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Abstract

Various spectrum sensing approaches have been shown to suffer from a so-called signal-to-noise ratio (SNR)-wall, an
SNR value below which a detector cannot perform robustly no matter how many observations are used. Up to now,
the eigenvalue-based maximum-minimum-eigenvalue (MME) detector has been a notable exception. For instance,
the model uncertainty of imperfect knowledge of the receiver noise power, which is known to be responsible for the
energy detector’s fundamental limits, does not adversely affect the maximum-minimum-eigenvalue (MME) detector’s
performance. While additive white Gaussian noise (AWGN) is a standard assumption in wireless communications, it is
not a reasonable one for the maximum-minimum-eigenvalue (MME) detector. In fact, in this work, we prove that
uncertainty in the amount of noise coloring does lead to an SNR wall for the maximum-minimum-eigenvalue (MME)
detector. We derive a lower bound on this SNR wall and evaluate it for example scenarios. The findings are supported
by numerical simulations.
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1 Introduction
The recent years have seen an ever-growing demand for
wireless spectrum not least due to the rise of the smart-
phone in consumer markets. However, as a result of the
licensing policies of the preceding decades, most of the
radio spectrum can only be used by fixed licensees, many
of which only make use of their spectral bands at cer-
tain places or times. To alleviate the need for spectrum
and make better use of the given resources, opportunistic
spectrum access (OSA) [1] has emerged as a sub-field of
cognitive radio. In opportunistic spectrum access (OSA),
a spectral band can be used by unlicensed transceivers, so-
called secondary users (SUs), if they are certain that the
licensee of the band, the so-called primary user (PU), is
not using it.
To make sure the occupancy status of a band is reli-

ably detected, the SU senses the spectrum before using it.
The goal of spectrum sensing is to decide between two
hypotheses, the first of which states that the band of inter-
est is free (H0), such that the SU can make use of it.
The second hypothesis states that the band is occupied
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(H1), in which case the SU should refrain from accessing
the band. The requirements spectrum sensing algorithms
have to meet are quite demanding, e.g., the IEEE 802.22
standard for cognitive wireless regional area networks [2]
states that an SU receiver should be able to reliably detect
a primary user (PU) signal at a signal-to-noise ratio (SNR)
of −22 dB. There are good reasons for these demanding
requirements, like, e.g., the hidden terminal problem ([3]
Ch. 14.3.3).
A number of spectrum sensing algorithms have been

proposed in the literature [4–6]. Under the ergodicity
assumption, these algorithms are typically able to meet
the above requirement, i.e., if enough samples are avail-
able, the probability density functions (PDFs) of the
test statistics are well separable. However, due to model
uncertainties caused by, e.g., colored or non-stationary
background noise, non-ideal filters and imperfectly esti-
mated parameters, detection algorithms can exhibit
so-called SNR walls, i.e., SNR values, below which the
detectors cannot robustly [7] decide between H0 and
H1. The existence of SNR walls has been established
for the energy detector, the matched filter detector, and
the cyclostationarity detector [8–10]. A spectrum sensing
algorithm that, to the best of our knowledge, has not been
linked to the signal-to-noise ratio (SNR)-wall problem
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is the popular eigenvalue-based maximum-minimum-
eigenvalue (MME) detector.
The contributions of this paper are manifold. We

identify noise coloring as a model uncertainty adversely
affecting the maximum-minimum-eigenvalue (MME)
detector. Then, we show that uncertainty in the amount
of noise coloring leads to an signal-to-noise ratio (SNR)-
wall for the maximum-minimum-eigenvalue (MME)
detector by using noise coloring to derive a lower bound
on the signal-to-noise ratio (SNR)-wall of the maximum-
minimum-eigenvalue (MME) detector. Finally, we
support the analytical results with numerical simulations.
The rest of the paper is structured as follows. In

Section 2, we introduce our signal model alongside
the test statistic of the maximum-minimum-eigenvalue
(MME) detector. Section 3 formally defines the term
signal-to-noise ratio (SNR)-wall, while Section 4 explains
why colored noise is a reasonable assumption in wire-
less communication. In Section 5, a lower bound on
the signal-to-noise ratio (SNR)-wall for the maximum-
minimum-eigenvalue (MME) detector is derived.
Example scenarios with concrete values for the lower
bound from Section 5 are given in Section 6. A numerical
evaluation of our results can be found in Section 7, while
Section 8 concludes the work.

2 Signal model andMME test statistic
Consider the discrete time complex baseband signal x(n)

observed at a secondary system receiver, where n denotes
the discrete time index. The task of a spectrum sens-
ing algorithm is to decide between the following two
hypotheses

H0 : x(n) = η(n)

H1 : x(n) = s(n) + η(n),
(1)

where s(n) represents a primary user (PU) signal, while
η(n) stands for additive noise. For the sake of simplicity,
no channel fading effects are taken into account.
Throughout this work, the primary user (PU) is

assumed to transmit a linearly modulated signal with sym-
bol length Tsymbol exhibiting a rectangular pulse shape.
The signal is oversampled at the receiver with an integer
oversampling rate given by M = Tsymbol

Tsample
, where Tsample

denotes the sampling period. The decision whether the
band under observation is free (H0) or occupied (H1) is
based on a block of N samples. In the decision process,
samples from p different receivers are considered. The
samples available at the fusion center at time instant n are
given by

x(n) = [
x1(n), x1(n − 1), . . . , x1(n − Q),

x2(n), . . . , xp(n), . . . , xp(n − Q)
]T ,

(2)

where the subscript indicates which receiver the samples
are from. Each receiver contributes a consecutive set of
Q + 1 samples, where the quantity Q + 1 is the so-called
smoothing factor [11]. The inclusion of samples from dif-
ferent receivers as well as samples from different points in
time allows the maximum-minimum-eigenvalue (MME)
detector to exploit correlation from both domains in the
detection process. For simplicity, all receivers are assumed
to experience the same signal-to-noise ratio (SNR). The
vectors s(n) and η(n) are defined analogous to x(n), lead-
ing to the concise representation

x(n) = s(n) + η(n). (3)

We consider a scenario with a single primary user (PU)
transmitter and multiple SU receivers. The receivers are
assumed to be perfectly synchronized, i.e., si(n)|pi=1 =
s(n). Signal and noise are generated by mutually inde-
pendent stationary random processes. The primary user
(PU) signal s(n) is zero-mean, has variance σ 2

s , and its
symbols are independent, i.e., s(n) and s(n + M) are inde-
pendent and identically distributed (i.i.d.). The receiver
noise ηi(n) is zero-mean and has variance σ 2

η for all i. The
noise vector η(n) is distributed according to a circularly
symmetric complex Gaussian distribution, i.e., η(n) ∼
CN p(Q+1)(0,Rη).
Considering the fact that both the signal and the noise

are zero-mean, the statistical covariance matrices can be
obtained as

Rs = E
[
s(n)s(n)H

]

Rη = E
[
η(n)η(n)H

]

Rx = E
[
x(n)x(n)H

]

= Rs + Rη ,

(4)

where (·)H denotes the complex conjugate transpose. We
assume that the received signal x(n) is covariance ergodic
([12], pp. 531), such that the sample covariance matrix

R̂x(N) = 1
N − Q

N−1∑

n=Q
x(n)x(n)H (5)

asymptotically converges to the statistical covariance
matrix, i.e.,

lim
N→∞R̂x(N) = Rx. (6)

The analytic derivations in this work target the well-
known maximum-minimum-eigenvalue (MME) detector
[11]. Its test statistic is composed of the eigenvalues of
the received signal’s sample covariance matrix. The test
statistic and its accompanying decision rule are given by

�MME(x,N) =
λmax

(
R̂x(N)

)

λmin
(
R̂x(N)

)
H0
≶
H1

γ , (7)
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where λmax(·) and λmin(·) denote the largest and small-
est eigenvalue of a matrix respectively and γ stands for
the predefined decision threshold. If �MME(x,N) < γ ,
we decide H0, while for �MME(x,N) ≥ γ , we decide H1.
Since both sample and statistical covariance matrices are
positive-semidefinite and thus all of their eigenvalues are
≥ 0, the test statistic �MME(x,N) is always ≥ 1.

3 SNRwalls in spectrum sensing
Additive white Gaussian noise (AWGN) is a standard
assumption in wireless communications research and
for many problems in the field, it is a reasonable one.
Indeed, a classical result from information theory states
that additive Gaussian noise represents the worst case
in point-to-point communication [13], which makes it a
fair choice for performance evaluation. However, model-
ing the receiver noise as additive white Gaussian noise
(AWGN) is only an approximation of reality and for
eigenvalue-based spectrum sensing, where correlation in
the received signal is the key to differentiability between
the H0 and the H1 case, it does not embody the worst
case. As will be shown in the subsequent sections, the
assumption that the (Gaussian) noise samples are i.i.d.
(and thus the noise iswhite) is a crucial prerequisite for the
maximum-minimum-eigenvalue (MME) detector’s opti-
mal operation. To take into consideration that different
types of noise exist, we model η(n) as having any distri-
bution W from a set of possible distributions W , all of
which have the variance σ 2

η . The maximum-minimum-
eigenvalue (MME) detector is a general spectrum sensing
algorithm in the sense that it is capable of detecting dif-
ferent kinds of signals. Thus, we do not assume a fixed
signal type but instead only make the assumption that the
primary user (PU) signal s(n) has any distribution S from
the set of possible distributions S , all of which have the
variance σ 2

s .
Given the sets S and W with the variances σ 2

s and σ 2
η

respectively, we can now define the signal-to-noise ratio
(SNR) as

SNR = σ 2
s

σ 2
η

. (8)

Further, we define the probability of false alarm and the
probability of missed detection as

Pfa(W ,N) = P (�MME(x,N) ≥ γ | H0,W ) ,
Pmd(W , S,N) = P(�MME(x,N) < γ | H1,W , S),

(9)

respectively. In conformity with the definition in [9]
(except that we do not consider a fading channel), we let
a detector robustly achieve a pair (Pfa,Pmd) consisting of

a target false alarm probability Pfa and a target missed
detection probability Pmd if it satisfies

sup
W∈W

Pfa(W ,N) ≤ Pfa,

sup
W∈W ,S∈S

Pmd(W , S,N) ≤ Pmd.
(10)

The detector is called non-robust at a given SNR if at
that SNR even with an arbitrarily highN, it cannot achieve
any pair (Pfa,Pmd) on the support Pfa ∈[ 0, 0.5] ,Pmd ∈
[ 0, 0.5]. The SNR wall is finally defined as

SNRwall = sup{SNRt , s.t. the detector is non-robust
for all SNR < SNRt}.

(11)

For test statistics with symmetric probability density
functions (PDFs), a definition of non-robustness equiv-
alent to the above is that a detector is non-robust if
the sets of means of the test statistic �(x,N) under the
two hypotheses overlap [9]. This equivalence can be eas-
ily illustrated using Fig. 1. As can be seen, changing
the threshold leads to a different pair (Pfa,Pmd). The set
of achievable pairs (Pfa,Pmd) depends on the shape and
the location of the test statistic probability density func-
tions (PDFs). For symmetric probability density functions
(PDFs), e.g., the ones illustrated in Fig. 1, achieving a pair
(Pfa,Pmd) on the support Pfa ∈[ 0, 0.5] ,Pmd ∈[ 0, 0.5], i.e.,
being robust, means that the threshold cannot be above
the mean of the H1 PDF because this would result in a
Pmd > 0.5. Analogously, the threshold cannot be below
the mean of the H0 PDF because then Pfa > 0.5. Thus, if
the sets of means overlap, i.e., if there is aH1 mean that is
below one of the H0 means, no matter what value is cho-
sen for the threshold, either Pmd or Pfa is always > 0.5
such that the detector is non-robust.
Since the H0 and H1 test statistic probability density

functions (PDFs) of the maximum-minimum-eigenvalue
(MME) detector are not symmetric, we use a third def-
inition of non-robustness, which states that a detector
is non-robust if the sets of medians of the test statistic
�(x,N) under the two hypotheses overlap. This definition
is equivalent to the first one, even for non-symmetric dis-
tributions. For symmetric distributions, it coincides with
the second definition. The reason we need to use the
median instead of the mean is that for non-symmetric dis-
tributions, it does not hold that the probability above the
mean as well as the probability below the mean is 0.5,
while the same does by definition hold for the median.
We make use of the third version of the definition of

an signal-to-noise ratio (SNR) wall when deriving a lower
bound on the SNR wall for the maximum-minimum-
eigenvalue (MME) detector, thus proving the existence of
an SNR wall for that detector, in Section 5.
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Fig. 1 Test statistic PDFs and error probabilities

4 Sources of noise and noise coloring
As mentioned in Section 3, additive white Gaussian noise
(AWGN) can only be considered an approximation of the
actual noise experienced at a radio receiver. In this section,
we make the case for considering colored receiver noise,
which is an assumption used in the subsequent sections
to prove the existence of an SNR wall for the maximum-
minimum-eigenvalue (MME) detector.
In [11], it is assumed that the receiver noise before pro-

cessing is white and that the only source of noise coloring
is the use of a receive filter. The receive filter is assumed
to be known in advance and to be invertible, such that a
pre-whitening filter can be used to re-whiten the received
samples before including them in the computation of the
test statistic. On close inspection, it seems to be prob-
lematic to remove all coloring, since perfect filter design
is hardly achievable, which makes employing an exact
inverse of the receive filter seem impossible.
Even if the coloring caused by the receiver architecture

was perfectly reversible, the assumption that the exter-
nal noise is white represents an oversimplification, which
in the case of the maximum-minimum-eigenvalue (MME)
detector happens to be inappropriate, since for this detec-
tor uncorrelated noise is a requirement for proper func-
tioning. In reality, the external noise is a superposition of
different kinds of noise from various sources and although
the impact of external noise decreases for higher fre-
quencies [14], at moderate frequencies such as the ones
used for television broadcasting, external noise is present
and should be considered. Note that the television bands
are of utmost interest for spectrum sensing, i.e., many
spectrum sensing algorithms originated in the context of
the IEEE 802.22 standard [2], which is concerned with
communication in vacant television bands.
There are multiple different sources of realistic non-

white external noise. One example is galactic radiation
noise. The power spectral density (PSD) of such noise is
proportional to 1

f 2.7 [15], where f denotes the frequency,
which makes it non-white. Another example is man-made

noise [16]. The reason this kind of noise leads to correla-
tion in the received samples under H0 is twofold. Firstly,
it occurs in strong bursts that affect multiple receiver
samples, which leads to time correlation. Secondly, when
multiple receivers or multiple receive antennas are con-
sidered, the received noise is correlated in the case that
multiple of them are in the range of the same man-made
impulsive noise. The origin of man-made noise lies in, e.g.,
unintended radiation from electrical machinery or power
transmission lines. Furthermore, nearly every electronic
device creates it and thus, impulsive man-made noise is an
effect that needs to be taken into account.
As pointed out above, expecting receiver noise to be

white and uncorrelated is unrealistic due to imperfect
filters, galactic radiation noise, and different sources of
man-made noise. Thus, in the remainder, we investi-
gate what effect non-white noise has on the perfor-
mance of the maximum-minimum-eigenvalue (MME)
detector.

5 SNRwall lower bound
In this section, we derive a lower bound on the SNR wall
of the maximum-minimum-eigenvalue (MME) detector,
thus proving its existence. More specifically, following
the definition of the SNR wall from Section 3, we derive
a lower bound on the SNR value below which the sets
of medians of the test statistic �(x,N) under the two
hypotheses (H0 and H1) overlap even in the asymptotic
case (N → ∞). To determine the location of the over-
lap, we provide a lower bound on the test statistic under
H0 and an upper bound on the test statistic under H1.
The SNR below which the first of these two bounds has
a higher value than the second one is the lower bound
on the SNR wall. Due to the fact that for N → ∞, the
probability density functions (PDFs) of the test statistic
under the two hypotheses both become degenerate distri-
butions, such that the probability density functions (PDFs)
coincide with their medians, this is equivalent to the above
definition of the SNR wall.
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In our system model, the matrices Rs and Rη are no
Toeplitz matrices. The reason can be found in the com-
position of the vector x(n), i.e., the covariance matrices
contain two types of correlation, time, and receiver corre-
lation (cf. (2)). Note, that this is the case despite the facts
that firstly, due to our asymptotic approach, the matri-
ces are statistical covariance matrices and secondly, the
underlying noise processes are assumed to be stationary.
The correlation coefficients associated with the entry in
the i-th row and j-th column of Rs and Rη are denoted by
ρs
ij and ρ

η
ij , respectively. Bounds will be denoted by a bar

above the respective symbol.

5.1 Lower bound on the test statistic underH0

In the H0 case, Rx = Rη , since no primary user (PU)
signal exists. For this case, we aim at finding a lower bound
�̄
asym, lo
MME,H0

on the asymptotic test statistic, i.e.,

λ̄lomax
(
Rη

)

λ̄
up
min

(
Rη

) = �̄
asym, lo
MME,H0

≤ �
asym
MME,H0

= λmax
(
Rη

)

λmin
(
Rη

) .

(12)

To obtain the lower bound �̄
asym, lo
MME,H0

, we need to
determine a lower bound on the largest eigenvalue
(λ̄lomax(Rη)) and an upper bound on the smallest eigenvalue(
λ̄
up
min

(
Rη

))
, i.e.,

λ̄lomax
(
Rη

) ≤ λmax
(
Rη

)
,

λ̄
up
min

(
Rη

) ≥ λmin
(
Rη

)
.

(13)

According to the Courant-Fischer theorem, the
maximum and minimum eigenvalues λmax(H) and
λmin(H) of a Hermitian matrix H can be obtained by
solving the following optimization problems [17]

λmax(H) = max
z:zHz=1

zHHz,

λmin(H) = min
z:zHz=1

zHHz.
(14)

From (14), it directly follows that

λmin(H) ≤ zHHz ≤ λmax(H), (15)

for an arbitrary normalized z. This means that we can
obtain the bounds λ̄lomax

(
Rη

)
and λ̄

up
min

(
Rη

)
by simply eval-

uating λ̄lomax
(
Rη

) = zH1 Rηz1 and λ̄
up
min

(
Rη

) = zH2 Rηz2
using two arbitrary normalized vectors z1 and z2. How-
ever, an additional constraint we need to take care of when
obtaining the bounds is that λ̄lomax

(
Rη

) ≥ λ̄
up
min

(
Rη

)
needs

to hold. In the following, we construct a set of vectors z1
and z2 that guarantees that this property is satisfied.
Given a specific covariance matrix Rη , the vectors are

constructed as to extract its largest correlation coefficient
ρ

η
max with

∣
∣ρη

max
∣
∣ ≥

∣
∣
∣ρη

ij

∣
∣
∣ ∀ i, j with i 	= j. For the below

example, we assume that the largest correlation coefficient

is located at the k-th column of the first row of the matrix.
Given the Hermitian structure of covariance matrices
and the assumed stationarity of the noise processes, this
assumption can be made without loss of generality. The
considered covariance matrix has the following structure

Rη = σ 2
η

⎛

⎜
⎜
⎜⎜
⎝

1 · · · |ρη
max|ejφ · · ·

...
. . . · · · · · ·

|ρη
max|e−jφ · · · 1 · · ·

...
...

...
. . .

⎞

⎟
⎟
⎟⎟
⎠
. (16)

The accompanying vectors z1 and z2 are given by

z1 = 1√
2

[
1, 0, . . . , 0,+e−jφ , 0, . . . , 0

]T ,

z2 = 1√
2

[
1, 0, . . . , 0,−e−jφ , 0, . . . , 0

]T ,
(17)

where ±e−jφ is the k-th element of the respective vector,
coinciding with the position of

∣
∣ρη

max
∣
∣ e±jφ in Rη . We can

now obtain

λ̄lomax
(
Rη

) = zH1 Rηz1 = σ 2
η

(
1 + ∣

∣ρη
max

∣
∣) ,

λ̄
up
min

(
Rη

) = zH2 Rηz2 = σ 2
η

(
1 − ∣

∣ρη
max

∣
∣) .

(18)

Note that the above argument can be made for an
arbitrary position of ρ

η
max by choosing z1 and z2 accord-

ingly, leaving (18) unchanged. Note also that λ̄lomax
(
Rη

) ≥
λ̄
up
min

(
Rη

)
holds. The lower bound on the test statistic

underH0 is now given by

�̄
asym, lo
MME,H0

= 1 + ∣
∣ρη

max
∣
∣

1 − ∣
∣ρη

max
∣
∣ , (19)

for 0 ≤ ∣
∣ρη

max
∣
∣ < 1. For the case of complete noise correla-

tion, i.e.,
∣
∣ρη

max
∣
∣ = 1 we get 0 ≤ λmin

(
Rη

) ≤ λ̄
up
min

(
Rη

) =
0, where the first inequality is due to the general pos-
itive semidefiniteness of covariance matrices. Since for
λmin

(
Rη

) = 0 detection becomes impossible (cf. (7)), we
exclude the case of complete noise correlation.

5.2 Upper bound on the test statistic underH1

In the H1 case, Rx = Rs + Rη . For this case, we aim at
finding an upper bound �̄

asym, up
MME,H1

on the asymptotic test
statistic, i.e.,

λ̄
up
max (Rx)

λ̄lomin(Rx)
= �̄

asym, up
MME,H1

≥ �
asym
MME,H1

= λmax(Rx)

λmin(Rx)
. (20)

To obtain the upper bound �̄
asym, up
MME,H1

, we need to
determine an upper bound on the largest eigenvalue
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(
λ̄
up
max (Rx)

)
and a lower bound on the smallest eigenvalue(

λ̄lomin (Rx)
)
, i.e.,

λ̄
up
max(Rx) ≥ λmax(Rx),

λ̄lomin(Rx) ≤ λmin(Rx).
(21)

Let rij denote the entry of Rx in the i-th row and j-th
column. Given our assumptions from Section 2, we get

rii = σ 2
η + σ 2

s = (1 + SNR)σ 2
η ,

rij = σ 2
η ρ

η
ij + σ 2

s ρs
ij =

(
ρ

η
ij + SNRρs

ij

)
σ 2

η .
(22)

According to the Gershgorin circle theorem [18], all
eigenvalues λk|gk=1 of a matrix A ∈ C

g×g , with g = p(Q +
1), lie within the union of the circular disks

{z ∈ C : |z − aii| ≤ Ri} , (23)

where

Ri =
g∑

j=1
j 	=i

∣
∣aij

∣
∣. (24)

Since Rx is Hermitian, all of its eigenvalues are real and
thus the disks from (23) become intervals on the real axis.
The value of rii is independent of i. Thus, an upper bound
on the maximum eigenvalue of Rx can be obtained as

λ̄
up
max(Rx) = |rii| + max

i
Ri

= σ 2
η

⎛

⎜
⎜
⎝SNR + 1 + max

i

g∑

j=1
j 	=i

∣
∣
∣
(
ρ

η
ij + SNRρs

ij

)∣
∣
∣

⎞

⎟
⎟
⎠

≥ λmax(Rx).
(25)

In analogy to (25), a lower bound on the minimum
eigenvalue of Rx can be obtained as

λ̄lomin(Rx) = |rii| − max
i

Ri

= σ 2
η

⎛

⎜
⎜
⎝SNR + 1 − max

i

g∑

j=1
j 	=i

∣
∣
∣
(
ρ

η
ij + SNRρs

ij

)∣
∣
∣

⎞

⎟
⎟
⎠

≤ λmin(Rx).
(26)

However, for (26) to be a valid bound in terms of the test
statistic, we need to introduce an extra constraint. We

need to make sure that λ̄lomin(Rx) > 0, i.e., |rii| − max
i

Ri >

0, which leads to the constraint

1 + SNR > max
i

g∑

j=1
j 	=i

∣
∣
∣
(
ρ

η
ij + SNRρs

ij

)∣
∣
∣ . (27)

Combining (25) and (26) finally provides the upper
bound on the asymptotic test statistic underH1 given by

�̄
asym, up
MME,H1

=

SNR + 1 + max
i

g∑

j=1
j 	=i

∣
∣∣
(
ρ

η
ij + SNRρs

ij

)∣
∣∣

SNR + 1 − max
i

g∑

j=1
j 	=i

∣
∣
∣
(
ρ

η
ij + SNRρs

ij

)∣
∣
∣
.

(28)

5.3 Lower bound on the SNR wall
Combining (19) and (28), we can say that the maximum-
minimum-eigenvalue (MME) detector is non-robust
under the condition given by (27) and given that ρ

η
max < 1

when �̄
asym, up
MME,H1

≤ �̄
asym, lo
MME,H0

, i.e.,

SNR + 1 + max
i

g∑

j=1
j 	=i

∣
∣
∣
(
ρ

η
ij + SNRρs

ij

)∣
∣
∣

SNR + 1 − max
i

g∑

j=1
j 	=i

∣
∣∣
(
ρ

η
ij + SNRρs

ij

)∣
∣∣

≤ 1 + ∣
∣	η

max
∣
∣

1 − ∣
∣	η

max
∣
∣ .

(29)

Note that the correlation coefficients in theH0 case are
now denoted by 	 instead of ρ to facilitate the distinc-
tion between the noise correlation in the H0 and the H1
case. For the interpretation of (29), it is important to note
that ρs

ij ≥ 0 ∀ i, j, i.e., the signal correlation coefficients
never become negative. This follows from (2), (4), and the
assumption that consecutive symbols are independent.

6 Examples of the lower bound on the SNRwall
Inequality (29) is quite involved and does not allow for
easy interpretation. Since our goal is to prove the exis-
tence of an signal-to-noise ratio (SNR) wall, we continue
our investigation with examples that simplify (29), facili-
tating interpretation. We consider the case, where under
H1 no noise correlation exists, i.e., ρ

η
ij = 0 ∀ i, j except

i = j, while under H0, the noise is correlated, i.e., ∃ (i, j)
with i 	= j for which 	

η
ij 	= 0. This case occurs when the

sources of noise coloring in the vicinity of the sensor are
only present at certain times or if the sensor is used at
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different locations. Considering uncorrelated noise under
H1, (27) can be simplified as follows

1 + SNR > max
i

g∑

j=1
j 	=i

∣
∣
∣
(
ρ

η
ij + SNRρs

ij

)∣
∣
∣

⇔1 + SNR > SNR · max
i

g∑

j=1
j 	=i

∣
∣
∣ρs

ij

∣
∣
∣

⇔SNR <
1

κmax − 1
,

(30)

where

κmax = max
i

g∑

j=1
j 	=i

∣
∣
∣ρs

ij

∣
∣
∣ . (31)

This means that the higher the correlation in the sig-
nal samples, the lower the signal-to-noise ratio (SNR) for
which our lower bound is defined. For κmax < 1, the con-
dition is never satisfied. In this case, we have to fall back to
zero as a lower bound for λmin, which is guaranteed by the
properties of covariance matrices. This however leads to
the test statistic under H0 taking the value infinity, which
again rules out the possibility of giving a lower bound for
an signal-to-noise ratio (SNR) wall. For a more concise
notation, let

αmax = �̄
asym, lo
MME,H0

= 1 + ∣
∣	η

max
∣
∣

1 − ∣
∣	η

max
∣
∣ . (32)

By assuming a minimal amount of noise coloring under
H0 and excluding the case of complete noise correlation,
we restricted the support of the largest noise correlation
coefficient, such that 	max ∈ (0, 1). As a consequence, it
holds that αmax > 1. Using the definitions of κmax and
αmax, as well as the assumption that underH1 the noise is
uncorrelated, (29) becomes

SNR + 1 + κmaxSNR
SNR + 1 − κmaxSNR

≤ αmax, (33)

or equivalently

SNR ≤ αmax − 1
1 + κmax + αmax (κmax − 1)

. (34)

In order to obtain concrete numbers for the bound, we
will look at more specific examples in the following.

6.1 Receiver correlation (Q = 0, p ≥ 2)
In this example, we consider a p-receiver setup with per-
fect signal correlation, i.e., ρs

ij = 1 ∀ i, j. The maximum
signal correlation in this case is κmax = p − 1 and thus
the condition (30) becomes SNR < 1

p−2 . If the condition

is satisfied, we can say that the maximum-minimum-
eigenvalue (MME) detector becomes non-robust for

SNR ≤ αmax − 1
p + αmax(p − 2)

. (35)

For p = 2 and a maximum noise correlation of 	
η
max =

0.05, which we consider to be moderate noise coloring,
we arrive at a lower bound of SNR = 0.052632 =
−12.788 dB, which is considerably far away from −22 dB
(cf. Section 1). This example is simple enough for us to
obtain the actual statistical covariance matrices for an
evaluation of the bound’s tightness. They are given by

RH0
x = RH0

η = σ 2
η

(
1 0.05

0.05 1

)
,

RH1
x =

(
σ 2

η + σ 2
s σ 2

s
σ 2
s σ 2

η + σ 2
s

)

= σ 2
η

(
1 + SNR SNR
SNR 1 + SNR

)
.

(36)

With the above covariance matrices, the asymptotic test
statistics evaluate to �

asym
H0

= 1.10503 and �
asym
H1

= 1 +
2SNR. This means that for an signal-to-noise ratio (SNR)
below 0.052632 = −12.788 dB, �asym

H1
< �

asym
H0

, such that
the detector becomes non-robust, i.e., in this special case
the bound is tight.

6.2 Time correlation (p = 1, Q ≥ 1)
To complement the receiver correlation example, we next
investigate a case with only one receiver that examines the
correlation of the received samples over time. In order to
again obtain a bound via (34), the value of κmax needs to
be determined. Given an oversampling factor M and the
independence of consecutive symbols, the autocorrelation
function of the primary user (PU) signal can be obtained
as

E
[
s∗(n)s(n ± k)

] =
{

σ 2
s

(
1 − k

M

)
if |k| < M

0 else.
(37)

In our case, the rowwith themaximumoff-diagonal cor-
relation sum in Rs is the

⌊
g+1
2

⌋
-th one, where g = Q+1 is

the number of rows of Rs and �·� denotes the floor opera-
tion. This is illustrated in the following example for Q = 3
(assumingM ≥ 3)

Rs = σ 2
s

⎛

⎜
⎜
⎝

1 1 − 1
M 1 − 2

M 1 − 3
M

1 − 1
M 1 1 − 1

M 1 − 2
M

1 − 2
M 1 − 1

M 1 1 − 1
M

1 − 3
M 1 − 2

M 1 − 1
M 1

⎞

⎟
⎟
⎠ . (38)

The further away from the diagonal, the smaller the
value. Thus, the middle row has the highest sum.
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In order to obtain κmax, three cases have to be distin-
guished. For

⌈
Q
2

⌉
< M and Q even, we get

κmax = 2

Q
2∑

j=1

(
1 − j

M

)

= Q − Q2 + 2Q
4M

,

(39)

for
⌈
Q
2

⌉
< M and Q odd, we get

κmax = 2

Q−1
2∑

j=1

(
1 − j

M

)
+

(
1 − Q + 1

2M

)

= Q − (Q + 1)2

4M
,

(40)

and for
⌈
Q
2

⌉
≥ M, we get

κmax = 2
M−1∑

j=1

(
1 − j

M

)
= M − 1, (41)

where �·� denotes the ceiling operation. In this example,
we model the noise as a stationary auto-regressive pro-
cess of order one (AR(1)). It is supposed to mimic white
external noise that has undergone filtering by a low-pass
receive filter. The noise process is given by

η(n) = 0.1η(n − 1) + ε(n), (42)

where ε(n) denotes an i.i.d. complex Gaussian random
process with mean zero and variance 0.99. It is indepen-
dent of η(n − 1) and has independent real and imaginary
parts and E

[|η [n]|2] = 1. Figure 2 shows the noise
process’s power spectral density (PSD) to illustrate its

Fig. 2 PSD of AR(1) process, which follows η[ n]= 0.1η[ n − 1]+ε[ n].
The frequency is normalized to fsamples = 2π

characteristics. We consider the case ofQ = 3 andM = 4,
where the choice ofQ leads to the noise covariance matrix

Rη =

⎛

⎜
⎜
⎝

1 0.1 0.12 0.13
0.1 1 0.1 0.12
0.12 0.1 1 0.1
0.13 0.12 0.1 1

⎞

⎟
⎟
⎠ (43)

and κmax = 2 (cf. (40)). Using (34), we again get a
lower bound for the signal-to-noise ratio (SNR)-wall of
−12.788 dB.

6.3 Time and receiver correlation (p > 1,Q > 0)
As a final example, we consider the case where both,
time and receiver correlation, are exploited. Given our
model assumption that the signal strength is equal for all
receivers, we can combine the κmax terms derived in the
preceding subsections to obtain

κmax = p − 1 + p · κmax,time, (44)

where κmax,time denotes the κmax term for time correlation.

7 Numerical evaluation
In this section, we provide numerical results correspond-
ing to the examples given in Section 6.1 and Section 6.2.
The parameters used in the simulations can be found in
Table 1.
For the H1 case, we generate white Gaussian noise and

an oversampled binary phase shift keying (BPSK) sig-
nal with a rectangular pulse shape and symbols that are
independent of each other. For the H0 case, we gen-
erate colored noise. The different noise types used for
H0 and H1 represent the model uncertainty that has to
be taken into account when designing spectrum sensing
algorithms. When generating colored noise, our aim is
to create a stationary, sampled Gaussian process with a
predefined covariance matrix.

7.1 Receiver correlation
In the receiver correlation case, we use a matrix multipli-
cation approach for generating colored noise. We start by
generating the p-dimensional white Gaussian noise sam-
ple vector w(n) ∼ N (0,Rw) for all time instances n,
where Rw = Ip×p, while p is the number of receivers.
That is, the vector w(n) is generated according to a

Table 1 System parameters

Parameter Symbol Value(s)

Modulation type BPSK

Oversampling factor M 4

Number of samples N {999, 9999, 999999}
No. of Monte Carlo instances 2000

No. of histogram bins 12
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p-dimensional zero-mean Gaussian distribution with the
identity matrix as its covariance matrix. The colored noise
vector η(n), which is experienced at the receiver in the
H0 case, is subsequently obtained as η(n) = Aw(n),
where the matrix A ∈ C

p×p needs to be chosen such that
the covariance matrix of η(n) equals the predefined Rη .
This approach leads to the desired result due to the fact
that linear combinations of Gaussian random variables
are again distributed according to a Gaussian distribu-
tion. It is well known that the covariance matrix of Aw(n)

is given by AHRwA. Thus, the matrix A can be eas-
ily obtained by computing the Cholesky decomposition
Rη = AHA.
Figure 3 shows the histograms for the maximum-

minimum-eigenvalue (MME) test statistic �MME in the
H0 case (black) and the H1 case (colored). For the H1
case, the test statistic histograms for different SNRs are
shown. It can be observed that the estimation variance of
the test statistic decreases with an increasing number of
samples N, which is to be expected since asymptotically

Fig. 3 Estimated probability density function for receiver correlation
(p = 2, Q = 0) and different N. Noise correlation factor 	η

max = 0.05.
Solid lines represent the histograms, while dashed lines depict the
means. TheH0 case result is shown in black, while theH1 case
results are colored, where the SNR from right to left is given by
{−10,−11, . . . ,−15} dB

the sample covariance matrix converges to the statistical
covariance matrix. What we can also see is that the mean
of the estimated test statistic changes for an increasing
N. This is a testimony to the biasedness of the estimator
(7). Recall, that the lower bound on the signal-to-noise
ratio (SNR) wall for this scenario has been derived to be
−12.788 dB. The simulation results confirm this bound.
Indeed, when the signal-to-noise ratio (SNR) drops below
the derived bound, the medians of the test statistics under
H1 are below the median of the test statistic under H0
for all inspected N, making the detector non-robust by
definition.

7.2 Time correlation
Since in the previous example, the noise correlation only
exists between the noise processes of different receivers
but not between noise samples taken at a single receiver
at different times, the matrix A, which is used to color
the noise, has a small dimension. This makes the matrix
multiplication approach feasible for the receiver corre-
lation example. To use the same method in the time
correlation example, a coloring matrix of size N × N
would be necessary, where in our simulations, N takes
on values of up to 106. This renders the matrix mul-
tiplication approach infeasible for the current example.
Thus, a different approach for generating colored noise
has to be taken. First, we generate an autocorrelation
with a real-valued power spectral density (PSD) from
an autoregressive model of order one. We then gener-
ate an N-dimensional vector distributed according to a
zero-mean, unit-variance, complex, white Gaussian distri-
bution, which serves as a frequency-domain noise basis.
Its power spectral density (PSD) is subsequently scaled by
the power spectral density (PSD) of the autocorrelation,
after which it is transformed to the time-domain via the
inverse discrete Fourier transform (IDFT) and scaled to
variance σ 2

η . Here again, we use the fact that a linear com-
bination of Gaussian random variables is also distributed
according to a Gaussian distribution.
Recall that the lower bound on the signal-to-noise

ratio (SNR) wall for this scenario has been derived to
be −12.788 dB. According to the numerical results, in
this scenario, themaximum-minimum-eigenvalue (MME)
detector exhibits an signal-to-noise ratio (SNR) wall
between −8 and −9 dB (Fig. 4). While the lower bound
cannot be called very tight for this example, it neverthe-
less proves the existence of an signal-to-noise ratio (SNR)
wall, which is guaranteed to be much higher than the
desired −22 dB.

8 Conclusions
In this work, we have proven the existence of an
signal-to-noise ratio (SNR) wall for the eigenvalue-
based maximum-minimum-eigenvalue (MME) spectrum
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Fig. 4 Estimated probability density function for time correlation
(p = 1, Q = 4) and different N. Solid lines represent the histograms,
while dashed lines depict the means. TheH0 case result is shown in
black, while theH1 case results are colored, where the SNR from right
to left is given by {−6,−7, . . . ,−10} dB.

sensing algorithm. The signal-to-noise ratio (SNR) wall is
caused by uncertainty about the coloring of the receiver
noise. A lower bound on the signal-to-noise ratio (SNR)
wall is derived and is complemented by time and receiver
correlation examples. For the example, we give con-
crete signal-to-noise ratio (SNR) values, below which the
maximum-minimum-eigenvalue (MME) detector is non-
robust. Finally, numerical results supporting the analytical
results are provided.
One possible direction for future work is the derivation

of tighter bounds on the signal-to-noise ratio (SNR) wall.
Also, it would be of great value if the results could be gen-
eralized to arbitrary eigenvalue-based spectrum sensing
algorithms.
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