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Abstract—In this paper, we discuss the optimal power alloca-
tion in a distributed sensor network for active radar applications.
We first determine the behavior of the optimal power strategy
with respect to all important system parameters by a simulation
set-up. Next, we investigate the sensitivity of the optimal power
strategy with respect to an imperfect knowledge of system
parameters. We show by simulation results how do different
parameter constellations influence the system sensitivity and
which parameter is the crucial one for a proper operation of
the entire sensor network.

Index Terms—Analytical power allocation, energy-efficient op-
timization, system sensitivity, network resource management,
information fusion.

I. INTRODUCTION

THE research on distributed detection was originated
from the attempt to combine signals of different radar

devices [Srinivasan, 1986]. Currently, distributed detection is
rather discussed in the context of wireless sensor networks,
where the sensor units may also be radar nodes [Hume and
Baker, 2001; Pescosolido et al., 2008; Yang et al., 2010]. Due
to weak batteries and the power-sensitive nature of sensor
nodes (SNs), an energy-aware design of the entire network is
of high interest. In [Alirezaei and Mathar, 2013b], the power
allocation problem for distributed wireless sensor networks,
which perform object detection and classification, is only
treated for ultra-wide bandwidth (UWB) technology. Other
applications, which require or benefit from detection and
classification capabilities, are localization and tracking [Gezici
et al., 2005] or through-wall surveillance [Debes et al., 2010].

The optimal power allocation for sensor networks, which are
used for active radar applications, has been recently investi-
gated analytically in [Alirezaei and Mathar, 2013a] and subse-
quently extended in [Alirezaei and Mathar, 2014], both for the
region of high SNR. The proposed solution in [Alirezaei and
Mathar, 2014] includes a total power limitation for the entire
sensor network, an individual power limitation for each sensor
node, and the combination of both aforementioned types of
power limitations. Since the main content of [Alirezaei and
Mathar, 2013a] and [Alirezaei and Mathar, 2014] targets at
finding a theoretical solution in closed-form to the power
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Fig. 1. System model of the distributed wireless sensor network.

allocation problem, it ignores the practical limitations re-
garding an imperfect channel-state knowledge. In the present
paper, we aim to study the behavior of the optimal power
allocation from [Alirezaei and Mathar, 2014] with focus on
practical inaccuracies. In particular, we investigate the impact
of different system parameters and their influence in case of
perfect as well as imperfect knowledge of the channel-state.

The present paper is organized as follows. In the next
section, we start with a short description of the underlying
technical system of the distributed sensor network, which
is depicted in Figure 1. The considered system model is a
concise representation of the suggested system in [Alirezaei
and Mathar, 2014] including important characteristics. Sub-
sequently, theoretical results from [Alirezaei and Mathar,
2014] are discussed and presented in a suitable form for the
current investigation. In Section IV, we present an extensive
experimental result investigating the behavior of the suggested
optimal design strategy with and without channel inaccuracies.
We conclude our investigation and restate the major contribu-
tion of the present work in the final section.

Mathematical Notations:

Throughout this paper we denote the sets of natural, integer,
real, and complex numbers by N, Z, R, and C, respectively.
The imaginary unit is denoted by j . Note that the set of natural
numbers does not include the element zero. Moreover, R+

denotes the set of non-negative real numbers. Furthermore, we
use the subset FN ⊆ N which is defined as FN := {1, . . . , N}
for any given natural number N . We denote the absolute
value of a real or complex-valued number z by |z| while
the expected value of a random variable v is denoted by
E [v]. Moreover, the notation V ? stands for the optimal value
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Fig. 2. System model of the distributed active sensor network.

of an optimization variable V at an optimum point of the
corresponding optimization problem.

II. OVERVIEW AND TECHNICAL SYSTEM DESCRIPTION

In the following, we shortly describe the underlying system
model that is depicted in Figure 2. A detailed description and
specification of the whole system can be found in [Alirezaei
and Mathar, 2014]. Hereafter, the continuous-time system is
modeled by its discrete-time baseband equivalent, where the
sampling rate of the corresponding signals is equal to the
target observation rate, for the sake of simplicity. Moreover,
we disregard time delays within all transmissions and assume
synchronized data communication.

At any instance of time, a network of K ∈ N independent
and spatially distributed SNs receives random observations.
If a target object is present, then the received power at
the SN Sk is a part of its own emitted power, which is
back-reflected from the jointly observed target object and is
weighted by its reflection coefficient ri ∈ C, i ∈ FI , with
r2

rms := E [|ri|2] and 0 < rrms <∞. The object may be of I
different types. It should be noted that sheer detection may
be treated as the special case of I = 2 which corresponds
to the decision ‘some object is present’ versus ‘there is no
object’. We assume that all different object types and their
corresponding reflection coefficients are known by the network
and the actual target object is assumed to behave static during
several consecutive observation steps. Each received signal is
in addition weighted by the corresponding channel coefficient
gk ∈ C and is disturbed by additive white Gaussian noise
(AWGN) mk ∈ C with M0 := E [|mk|2] <∞. We assume
that the coherence time of all sensing channels is much
longer than the whole length of the classification process.
Thus, the expected value and the quadratic mean of each
coefficient during each observation step can be assumed to
be equal to their instantaneous values, i.e., E [gk] = gk and
E [|gk|2] = |gk|2. Furthermore, the channel coefficients as well
as the disturbances are assumed to be pairwise uncorrelated
and jointly independent. The sensing channel is obviously
wireless.

We model each SN by an amplify-and-forward unit with
extended capabilities, where both sensing and communication
signals are transmitted simultaneously. The sensing signal wk,
without loss of generality, is assumed to be non-negative, real-
valued and deterministic. The expected value of its instanta-
neous power is then described by

Wk := E [|wk|2] = |wk|2 , k ∈ FK . (1)

Note that the specific value of wk is adjustable and will be
determined later by the power allocation procedure.

The ratio of the communication signal to the received
sensing signal is described by the non-negative real-valued
amplification factor uk which is assumed to be constant over
the whole bandwidth and power-range. Thus, the communica-
tion signal and the expected value of its instantaneous power
are described by

xk := (rigkwk +mk)uk , k ∈ FK (2)

and

Xk := E [|xk|2] = (r2
rms|gk|2Wk +M0)u2

k , k ∈ FK , (3)

respectively. The amplification factor is an adjustable param-
eter and will be determined later by the power allocation
procedure, as well. Note that the instantaneous power fluctu-
ates from observation to observation depending on the present
target object.

In order to solve the power allocation problem and make
a closed-form solution amenable, we assume that the noise
power M0 from (3) is in comparison to r2

rms|gk|2Wk negligible.
This is the case only for the region of high SNR. Thus, we
only will consider the useful power

Xk ' r2
rms|gk|2Wku

2
k , k ∈ FK , (4)

instead of (3) in what follows.
If the received signal is negligible in comparison to the out-

put signal and if the nodes have smart power components with
low-power dissipation loss, then the average power consump-
tion of each node is approximately equal to its average output
power Wk +Xk. The addition of both transmission powers
is justified because the corresponding signals are assumed to
be separated by distinct waveforms. We also assume that the
output power-range of each SN is limited by Pmax and that the
average power consumption of all SNs together is limited by
the sum-power constraint Ptot. Hence, the constraints

Wk +Xk ≤ Pmax ⇔
(
1 + r2

rms|gk|2u2
k

)
Wk ≤ Pmax , k ∈ FK

(5)
and

K∑
k=1

Wk︸︷︷︸
Radar task

+ Xk︸︷︷︸
Data communication︸ ︷︷ ︸

Average transmission power of one sensor for a single observation

≤ Ptot

⇔
K∑
k=1

(
1 + r2

rms|gk|2u2
k

)
Wk ≤ Ptot (6)

arise consequently. We remark that the described method can
also be extended to individual output power-range constraints
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per SN. Note that the sum-power constraint Ptot is a require-
ment to compare energy-efficient radar systems.

After amplification of the received sensing signal, all local
observations are then transmitted to a fusion center, which
is placed in a remote location. The communication to the
fusion center is performed by using distinct waveforms for
each SN so as to distinguish the communication of different
SNs. Each waveform has to be suitably chosen in order
to suppress inter-user (inter-node) interference at the fusion
center. Hence, all K received signals at the fusion center
are pairwise uncorrelated and are assumed to be condition-
ally independent. Each received signal at the fusion center
is also weighted by the corresponding channel coefficient
hk ∈ C and is disturbed by additive white Gaussian noise
nk ∈ C with N0 := E [|nk|2] <∞, as well. We also assume
that the coherence time of all communication channels is much
longer than the whole length of the classification process.
Thus, the expected value and the quadratic mean of each
coefficient during each observation step can be assumed to
be equal to their instantaneous values, i.e., E [hk] = hk and
E [|hk|2] = |hk|2. Furthermore, the channel coefficients as well
as the disturbances are assumed to be pairwise uncorrelated
and jointly independent. The data communication between
each SN and the fusion center can either be wireless or wired.

The noisy received signals at the fusion center are weighted
by vk ∈ C and combined together in order to obtain a single
reliable observation r̃ of the reflection coefficient ri of the
actual target object. In this way, we obtain

yk := (xkhk + nk)vk , k ∈ FK , (7)

and hence,

r̃ :=

K∑
k=1

yk = ri

K∑
k=1

wkgkukhkvk +

K∑
k=1

(mkukhk + nk)vk .

(8)
Note that each weight can be written as vk = |vk| exp(jϑk),
k ∈ FK , where ϑk is a real-valued number which represents
the phase of the corresponding weight.

Note that the fusion center can separate all input streams
because the data communication is either wired or performed
by distinct waveforms for each SN. Consequently, if the
communication channel is wireless then a matched-filter bank
is essential at the input of the fusion center to separate data
streams of different SNs. In addition, we do not consider inter-
user (inter-node) interferences at the fusion center because of
the distinct waveform choices.

In order to obtain a single reliable observation at the fusion
center, the value r̃ should be a good estimate for the present
reflection coefficient ri. Thus, we optimize the sensing power
Wk, the amplification factors uk, and the weights vk in order
to minimize the average absolute deviation between r̃ and the
true reflection coefficient ri. This optimization and its solution
are elaborately explained in the next section. After determining
the optimal values for Wk, uk and vk, the fusion center
observes a disturbed version of the true reflection coefficient ri
at the input of its decision unit. Hence, by using the present
system model, we are able to separate the power allocation

TABLE I
NOTATION OF SYMBOLS THAT ARE NEEDED FOR THE DESCRIPTION OF

EACH OBSERVATION PROCESS.

Notation Description
K number of all nodes;
FK the index-set of K nodes;
K̃ number of all active nodes;
I number of different reflection coefficients;
ri reflection coefficient of ith target object;
rrms root mean squared absolute value of reflection coefficients;
r̃ estimate of the actual reflection coefficient ri;

gk , hk complex-valued channel coefficients;
mk , nk complex-valued zero-mean AWGN;
M0, N0 variances of mk and nk;
uk , vk non-negative amplification factors and complex-valued

weights;
ϑk phase of vk;
φk phase of the product gkhk;

wk, xk sensing and communication signal of kth sensor node;
Wk, Xk sensing and communication power of kth sensor node;
yk input signals of the combiner;
Pmax output power-range constraint of each sensor node;
Ptot sum-power constraint.

problem from the classification problem and optimize both
independently.

A. Some remarks on the system model

All described assumptions are necessary to obtain a frame-
work suitable for analyzing the power allocation problem,
without studying detection, classification and estimation prob-
lems in specific systems and their settings.

The accurate estimation of all channel coefficients is nec-
essary for both the radar process and the power allocation.
Sometimes it is not possible to estimate the transmission
channels; consequently the channel coefficients gk and hk
remain unknown. In such cases, the radar usually fails to
perform its task.

Moreover, since the coherence time of communication chan-
nels as well as sensing channels is assumed to be much
longer than the whole length of the classification process,
the proposed power allocation method is applicable only for
scenarios with slow-fading channels.

Note that only the linear fusion rule together with the
proposed objective function enable optimizing the power al-
location in closed-form. The optimization of power allocation
in other cases is in general hardly amenable analytically.

In order to increase the available power-range at each
SN, time-division multiple-access (TDMA) can be used to
completely separate the sensing task from the communication
task and perform each task in a different time slot.

In order to distinguish the current operating mode of each
SN in what follows, we say a SN is inactive or idle if the
allocated power is zero. We say a SN is active if the allocated
power is positive. Finally, we say a SN is saturated if the
limitation of its output power-range is equal to the allocated
power, i.e., Pmax = Wk +Xk.

An overview of all notations that we will use hereinafter and
are needed for the description of each observation process is
depicted in Table I.
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III. POWER ALLOCATION

In this section, we introduce the power optimization prob-
lem and present its optimal solution from [Alirezaei and
Mathar, 2014] in a concise form. Two different power con-
straints are simultaneously considered, a sum-power constraint
Ptot ∈ R+ for the cumulative sum of the expected power
consumption of each SN as well as a limitation of the average
transmission power of each SN by Pmax ∈ R+.

In general, the objective is to maximize the overall classifi-
cation probability, however, a direct solution to the allocation
problem does not exist, since no analytical expression for
the overall classification probability is available. Instead, we
minimize the average deviation between r̃ and ri, in order to
determine the power allocation. The motivation for this method
is the separation of the power allocation problem from the
object classification procedure, as described in the last section.
The corresponding optimization problem is described in the
next subsection.

A. Optimization problem

As mentioned in the last section, the value r̃ should be
a good estimate for the actual reflection coefficient ri of the
present target object. In particular, we aim at finding estimators
r̃ of minimum mean squared error in the class of unbiased
estimators for each i.

The estimate r̃ is unbiased simultaneously for each i if
E [r̃ − ri] = 0, i.e., from equation (8) with (1) we obtain the
identity

K∑
k=1

√
Wk gkukhk|vk| exp(jϑk) = 1 . (9)

This identity is our first constraint in what follows. Note that
the mean of the second sum in (8) vanishes since the noise
is zero-mean. Furthermore, we do not consider the impact of
both random variables gk and hk as well as their estimates in
our calculations because the coherence time of both channels
is assumed to be much longer than the target observation time.

The objective is to minimize the mean squared error
E [|r̃ − ri|2]. By using equation (8) and the identity (9) we
may write the objective function as

V := E
[
|r̃ − ri|2

]
=

K∑
k=1

|vk|2
(
u2
k|hk|2M0 +N0

)
. (10)

Note that (10) is only valid if mk and nk are white and jointly
independent.

As mentioned in the last section, each SN has an output
power-range limitation and the expected overall power con-
sumption is also limited. Hence, the objective function is
also subject to (5) and (6), which are our second and last
constraints, respectively.

In summary, the optimization problem is to minimize the
mean squared error in (10) with respect to uk, vk, and Wk,
subject to constraints (5), (6) and (9).

B. Optimal allocation of power

In the current subsection, we consider the optimization
problem from Subsection III-A and highlight corresponding
main results from [Alirezaei and Mathar, 2014]. Without loss
of generality, we set the useful range of Pmax and Ptot equal
to 0 < Pmax ≤ Ptot ≤ KPmax. By solving the above power
optimization problem, a specific quantity for the reliability of
each SN is given by

ck :=
√
αk +

√
βk ⇒ ck ∈ R+ , (11)

where for the sake of simplicity, both notations

αk :=
M0

r2
rms|gk|2

⇒ αk ∈ R+ (12)

and
βk :=

N0

|hk|2
⇒ βk ∈ R+ (13)

are used. If all SNs are such re-indexed that the inequality
chain

ck ≤ ck+1 , k ∈ FK−1 , (14)

holds, then the most and the least reliable SNs are described
by c1 and cK , respectively. Since the reliability of the first K̃
SNs, with K̃ ∈ N and 1 ≤ K̃ ≤ K, is better than that of the
remaining ones, only these K̃ SNs are active and participate in
sensing and data communication. Each of K̃−1 SNs receives
Pmax for the sum of its sensing and communication powers
while the last SN receives the remaining part of the total
power. In conclusion, we infer that

W ?
k =


Pmax
√
αk

ck
if k ∈ FK̃−1 ,

Premain
√
αk

ck
if k = K̃ ,

(15)

and

X?
k =


Pmax

√
βk

ck
if k ∈ FK̃−1 ,

Premain

√
βk

ck
if k = K̃ ,

(16)

where the remaining power is defined as

Premain := Ptot − (K̃ − 1)Pmax . (17)

The number K̃ of active SNs results from 0 < Premain ≤ Pmax,
that must be fulfilled for the last SN, and is given by the
smallest integer number for which the inequality

K̃ ≥ Ptot

Pmax
(18)

holds. In addition, the following equations are obtained for
each uk, V , |vk| and ϑk at the optimum point:

u?k =

√
1

rrms |hkgk|

√
N0

M0
, k ∈ FK̃ , (19)

V ? =


r2rms

Ptot c
−2
1

if K̃ = 1 ,

r2rms

Premain c
−2

K̃
+Pmax

K̃−1∑
k=1

c−2
k

if K̃ > 1 , (20)
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|v?k| =


V ?

rrms

√
Pmax

c3
k
|hk|
√
N0

if k ∈ FK̃−1 ,

V ?

rrms

√
Premain

c3
k
|hk|
√
N0

if k = K̃ ,
(21)

and
ϑ?k = −φk , k ∈ FK̃ , (22)

where φk is the phase of the product gkhk.

IV. SENSITIVITY ANALYSIS

In this section, we first simulatively investigate the behavior
of the optimal value in (20), with respect to σ2

g := E [|gk|2],
σ2
h := E [|hk|2], M0 and N0. Subsequently, we analyze the

sensitivity of a sensor network, which is indeed designed by
the optimal power allocation strategy from Subsection III-B,
but with an imperfect knowledge about the channel-state. In
particular, we investigate different independent cases, where
the estimates ĝk := gk + ∆gk and ĥk := hk + ∆hk are used
instead of gk and hk itself, respectively, in order to re-design
the sensor network. We compare then the optimal value in (20)
of the sensor network with optimal known parameters to the
conditional mean square error (MSE)

V̂ := E
[
|r̃ − ri|2 | ∆gk,∆hk

]
(23)

of the re-designed sensor network with imperfect information.
In general, the estimate r̃ in (23) is biased compared to the
case with perfect information, i.e., E [r̃ − ri] 6= 0. In addition,
the selection of most reliable SNs is no longer ensured. Hence,
the value in (23) is mostly greater than that of (20), see also
the definition (10). Since an analytical comparison seems to
be out of reach, we set out to use numerical methods to obtain
the sensitivity analysis and visualize corresponding simulation
results.

In order to fairly compare all results, we simulate a reference
curve for each figure. All reference curves are based on the
default value of each parameter, see Table II. Unless otherwise
stated, we create an additional curve only by changing the
value of a single parameter. The specific value of the parameter
under consideration is noted in the legend of the corresponding
figure. All random processes gk, hk, ∆gk, ∆hk, mk and nk
are randomly generated with zero mean Gaussian distributions
in each simulation step. The random process ri is randomly
generated with a uniform distribution on {z ∈ C | |z| ≤ 1} in
each simulation step. All other parameters are kept constant.

A. Behavior of V ?

In Figure 3, the decreasing property of V ? with respect to
the variance σ2

g of all sensing channels is shown. The reason
behind the decreasing property is that the whole network
observes the target object more reliable in case where the
variance of sensing channels is higher. Furthermore, it can
be seen that increasing N0 has an equivalent effect on the
objective as decreasing σ2

h and vice versa. It is also interesting
to note that the objective shows highest sensitivity to the
variation of M0 when the sensing channel is rather weak
(small σ2

g). The observed sensitivity is illustratively reduced
for higher variances of the sensing channel. Furthermore, the
objective attains a more or less constant value for very high

TABLE II
DEFAULT VALUES OF ALL PARAMETERS USED FOR EACH REFERENCE

CURVE.

Parameter Default value

K 10

r2
rms 1/3

σ2
g 2

σ2
h 2

σ2
∆g 0

σ2
∆h 0

M0 2

N0 2

Pmax 2

Ptot 10

⇒ Premain 0

⇒ K̃ 5

variances of the sensing channel. The reason is that the resulted
objective is dominated by the quality of the communication
channel when the sensing channel gets stronger.
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0.8

σ2
g
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σ2

h = 4
σ2

h = 1
M0 = 4
M0 = 1
N0 = 4
N0 = 1

Fig. 3. Behavior of V ? with respect to σ2
g . All curves show a decreasing

property in σ2
g . The reference curve has the default parameters σ2

h = 2,
M0 = 2 and N0 = 2.

Figure 4 illustrates that V ? is also decreasing with respect
to the variance σ2

h of all communication channels. Since
the diversity of the communication channel is high for a
high value of σ2

h, the data communication to the fusion
center is consequently better which results in a lower V ?.
Analogously, increasing M0 is equivalent to decreasing σ2

g and
vice versa. Similar to the discussion of the sensing channel, the
resulted objective becomes rather constant for a high quality of
communication channels, since the sensitivity of the objective
is already dominated by the quality of sensing channels and
a further improvement of the communication quality is rather
unimportant. This also results in a higher sensitivity of V ?

with respect to the sensing quality based on σ2
g and M0 for

the region of high σ2
h.

In Figure 5 it is shown that in contrast to the curves in
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Fig. 4. Behavior of V ? with respect to σ2
h. All curves show a decreasing

property in σ2
h. The reference curve has the default parameters σ2

g = 2,
M0 = 2 and N0 = 2.

Figure 3 and Figure 4, the property of V ? is increasing with
respect to the noise power M0. For small values of M0 all
curves have a square root property while for large values of M0

all curves behave linear. The deviation of all curves is greater
for large values of M0 than for small values. Furthermore,
the value of M0 has more impact on the deviation of V ?

caused by σ2
g than by other parameters, as mentioned before.

As already described for Figure 3 and Figure 4, increasing N0

is equivalent to decreasing σ2
h and vice versa.
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Fig. 5. Behavior of V ? with respect to M0. All curves show an increasing
property in M0. The reference curve has the default parameters σ2

g = 2,
σ2
h = 2 and N0 = 2.

In Figure 6, the behavior of V ? is also increasing with
respect to the noise power N0. In general, all curves show
a similar behavior compared to those curves in Figure 5.
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Fig. 6. Behavior of V ? with respect to N0. All curves show an increasing
property in N0. The reference curve has the default parameters σ2

g = 2,
σ2
h = 2 and M0 = 2.

B. Sensitivity of V̂

A sensitivity analysis of V̂ is very important in order to
justify assumptions concerning the channel-state knowledge.
In Figure 7, we consider the case where the error variance
σ2

∆g := E [|∆gk|2] of estimated sensing channels is greater
than or equal to zero. In the case where σ2

∆g is equal to
zero, the identity V̂ = V ? holds. Otherwise, V̂ is always
greater than V ?, i.e., V̂ (σ2

∆g) ≥ V̂ (0). For high values of σ2
∆g

all curves are linearly increasing. In this region the optimal
sensor selection almost always fails. This means that SNs
are randomly selected. For low values of σ2

∆g all curves are
rapidly increasing while the correct sensor selection gets out
of control. The deterioration of the performance is not only
amplified by high noise powers M0 and N0, but also by low
channel variances σ2

g and σ2
h.

In Figure 8, the other case is depicted in which the estima-
tion of the communication channel is noisy. Analogously, if
the variance σ2

∆h := E [|∆hk|2] of estimation errors is equal
to zero, the equality V̂ = V ? holds. In general, all curves
again show similar behavior compared to those curves from
Figure 7. Interestingly, the curves in Figure 7 achieve mostly a
better performance than those in Figure 8. This states that the
accurate estimation of all communication channels is more
crucial for the system performance than the estimation of
sensing channels. The reason behind this fact can be seen from
the righthand side of equation (8). An estimation error in each
hk in connection with wrongly optimized uk and vk causes
additional noises which cannot be caused by an estimation
error in each gk. This asymmetrical property is beneficial,
because the estimation of sensing channels is in practice very
difficult while the estimation of communication channels can
be arbitrarily accurate with the aid of pilot sequences for each
SN.
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Fig. 7. Behavior of V̂ with respect to σ2
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property in σ2
∆g . The reference curve has the default parameters σ2

g = 2,
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h = 2, M0 = 2 and N0 = 2.
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∆h. All curves show an increasing

property in σ2
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V. CONCLUSION

The contribution of the present work is to present the
sensitivity of the optimal power allocation with respect to
the perfect and imperfect knowledge of all important system
parameters. Since the sensitivity analysis of the optimal power
allocation in an analytical manner seems to be out of reach,
we have simulatively investigated the sensitivity. In case of
perfect parameter knowledge, the variation of each parameter
shows the behavior of the objective with respect to the
parameter under consideration. As expected, the objective is
decreasing with respect to the variance of channel coefficients
and increasing with respect to the variance of noise signals. In
case of imperfect channel knowledge, the mean square error

is increasing with respect to the variance of estimation errors.
All corresponding results show two parts which correspond
to the cases ‘a selection of more reliable sensor nodes is
still feasible’ versus ‘the sensor selection is just randomly
performed’. In the latter case, the curves are linearly increasing
while in the former case a drastic increase of the curves is
visible. Furthermore, the curves demonstrate that an accurate
estimation of communication channels is more important in
comparison to sensing channels. This property is very crucial
for radar systems, since the sensing channel cannot be accu-
rately estimated.
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