. W. Kim, “Q-learning algo-
rithms: A comprehensive classification and applications,” IEEE Access,
vol. 7, pp. 133653–133667, 2019.

[5] S. Haavik and B. Libaek, “Link layer design for a military narrowband
radio network,” 2010.

[6] M. Sami, N. K. Noordin, M. Khabazian, F. Hashim, and S. Subrama-
niam, “A survey and taxonomy on medium access control strategies for
cooperative communication in wireless networks: Research issues and
challenges,” IEEE Communications Surveys Tutorials, vol. 18, no. 4,
pp. 2493–2521, 2016.

[7] D. Raychaudhuri and Xiangpeng Jing, “A spectrum etiquette protocol
for efficient coordination of radio devices in unlicensed bands,” in 14th

IEEE Proceedings on Personal, Indoor and Mobile Radio Communica-
tions, PIMRC, vol. 1, pp. 172–176, 2003.

[8] Liangping Ma, Xiaofeng Han, and Chien-Chung Shen, “Dynamic open
spectrum sharing mac protocol for wireless ad hoc networks,” in First
IEEE International Symposium on New Frontiers in Dynamic Spectrum
Access Networks, DySPAN, pp. 203–213, 2005.

[9] J. So and N. H. Vaidya, “Multi-channel mac for ad hoc networks:
Handling multi-channel hidden terminals using a single transceiver,”
in Proceedings of the 5th ACM International Symposium on Mobile Ad
Hoc Networking and Computing, MobiHoc ’04, (New York, NY, USA),
pp. 222–233, Association for Computing Machinery, 2004.

[10] A. P. Shrestha, J. Won, S. Yoo, M. Seo, and H. Cho, “Genetic algorithm
based sensing and channel allocation in cognitive ad-hoc networks,”
in 2016 International Conference on Information and Communication
Technology Convergence (ICTC), pp. 109–111, 2016.

[11] S. Chantaraskul and K. Moessner, “Implementation of a genetic
algorithm-based decision making framework for opportunistic radio,”
IET Communications, vol. 4, no. 5, pp. 495–506, 2010.

[12] J. Elhachmi and Z. Guennoun, “Cognitive radio spectrum allocation us-
ing genetic algorithm,” EURASIP Journal on Wireless Communications
and Networking, vol. 2016, p. 133, May 2016.

[13] N. M. Hidayati Robbi, I. W. Mustika, and Widyawan, “A modified
genetic algorithm for resource allocation in cognitive radio networks,”
in 2018 4th International Conference on Science and Technology (ICST),
pp. 1–5, 2018.

[14] Z. Zhao, Z. Peng, S. Zheng, and J. Shang, “Cognitive radio spectrum al-
location using evolutionary algorithms,” IEEE Transactions on Wireless
Communications, vol. 8, no. 9, pp. 4421–4425, 2009.

[15] C. J. R. Thomas W. Rondeau, Bin Le and C. W. Bostian, “Cognitive
radios with genetic algorithms: Intelligent control of software defined
radios,” Nov 2004.

[16] R. Han, Y. Gao, C. Wu, and D. Lu, “An effective multi-objective
optimization algorithm for spectrum allocations in the cognitive-radio-
based internet of things,” IEEE Access, vol. 6, pp. 12858–12867, 2018.

[17] Y. Wang, Z. Ye, P. Wan, and J. Zhao, “A survey of dynamic spectrum
allocation based on reinforcement learning algorithms in cognitive radio
networks,” Artificial Intelligence Review, vol. 51, pp. 493–506, Mar.
2019.

[18] A. Das, S. C. Ghosh, N. Das, and A. D. Barman, “Q-learning based
co-operative spectrum mobility in cognitive radio networks,” in 2017
IEEE 42nd Conference on Local Computer Networks (LCN), pp. 502–
505, 2017.

[19] L. R. Faganello, R. Kunst, C. B. Both, L. Z. Granville, and J. Rochol,
“Improving reinforcement learning algorithms for dynamic spectrum
allocation in cognitive sensor networks,” in 2013 IEEE Wireless Com-
munications and Networking Conference (WCNC), pp. 35–40, 2013.

[20] N. Morozs, T. Clarke, D. Grace, and Q. Zhao, “Distributed q-learning
based dynamic spectrum management in cognitive cellular systems:
Choosing the right learning rate,” in 2014 IEEE Symposium on Com-
puters and Communications (ISCC), pp. 1–6, 2014.

[21] X.-L. Huang, X.-W. Tang, and F. hu, “Dynamic spectrum access for
multimedia transmission over multi-user, multi-channel cognitive radio
networks,” IEEE Transactions on Multimedia, p. 1, July 2019.


