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Abstract—In this work we consider a full-duplex (FD) and
amplify-and-forward (AF) relay with multiple antennas, where
hardware impairments of the FD relay are taken into account.
Due to the inter-dependency of the transmit relay power and
the residual self-interference in an FD-AF relay, we observe
a distortion loop that degrades the system performance when
relay dynamic range is not high. In this regard, we analyze
the relay function, and an optimization problem is formulated
to maximize the signal to distortion-plus-noise ratio (SDNR)
under relay and source transmit power constraints. Due to
the problem complexity, we propose a gradient-projection-based
(GP) algorithm to obtain an optimal solution. Moreover, a non-
alternating sub-optimal solution is proposed by assuming a rank-1
relay amplification matrix, and separating the design of the relay
process into multiple stages (MuStR1). The proposed MuStR1
method is then enhanced by introducing an alternating update
over the optimization variables, denoted as AltMuStR1 algorithm.
Numerical simulations show that compared to GP, the proposed
(Alt)MuStR1 algorithms significantly reduce the required com-
putational complexity at the expense of a slight performance
degradation. Moreover, as the hardware impairments increase, or
for a system with a high transmit power, the impact of applying
a distortion-aware design is significant.

I. INTRODUCTION

FULL-DUPLEX (FD) operation, as a transceiver’s capabi-
lity to transmit and receive at the same time and frequency,

is known with the potential to approach various requirements
of future communication systems (5G), e.g., improved spectral
efficiency and end-to-end latency [2]. Nevertheless, such sys-
tems have been long considered to be practically infeasible due
to the inherent self-interference. In theory, since each node is
aware of its own transmitted signal, the interference from the
loopback path can be estimated and suppressed. However, in
practice this procedure is challenging due to the high strength
of the self-interference channel compared to the desired com-
munication path, up to 100 dB [3]. Recently, specialized
self-interference cancellation (SIC) techniques [4]–[7] have
provided an adequate level of isolation between transmit (Tx)
and receive (Rx) directions to facilitate an FD communication
and motivated a wide range of related applications, see, e.g.,
[2], [8]. A common idea of the such SIC techniques is to
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attenuate the main interference paths in RF domain, i.e., prior
to down-conversion, so that the remaining self-interference can
be processed in the effective dynamic range of the analog-to-
digital convertor (ADC) and further attenuated in the baseband,
i.e., digital domain. While the aforementioned SIC techniques
have provided successful demonstrations for specific scenarios,
e.g., [6], it is easy to observe that the obtained cancellation
level may vary for different realistic conditions. This mainly
includes i) aging and inaccuracy of the hardware components,
e.g., ADC and digital-to-analog-convertor (DAC) noise, power
amplifier and oscillator phase noise in analog domain, as well
as ii) inaccurate estimation of the remaining interference paths
due to the limited channel coherence time. As a result, it is
essential to take into account the aforementioned inaccuracies
to obtain a design which remains efficient under realistic
situations.

In this work we are focusing on the application of FD
capability on a classic relaying system, where the relay node
has multiple antennas and suffers from the effects of hardware
inaccuracy. An FD relay is capable of receiving the signal
from the source, while simultaneously communicating to the
destination. This capability, not only reduces the required time
slots in order to accomplish an end to end communication, but
also reduces the end to end latency compared to the known
Time Division Duplex (TDD)-based half-duplex (HD) relays.
In the early work by Riihonen. et. al. [9] the relay operation
with a generic processing protocol is modeled, and many
insights have been provided regarding the multiple-antenna
strategies for reducing the self-interference power. The design
methodologies and performance evaluation for FD relays with
decode-and-forward (DF) operation have been then studied,
see e.g., [10]–[14], taking into account the effects of the
hardware impairments, as well as channel estimation errors
in digital domain. For the FD relaying systems with amplify-
and-forward (AF) operation, single antenna relaying scenarios
are studied in [15]–[20]. In the aforementioned works the
effect of the linear inaccuracies in digital domain have been
incorporated in [17], where the hardware imperfections from
analog domain components have been addressed in [15], [16],
following the model in [3], [10], and in [18] following the
proposed model in [21]. The work in [18] is then extended by
[19] to enhance the physical layer security in the presence of
an Eavesdropper.

While the aforementioned literature introduces the impor-
tance of an accurate transceiver modeling with respect to the
effects of hardware impairments for an FD-AF relay, such
works are not yet extended for the relays with multiple anten-
nas. This stems from the fact that in an FD-AF relay, the inter-
dependent behavior of the transmit power from the relay and
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the residual self-interference intensity results in a distortion
loop effect, see Subsection II-C. The aforementioned effect
results in a rather complicated mathematical description when
relay is equipped with multiple antennas. As a result, related
studies resort to simplified models to reduce the consequent
design complexity. In [22]–[30] a multiple-antenna FD-AF
relay system is studied where a perfect SIC is assumed; via
estimating and subtracting the interference in the receiver [22]–
[24], or via spatial zero-forcing of the self-interference signal
assuming that the number of transmit antennas exceeds the
number of receive antennas at the relay [25]–[30]. For the sce-
narios where the number of transmit antennas is not higher than
the receive antennas, a general framework is proposed in [31],
[32], assuming a fixed and known residual self-interference
statistics, and in [33], [34], where a perfect SIC1 is assumed via
a combined analog/digital SIC scheme, on the condition that
the self-interference power does not exceed a certain threshold.
In [35]–[37] the residual self-interference signal is related to
the transmit signal via a known and linear function, assuming
a distortion-free hardware. A power adjustment method is
proposed in [38] for an FD-AF relay equipped with a massive
antenna array, by considering the impact of limited resolution
ADCs in the end-to-end performance. However, the impact
of the relay’s transmit/receive covariance on the residual self-
interference is not considered. To the best of the authors
knowledge, the impact of the hardware distortions, as such
extensively studied for FD-DF relaying systems [10]–[14], is
not yet addressed for multiple antenna FD-AF relays.

A. Contribution

In this work, we study a multiple-input-multiple-output
(MIMO) FD-AF relay, where the explicit impact of hardware
distortions in the receiver and transmit chains are taken into
account in the SIC process. Our goal is to enhance the
instantaneous end-to-end performance via optimized linear
transmit/receive strategies. The main contributions are as fol-
lows:
• Due to the joint consideration of hardware distortions in

the receiver and transmit chains, we observe an inter-
dependent behavior of the relay transmit covariance and
the residual self-interference covariance in an FD-AF
relay, i.e., the distortion loop effect. Note that this beha-
vior may not be captured from the prior works based on
simplified residual interference models, e.g., assuming
a perfect SIC via estimation at the receiver [22]-[24],
via transmit beamforming [25]-[30], assuming a known
self-interference signal with perfect hardware [35]-[37],
or assuming a known (fixed) residual self-interference
covariance [31]-[34]. In Section III, the relay operation
is analyzed under the effect of distortion loop, and the
instantaneous end-to-end signal-to-distortion-plus-noise
ratio (SDNR) is formulated in relation to the statistics
of the noise and hardware impairments.

1Residual self-interference is assumed to be buried in the thermal noise,
following a known statistics.

• Building on the obtained analysis, we propose linear
transmit/receive strategies with the intention of max-
imizing the SDNR. The instantaneous CSI is utilized
to control the impact of distortion, and to enhance the
quality of the desired signal. This is in contrast to [22]–
[37] where the dependency of the distortion statistics
to the intended transmit/receive signal is ignored, or to
[38] where a fixed transmit/receive strategy is assumed
based on maximum ratio combining/transmission. In this
regard, an SDNR maximization problem is formulated
which shows an intractable mathematical structure. A
gradient-projection (GP) based solution is then proposed
in Section IV to act as a benchmark for the achievable
performance, however, imposing a high computational
complexity.

• In order to reduce the design computational complexity,
a sub-optimal Multi-Stage Rank-1 (MuStR1) solution is
introduced in Section V, by assuming a rank-1 relay
amplification matrix and separating the design of the
relay process into multiple stages. In this regard, a non-
alternating algorithm is proposed by locally maximizing
the resulting SDNR for each stage. Moreover, the per-
formance of MuStR1 is improved by introducing an
alternating update (AltMuStR1) at the cost of a slightly
higher computational complexity compared to MuStR1.
Similar to the previous parts, this approach differs from
the rank-1 FD-AF relaying schemes proposed in [33,
Subsection 3.2] and [30, Section III], where the impact
of distortions are not considered in the design of trans-
mit/receive strategies.

Numerical simulations show that for a system with a small
thermal noise variance, or a high power or transceiver inaccu-
racy, the application of a distortion-aware design is essential.

B. Mathematical Notation:
Throughout this paper, column vectors and matrices are

denoted as lower-case and upper-case bold letters, respectively.
The rank of a matrix, expectation, trace, transpose, conjugate,
Hermitian transpose, determinant and Euclidean norm are
denoted by rank(·), E(·), tr(·), (·)T , (·)∗, (·)H , | · |, || · ||2,
respectively. The Kronecker product is denoted by ⊗. The
identity matrix with dimension K is denoted as IK and vec(·)
operator stacks the elements of a matrix into a vector, and
(·)−1 represents the inverse of a matrix. The sets of real, real
and positive, complex, natural, and the set {1 . . .K} are re-
spectively denoted by R, R+, C, N and FK . bAici∈FK

denotes
a tall matrix, obtained by stacking the matrices Ai, i ∈ FK .
The set of all positive semi-definite matrices is denoted by H.
⊥ represents statistical independence. λmax(A) calculates the
dominant eigenvector of A. x? is the value of the variable x
at optimality.

II. SYSTEM MODEL

We investigate a system where a single-antenna HD source
communicates with an HD destination node equipped with Md
antennas, with a help of an FD relay. The relay is assumed to
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Fig. 1. The signal model in an amplify-and-forward FD MIMO relay. The impact of hardware inaccuracies form the transmitter (eout) and receiver (ein) chains
is observable on the relay process. The bold arrows represent the vector signals while the dashed arrows represent the scalars. See Section II for a detailed
description.

have Mt (Mr) transmit (receive) antennas, and operates in AF
mode. The channels between the source and the relay, between
the relay and the destination, and between the source and the
destination are denoted as hsr ∈ CMr , Hrd ∈ CMd×Mt , and
hsd ∈ CMd , respectively. The self-interference channel, which
is the channel between the relay’s transmit and receive ends
is denoted as Hrr ∈ CMr×Mt . All channels are following the
flat-fading model.

A. Source-to-Relay Communication

The relay continuously receives and amplifies the received
signal from the source, while estimating and subtracting the
loopback self-interference signal from its own transmitter, see
Fig. 1. The received signal at the relay is expressed as

rin = hsr

√
Pss+ Hrrrout + nr︸ ︷︷ ︸

=:uin

+ein, (1)

where rin ∈ CMr and rout ∈ CMt respectively represent the
received and transmitted signal from the relay and nr ∼
CN

(
0, σ2

nrIMr

)
represents the zero-mean additive white com-

plex Gaussian (ZMAWCG) noise at the relay. The transmitted
data symbol from the source is denoted as s ∈ C, E{|s|2} = 1.
Ps ∈ R+ is the source transmit power and uin ∈ CMr

represents the undistorted received signal at the relay.
The receiver distortion, denoted as ein ∈ CMr , represents

the combined effects of receiver chain impairments, e.g., limi-
ted ADC accuracy, oscillator phase noise, low-noise-amplifier
(LNA) distortion [10]. Please note that while the aforemen-
tioned impairments are usually assumed to be ignorable for
an HD transceiver, they play an important role in our system
due to high strength of the self-interference path. The known,
i.e., distortion-free, part of the self-interference signal is then
suppressed in the receiver by utilizing the recently developed
SIC techniques in analog and digital domains, e.g., [4], [6].
The remaining signal is then amplified to constitute the relay’s
output:

rout = uout + eout, uout(t) = Wrsupp(t− τ), (2)
rsupp = rin −Hrruout, (3)

where rsupp ∈ CMr and W ∈ CMt×Mr respectively represent
the interference-suppressed version of the received signal and
the relay amplification matrix, t ∈ R+ represents the time

instance2, and τ ∈ R+ is the relay processing delay, see
Subsection II-E4. The intended transmit signal is denoted as
uout ∈ CMt . Similar to the defined additive distortion in the
receiver chains, the combined effects of the transmit chain im-
pairments, e.g., limited DAC accuracy, oscillator phase noise,
power amplifier noise, is denoted by eout ∈ CMr . Furthermore,
in order to take into account the transmit power limitations we
impose

E{‖rout‖22} ≤ Pr,max, Ps ≤ Ps,max, (4)
where Pr,max and Ps,max respectively represents the maximum
transmit power from the relay and from the source.

B. Distortion signal statistics

The impact of hardware elements inaccuracy in each chain
is modeled as additive distortion terms, following the FD
transceiver model proposed in [3] and widely used in the
context of FD system design and performance analysis, e.g.,
[10]–[14]. The proposed model in [3] is based on the following
three observations. Firstly, the collective distortion signal in
each transmit/receive chain can be approximated as an additive
zero-mean Gaussian term [39]–[41]. Secondly, the variance
of the distortion signal is proportional to the power of the
intended transmit/received signal. And third, the distortion sig-
nal is statistically independent to the intended transmit/receive
signal at each chain, and for different chains. Please note
that the statistical independence of distortion elements holds
also for an advanced implementation of an FD transceiver,
assuming a high signal processing capability. This is since,
any known correlation can be constructively used, and hence
eliminated, to reduce the residual self-interference. However,
the linear dependence of the remaining distortion signal to
the signal strength varies for different SIC techniques and is
considered as an approximation, see [3, Subsections C] for
further elaboration on the used model. In the defined relaying
system it is expressed as

ein ∼ CN
(
0, βdiag

(
E
{
uinu

H
in

}))
,

ein(t)⊥ein(t
′
), ein(t)⊥uin(t), (5)

2The argument indicating time instance, i.e., t, is dropped for simplicity for
signals with a same time reference.
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TABLE I. USED SIGNAL NOTATIONS AND SYSTEM PARAMETERS

Deterministic Param. Description
Sd Set of all deterministic parameters
Hrr Instantaneous relay-relay channel
Hrd Instantaneous relay-destination channel

hsr(hsd) Instantaneous source-relay (destination) channel
Ps,max(Pr,max) Maximum transmit power at the source (relay)
σ2

nr(σ
2
nd) Thermal noise variance at the relay (destination)

κ(β) Distortion coefficients for the transmit (receive) chains
Random Param. Description

Sr Set of all random parameters
s Transmit data symbol from source

nr(nd) Thermal noise at the relay (destination)
ein(eout) Receive (transmit) distortion at the relay

and
eout ∼ CN

(
0, κdiag

(
E
{
uoutu

H
out

}))
,

eout(t)⊥eout(t
′
), eout(t)⊥uout(t), (6)

where t 6= t
′

and β, κ ∈ R+ are the receive and transmit
distortion coefficients which respectively relate the undistorted
receive and transmit signal covariance to the covariance of
the corresponding distortion. It is worth mentioning that the
values of κ, β depend of the implemented SIC scheme, and
reflect the quality of the cancellation. For instance, for an
FD massive MIMO system where analog cancelers are not
used due to complexity, and the resolution of the ADC/DAC
are limited to reduce the cost, the values of κ, β can be
determined by the used quantization bits, e.g., κ ≈ −6 × b
dB, for a uniform DAC quantization with b bits. However,
in general, the choice of κ, β depend on the implemented
SIC and the used analog circuitry, e.g., the number of delay
taps implemented in [6, Subsection 3.1]. Note that the defined
statistics in (5), (6) indicate that unlike the traditional additive
white noise model, a higher transmit (receive) signal power
results in a higher transmit (receive) distortion intensity in the
corresponding chain. As we will further elaborate, this effect
plays an important role in the performance of an FD-AF relay.
For more discussions on the used distortion model please see
[3], [10]–[12], and the references therein.

C. Relay-to-destination communication
The transmitted signal from the relay node passes through

the relay to destination channel and constitutes the received
signal at the destination:

y = Hrdrout + hsd

√
Pss+ nd, ŝ(t− τ) = zHy(t), (7)

where y ∈ CMd is the received signal at the destination, and
nd ∼ CN

(
0, σ2

ndIMd

)
is the ZMAWCG noise. The linear

receiver filter and the estimated received symbol is denoted
as z ∈ CMd and ŝ, respectively. Please see Table I for the list
of used signal notations and system parameters.

D. Distortion loop
As the transmit power from the relay increases, the power

of the error components increase in all receiver chains, see
(1) in connection to (5)-(6). On the other hand, these errors
are amplified in the relay process and further increase the
relay transmit power, see (1) in connection to (3) and (2).

The aforementioned effect causes a loop which signifies the
problem of residual self-interference for the relays with AF
process. In the following section, this impact is analytically
studied and an optimization strategy is proposed in order to
alleviate this effect.

E. Remarks
1) CSI estimation: In this work we assume that the channel

state information (CSI) is known at the relay. Therefore, the
studied framework serves best for the scenarios with a stati-
onary channel where long training sequences can be utilized,
e.g., relay channel in a static backhaul link with a directive
line-of-sight (LOS) connection [42]. Note that the acquisition
of perfect CSI is not feasible, due to the impact of noise,
interference, as well as the impact of hardware impairments.
For instance, the oscillator phase noise may not be known
during the data transmission, as it changes between the training
and communication phases. An effective estimation method is
presented in [10, Subsection III.A] for an FD relaying setup
in the presence of hardware impairments3. Although a perfect
CSI may be never obtained in practice, it is observed that
the impact of CSI error is negligible for scenarios where
a sufficiently long training sequence is employed, see [10,
Equation (9)], and also [3, Equation (10)]. For the scenarios
where the CSI can not be accurately obtained, the results of
this paper can be treated as theoretical guidelines on the effects
of hardware impairments, if CSI were accurately known.

2) Hardware impairments: Compared to many HD scena-
rios the impact of hardware impairments is severe in FD
transceivers due to the strong self-interference, see, e.g., spe-
cifications of SIC for 802.11ac PHY [6]. This is since on
one hand, the distortions originating from the transmit chains
pass through a strong self-interference channel and become
significant. On the other hand, the receiver chains are more
prone to distortion due to the high-power received signal. In
this work, we focus on the impact of hardware impairments for
the FD relay transceiver, and otherwise model the inaccuracies
as an additive thermal noise.

3) Direct link: In this work, we assume that the direct link
is weak and consider the source-destination path as a source
of interference, similar to [10], [17]. For the scenarios where
the direct link is strong, it is shown in [43] that the receiver
strategy can be gainfully updated as a RAKE receiver [44] to
temporally align the desired signal in the direct and relay links.
This can be considered as a future extension of the current
work.

4) Processing delay: The relay output signals, i.e., uout and
rout, are generated from the received signals with a relay
processing delay τ , see (2). This delay is assumed to be
long enough, e.g., more than a symbol duration, such that the
source signal is decorelated, i.e., s(t)⊥s(t−τ) [43], [45]. The
zero-mean and independent statistics of the samples from data
signal, i.e., s(t) and s(t−τ), as well as the noise and distortion
signals, are basis for the analysis in the following section.

3A two-phase estimation is suggested to avoid interference; first, source
transmits the pilot where relay is silent, thereby estimating the source-relay and
source-destination channels, and then relay transmits pilot and source remain
silent, hence estimating the self-interference and relay-destination channels.
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III. PERFORMANCE ANALYSIS FOR MIMO AF RELAYING
WITH HARDWARE IMPAIRMENTS

In this part, we analyze the end-to-end performance as a
function of the relay amplification matrix, i.e., W, receive
linear filter at the destination, i.e., z, as well as the transmit
power from the source, Ps. By incorporating (1) and (5)-(6)
into (2) and (3) we have

Q = W
(
Pshsrh

H
sr + σ2

nrIMr + E
{
eine

H
in

}
+ HrrE{eoute

H
out}HH

rr

)
WH

= W
(
Pshsrh

H
sr + σ2

nrIMr + βdiag
(
E
{
uinu

H
in

} )
+ κHrrdiag

(
Q
)
HH

rr

)
WH , (8)

where Q ∈ H is the covariance matrix of the undistorted trans-
mit signal from the relay, i.e., Q := E{uoutu

H
out}. Furthermore,

the undistorted receive covariance matrix can be formulated
from (1)-(3) as
E{uinu

H
in } = Pshsrh

H
sr + σ2

nrIMr + HrrE{routr
H
out}HH

rr . (9)
It is worth mentioning that due to the proximity of the Rx and
Tx antennas on the FD device, the loopback self-interference
signal is much stronger than the desired signal which is coming
from a distant location, and hence constitutes the principle part
in (9). By recalling (2) and (6) the relay transmit covariance
matrix can be formulated as

E{routr
H
out} = Q + κdiag (Q) , (10)

and consequently from (8) and (9) it follows
Q = WR (Q) WH , (11)

where
R (Q) := Pshsrh

H
sr + σ2

nrIM r + βdiag
(
Pshsrh

H
sr + σ2

nrIMr

)
+ βdiag

(
Hrr

(
Q + κdiag (Q)

)
HH

rr

)
+ κHrrdiag (Q) HH

rr. (12)
Note that the above derivations (8)-(11) hold as the noise,
the desired signal at subsequent symbol durations, and the
distortion components are zero-mean and mutually indepen-
dent. Unfortunately, a direct expression of Q in terms of W
can not be achieved from (11), (12) in the current form. In
order to facilitate further analysis we resort to the vectorized
presentation of Q. By applying the famous matrix equality
vec(A1A2A3) = (AT

3 ⊗A1)vec(A2), we can write (10) as

vec
(
E{routr

H
out}
)

=
(
IM2

t
+ κSMt

D

)
vec (Q) , (13)

where SMD ∈ {0, 1}M2×M2

is a selection matrix with one
or zero elements such that SMt

D vec (Q) = vec (diag(Q)).
Similarly from (11) we obtain

vec (Q) =
(
IM2

t
− (W∗ ⊗W) C

)−1
(W∗ ⊗W) c, (14)

where
C : = βSMr

D (H∗rr ⊗H rr)
(
IM2

t
+κSMt

D

)
+κ (H∗rr⊗Hrr)S

Mt
D ,

(15)

c : =
(
IM2

r
+ βSMr

D

)
vec
(
Pshsrh

H
sr + σ2

nrIMr

)
. (16)

The direct dependence of the relay transmit covariance matrix
and W can be consequently obtained from (14) and (13) as
vec
(
E{routr

H
out}
)

= Θ
(
W,Hrr, κ, β

)
vec
(
Pshsrh

H
sr + σ2

nrIMr

)
(17)

such that

Θ
(
W,Hrr, κ, β

)
:=
(
IM2

t
+κSMt

D

)(
IM2

t
−(W∗⊗W) C

)−1
× (W∗ ⊗W)

(
IM2

r
+ βSMr

D

)
(18)

represents the transfer function of the relay; relating the
distortion-less input, i.e., Pshsrh

H
sr + σ2

nrIMr , to the distorted
transmit covariance. It is observed that Θ (W,Hrr, 0, 0) =
W∗⊗W, which is similar to the known FD-AF relay operation
with a perfect hardware, i.e., κ, β = 0.

A. Optimization problem
In order to formulate the end-to-end link quality, we recall

that the noise, the desired signal and the residual interference
signals are zero-mean and mutually independent. Hence, the
received signal power at the destination, after application of z,
can be separated as

Pdes = ESr

{∣∣∣zHHrdWhsr

√
Pss
∣∣∣2}

= Psz
HHrdWhsrh

H
sr WHHH

rd z, (19)

Ptot = ESr

{∣∣∣zH (Hrdrout + hsd

√
Pss+ nd

)∣∣∣2} =

zH
(
Hrd

(
Q+κdiag (Q)

)
HH

rd +σ2
ndIMd +Pshsdh

H
sd

)
z,

(20)
Perr = Ptot − Pdes, (21)

where ESr is the statistical expectation over the set of random
variables Sr, see Table I. Moreover, Pdes and Perr respectively
represent the power of the desired, and distortion-plus-noise
parts of the estimated signal ŝ, and Ptot := E{|ŝ|2}. It is
worth mentioning that Ptot ≥ Pdes, and hence Perr ≥ 0,
due to the superposition of the statistically independent noise,
distortion, and signal terms at different nodes or time instances.
The corresponding optimization problem for maximizing the
resulting SDNR is written as4

max
Ps,z,W

Pdes

Perr
(22a)

s.t. (14), Q ∈ H, tr (Q) ≤ P̃r,max, 0 ≤ Ps ≤ Ps,max,
(22b)

where (22b) limits the feasible set of W to those resulting in a
feasible Q. Note that P̃r,max := Pr,max

1+κ , and the power constraint
in (22b) follows as tr (Q + κdiag(Q)) = (1 + κ)tr (Q).

4Please note that the objective is the instantaneous SDNR, assuming that
the instantaneous CSI is available. Due to the single stream communication,
SDNR relates to the end-to-end mutual information via Shannon’s formula,
assuming that the desired signal, noise, and distortion signals follow a
Gaussian distribution. The accuracy of the Gaussian distribution assumption
may differ for different transmit signaling, as well as the used SIC scheme.
However, in many related studies the Gaussian modeling of the residual
interference from collective sources of impairments is considered as a good
approximation, e.g., [3], [10].
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As it can be observed, the optimization problem (22a)-(22b)
is a non-convex optimization problem and cannot be solved
analytically, due to the structure imposed by (14). In order to
approach the solution, we propose a GP-based optimization
method in the following section.

IV. GRADIENT PROJECTION (GP) FOR SDNR
MAXIMIZATION

In this part we propose an iterative solution to (22a)-(22b)
based on the gradient projection method [3], [46]. In this
regard, the optimization variables are updated in the increasing
direction of the objective function (22a).

A. Iterative update for W

The update rule for W is defined following the GP met-
hod, where detailed instructions are inspired from [10]. This
includes the update of W in the steepest ascent direction,
and occasional projection due to constraints violation. This
is expressed as

W̄[l] = P
(
W[l] + δ[l]∇ (SDNR)

)
W[l+1] = W[l] + γ[l]

(
W̄[l] −W[l]

)
, (23)

where P (·) represents the projection to the feasible solution
space, l is the iteration index, ∇ (·) represents the gradient
with respect to W∗, and δ, γ ∈ R+ represent the step size
variables. The update direction is obtained from the calculated
gradients in (25)-(26), and the fact that

∇ (SDNR) =
(
∇ (Pdes)Perr −∇ (Perr)Pdes

)
/Perr

2. (24)

The stepsize value γ is chosen according to the Armijo’s step
size rule [47]. This is expressed as

SDNR
(
W[l+1]

)
− SDNR

(
W[l]

)
≥ σνmtr

({
∇ (SDNR)

}H (
W̄[l] −W[l]

))
,

where γ[l] = νm, such that m is the smallest non-negative
integer satisfying the above inequality, and ν = 0.5, σ = 0.1
and δ = 1.

1) Projection rule: Once an updated W, and the correspon-
ding Q calculated from (14), violate the problem constrains,
i.e., when Q contains a negative eigenvalue or exceeds the
defined power constraint, see (22b), it is projected in to the
feasible variable space. Due to the convexity of the feasible
variable space in Q, similar to the suggested procedure in [55],
we follow a projection rule which results in a minimum Eucli-
dean distance to the feasible variable space of Q, i.e., minimum
Frobenius norm of the matrix difference. In order to obtain this,
let Wold and Qold be the updated relay amplification matrix
from (23) and the corresponding undistorted transmit covari-
ance, calculated from (14). Moreover, let UoldΛoldU

H
old be an

eigenvalue decomposition of the matrix Qold, such that Uold is
a unitary matrix, and Λold is a diagonal matrix containing the
eigenvalues. The feasible relay undistorted transmit covariance
matrix, i.e., Qnew, with minimum Euclidean distance to Qold

is then obtained as
Qnew ← Uold (Λold − ζIMt)

+︸ ︷︷ ︸
=:Λnew

UH
old, ν ∈ R, (28)

where (·)+ substitutes the negative elements by zero, and ζ ∈
R is the minimum non-negative value that satisfies tr (Λnew) ≤
P̃r,max, see [55, Equation (25)-(27)]. The projected version of
Wold, i.e., Wnew is then calculated as

Wnew ← Q
1
2
newVUr,new (Σr,new)

− 1
2 UH

r,new, (29)

where Q
1
2
new = UoldΛ

1
2
newUH

old, V is an arbitrary unitary
matrix such that VVH = IMt , and Ur,newΣr,newUH

r,new is the
eigenvalue decomposition of R(Qnew), see (12).

Note that the resulting amplification matrix Wnew conse-
quently results in Qnew as the relay covariance matrix, see
(11), and hence belongs to the feasible set of (22b). Moreover,
the choice of V does not affect the corresponding Qnew, and
hence does not affect the feasibility. Hence it can be chosen
similar to that of Wold, with no need for modification in the
projection process:

V← (Qold)
− 1

2 WoldUr,old (Σr,old)
1
2 UH

r,old, (30)
where Ur,oldΣr,oldU

H
r,old is the eigenvalue decomposition of

R(Qold).

B. Iterative update for Ps

For fixed values of W and z, an increase in Ps results in
an increase in the desired received power, see (19). On the
other hand, it also results in an increase in Perr, due to the
direct source-destination interference, as well as the increased
received power at the relay which results in an amplified
distortion effect. As a result, the impact of the choice of Ps
on the end-to-end SDNR is not clear. The following lemma
provides an answer to this question.

Lemma 1: For fixed values of W and z the resulting SDNR
is a concave and increasing function of Ps. Hence, the optimum
Ps is given as

P ?s = min
{
Ps,max, P̃s,max(W)

}
, (31)

where P̃s,max(W) represents the value of Ps that results in the
maximum relay transmit power, i.e., Pr,max, with W as the
relay amplification matrix.

Proof: See Appendix A
It is worth mentioning that for a setup with a weak direct

link, i.e., ‖hsd‖2 ≈ 0, we have P ?s = Ps,max for a jointly
optimal choice of W, Ps. This is grounded on the fact that
for any Ps < Ps,max, the joint variable update Ps ← Ps,max

and W←W
√

Ps
Ps,max

, result in the same Pdes, see (19), while
decreasing the Perr, see (21) in connection to (17).

C. Iterative update for z

It is apparent that the relay transmit covariance, and hence
the constraints in (22b) are invariant to the choice of receive
linear filter. The optimal choice of z for a given W, Ps is
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vec (∇Perr)
T

= vec
((

HH
rd zzHHrd

)T)T (
IM2

t
+ κSMt

D

)([
c + C

(
IM2

t
− (W∗ ⊗W) C

)−1
(W∗ ⊗W) c

]T
⊗
(
IM2

t
− (W∗ ⊗W) C

)−1)
SK (w ⊗ IMrMt)−

(
zTH*

rd

)
⊗
(
Psz

HHrdWhsrh
H
sr

)
ST, (25)

vec (∇Pdes)
T

=
(
zTH*

rd

)
⊗
(
Psz

HHrdWhsrh
H
sr

)
ST, where w := vec(W), SK∈{0, 1}M

2
r M

2
t ×M

2
r M

2
t , ST∈{0, 1}MrMt×MrMt ,

(26)
such that: vec (W∗ ⊗W) = SKvec

(
w∗wT

)
, and STvec(W) = vec(WT ). (27)

obtained as

z? =
(
Hrd
(
Q + κdiag (Q)

)
HH

rd + σ2
ndIMd + Pshsdh

H
sd

)−1
×
√
PsHrdWhsr. (32)

The value of z is updated according to (32) after the update
for W, Ps. The update iterations are continued until a stable
point is achieved, or a certain number of iterations is expired,
see Algorithm 1.

D. Convergence
The proposed GP algorithm leads to a necessary conver-

gence, due to the monotonic improvement of the SDNR after
each variable update and the fact that the objective is bounded
from above. However, due to the non-convexity of the problem,
the global optimality of the obtained solution is not guaranteed,
and the converging point depends on the used initialization [3],
[10]. In Subsection VI-A a numerical evaluation of the optimal
performance is obtained by repeating the GP algorithm with
several initializations.

E. Computational complexity
In this part we study the computational complexity asso-

ciated with the GP algorithm, both regarding the design, as
well as the processing complexity. We base our analysis on
the following assumptions.
• On modern computers using math coprocessors, the time

consumed to perform addition/subtraction and multi-
plication/division is about the same [53]. Hence, we
measure the complexity in terms of the total floating
point complex operations (FLOP)s.

• Matrix inversion A−1 where A ∈ CN×N for a positive
semi-definite A requires N3 + N2 + N FLOPs via
Cholesky decomposition. For a non-singular (invertible),
but not structured matrix A the inverse can be calculated
via LU decomposition, incurring 4n3

3 −
n
3 FLOPs. The

calculation of eigenvalue decomposition is associated
with 8N3/3 FLOPs [53].

• The complexity associated with the standard ma-
trix/matrix or matrix/vector multiplications are given in
[54].

1) Algorithm complexity: The algorithm starts by the
calculation of c,C, resulting respectively in O

(
M2

r + 5Mr
)

and O
(
M2

t Mr +M2
r Mt

)
FLOPs as the initial steps. However,

the complexity of GP is dominated by the derivative (25),
resulting in O

(
4/3M6

t + 4M4
t M

2
r +M4

t + 3M2
t M

2
r

)
as well as the Armijo line search incurring
O
(
4/3M6

t + 4M4
t M

2
r +M4

t + 3M2
t M

2
r

)
FLOPs for each

search iteration. Together with the calculation of z (32), the
overall algorithm complexity can be expressed as

O
(
γ1
(
4/3M6

t + 4M4
t M

2
r +M4

t +M3
d

)
+ γ2

(
4/3M6

t + 4M4
t M

2
r +M4

t

) )
, (33)

where γ1, γ2 respectively represent the required line search,
and update iterations for W.

2) Processing complexity: The processing complexity is
associated with the amplification (2). Since W ∈ CMt×Mr is
a general matrix (not necessarily symmetric or low rank), the
complexity is MtMr complex multiplications and Mt(Mr− 1)
addition, incurring in total 2MtMr −Mt FLOPs.

Please note that the above analysis intends to show how the
bounds on computational complexity are related to different
dimensions in the problem structure. Nevertheless, the actual
computational load may vary in practice, due to the further
structure simplifications, and depending on the used processor.
A numerical study on the required computational complexity
is given in Section VI.

Algorithm 1 Iterative SDNR maximization algorithm based on GP.
Number of algorithm iterations are determined by c1 ∈ R+ and C1 ∈
N.
1: Counter← 0
2: repeat (running for multiple initializations)
3: Counter← Counter + 1
4: l← 0; P

(0)
s ← Ps,max × 10−4

5: Q(0) ← random init., see (22b)
6: W(0) ← Q(0)

1
2R
−1
2

(
Q(0)

)
, see (29), (12)

7: repeat
8: l← l + 1
9: W(l) ← update W(l), see (23), (29), Section IV.B

10: P
(l)
s ← update, see (31)

11: z(l) ← update, see (32)
12: SDNR(l) ← (22a)
13: until SDNR(l) − SDNR(l−1) ≥ c1 (until SDNR improves)
14: A ← save

(
SDNR(l),W(l), z(l)

)
15: until Counter ≤ C1

16: return (W, z, SDNR) ← max SDNR ∈ A
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Fig. 2. The relay amplification is divided into three parts: wrx and wtx
respectively represent the reception and transmit filters, and ω represents the
scaling factor. The bold arrows represent the vector signals while the dashed
arrows represent the scalars. The overall process can be described as W =
ωwtxwH

rx .

V. AN INTUITIVE APPROACH: DISTORTION-AWARE
MULTI-STAGE RANK-1 RELAY AMPLIFICATION (MUSTR1)

The proposed method in Section IV directly deals with the
SDNR as optimization objective, which also leads to the maxi-
mization of end-to-end mutual information for Gaussian signal
codewords. Nevertheless, the proposed procedure imposes a
high computational complexity, due to the number of the re-
quired iterations. In this section we introduce a simpler design
by considering a rank-one relay amplification matrix. Note that
the near-optimality of rank-one relay amplification matrices
for single stream communication has been established, see
the arguments in [33, Subsection 3.2] and [30, Section III].
Nevertheless, in the aforementioned works, the impacts of
transmit/receive distortion have not been considered in the FD
transceiver. A rank-one relay amplification process is expressed
as

W =
√
ωwtxw

H
rx , (34)

where wrx ∈ CMr , ‖wrx‖2 = 1 and wtx ∈ CMt , ‖wtx‖2 = 1,
respectively act as the receive and transmit linear filters at
the relay, while ω ∈ R+ acts as a scaling factor, see Fig. 2.
The idea is to separately design the transmit (receive) filters to
maximize the SDNR at each segment. Afterwards, the value
of ω is optimized. A detailed role and design strategy for the
aforementioned parts is elaborated in the following.

A. Design of wtx

The role of wtx is to direct the relay transmit beam towards
the destination, while imposing minimal distortion on the
receiver end of the relay and destination nodes. For this
purpose we define the following optimization problem

max
wtx,‖wtx‖2=1

E{‖Hrduout‖22}
E{‖HD,txuout‖22}+ tr

(
PshsdhHsd + σ2

ndIMd

) ,
(35)

where the nominator is the desired received power from the
relay-destination path, and HD,tx is the equivalent distortion
channel observed from the relay transmitter, see Appendix B.
The optimization problem (35) can be hence formulated as5

max
wtx,‖wtx‖2=1

wH
tx

(
HH

rd Hrd
)
wtx

wH
tx
(
HH

D,txHD,tx +NtxIMt

)
wtx

, (36)

5For the calculation of the spatial filters wtx and wrx, it is assumed that the
relay operates with maximum power, to emphasize the impact of hardware
distortions. The relay transmit power is afterwards adjusted by the choice of
ω. An alternating adjustment of the spatial filters with the optimized relay
power is later discussed in Subsection V-E.

which holds a generalized Rayleigh quotient structure [48],
and Ntx :=

(
Mdσ

2
nd + Ps‖hsd‖22

)
/Pr,max. The optimal transmit

filter is hence obtained as
w?

tx := λmax

{(
HH

D,txHD,tx +NtxIMt

)−1 (
HH

rd Hrd
)}
. (37)

B. Design of wrx :

The role of wrx, is to accept the desired received signal
from the source, while rejecting the received distortion-plus-
noise terms at the relay. Similar to (35) this is expressed as

max
wrx

wH
rx

(
hsrh

H
sr

)
wrx

wH
rx (Φ + σ2

nrIMr) wrx
, s.t. ‖wrx‖2 = 1, (38)

where
Φ = κPr,maxHrrdiag

(
wtxw

H
tx

)
HH

rr

+ βPr,maxdiag
(
Hrrwtxw

H
tx HH

rr

)
(39)

approximates the covariance of the received distortion signal
at the relay. The optimal solution to wrx can be hence obtained
as

w?
rx := λmax

{(
Φ + σ2

nrIMr

)−1 (
hsrh

H
sr

)}
. (40)

C. Design of ω
The role of ω is to adjust the amplification intensity at the

relay. This plays a significant role, considering the fact that
even with optimally designed spatial filters, i.e., wtx and wrx,
a weak amplification at the relay reduces the desired signal
strength at the destination, resulting to a low signal-to-noise
ratio. On the other hand, a strong amplification may lead to
instability and (theoretically) infinite distortion transmit power,
i.e., low signal-to-distortion ratio. Hence, similar to (22), we
focus on maximizing the end-to-end SDNR, assuming that wtx
and wrx are given from the previous parts. The end-to-end
SDNR and the transmit power from the relay corresponding
to a value of ω are respectively approximated as f1 and f2
such that

f1(ω) = adω

(
a0 +

∑
k∈FK

akω
k

)−1
, (41)

and
f2(ω) =

∑
k∈FK

bkω
k, (42)

where
ad = Psd

T
Md

(H∗rd ⊗Hrd) W̃vec
(
hsrh

H
sr

)
, (43)

a0 = dTMd
vec
(
σ2

ndIMd + Pshsdh
H
sd

)
, (44)

a1 = −ad + dTMd
(H∗rd ⊗Hrd)

(
IM2

t
+ κSMt

D

)
W̃c, (45)

ak = dTMd
(H∗rd ⊗Hrd)

(
IM2

t
+ κSMt

D

)
×
(
W̃C

)k−1
W̃c, k ∈ {2 . . .K}, (46)

bk = dTMt

(
IMt

2 + κSMt
D

)(
W̃C

)k−1
W̃c, k ∈ FK , (47)

see Appendix C for more details. In the above expressions K
is the approximation order and dM ∈ {0, 1}M

2

is defined such
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(a) ω0 ≤ ωmax (b) ω0 > ωmax

Fig. 3. Possible situations of ω0 with respect to ωmax, considering the feasible
region of ω. The dark circle indicates the position of the optimum point.

that tr(A) = dTMvec(A), A ∈ CM×M . Furthermore C, c,W̃
are respectively defined in (15), (16) and in Appendix C. The
corresponding optimization problem can be written as

max
ω

f1(ω) (48a)

s.t. 0 ≤ ω ≤ min{ωinfty, ωmax} = ωmax, (48b)
where ωmax corresponds to the relay amplification that results
in a tight transmit power constraint, i.e., f2(ωmax) = Pr,max.
Moreover, ωinfty is the smallest pole of f2(ω) in the real
positive domain which yields to the instability of the relay
distortion loop, i.e., infinite relay transmit power. We observe
that while f1(ω) remains positive and differentiable in the
domain [0, ωinfty), we have f1

ω→0
(ω)→ 0 and f1

ω→ωinfty

(ω)→ 0.

This concludes the existence of (at least) one local maximum
point in this domain, see Fig. 3 for a visual description. By
setting the derivative of (41) to zero, we conclude that the
resulting extremum points are necessarily located such that

a0 =
∑
k∈FK

(k − 1)akω
k. (49)

While the left side of (49) is a constant, the right side of the
equality is monotonically increasing with respect to ω ∈ R+,
as ak ≥ 0,∀k. This readily results in the exactly one extremum
point in the positive domain of ω6. Hence, the optimality
occurs either at the obtained extremum point, i.e., a local
maximum in the domain [0, ωmax), see Fig. 3-a, or at the point
where the relay transmit power constraint is tight, see Fig. 3-b.
The optimum ω can be hence formulated as

ω? = min{ω0, ωmax}, (50)
where ω0 is the only solution of (49) in the positive domain.

D. Design of z

The optimal design of z is given in (32) as a closed
form expression. Note that the solution of z is dependent on
the choice of other optimization variables. However, as the
proposed designs for the other optimization variables do not
depend on z, there is no need for further alternation among
the design parameters. The Algorithm 2 defines the required
steps.

6Note that both f2(ωmax) = Pr,max or (49) result in exactly one solution
for ω in R+, as ak, bk ≥ 0, ∀k. In this regard, values of ωmax and ω0 can be
obtained via a bi-section search, or can be obtained in closed-form for small
values of K, i.e., K ≤ 3, as a known polynomial root.

Algorithm 2 Distortion Aware Multi-Stage Rank-1 Relay amplifi-
cation (MuStR1) for SDNR maximization. The solution is obtained
with no alternation among the optimization variables.
1: Ps ← Ps,max
2: wtx ← calculate Tx filter, see (37)
3: wrx ← calculate Rx filter, see (40)
4: ω ← adjust amplification intensity, see Subsection V-C
5: z← see (32)
6: return

(
z, W = ωwtxwH

rx
)

E. Alternating enhancement of MuStR1 (AltMuStR1)

The proposed MuStR1 design is accomplished with no
alternation among the optimization variables, see Algorithm 2.
In this part we provide an alternating enhancement of MuStR1
which results in an increased performance, at the expense of a
higher computational complexity. In order to accomplish this
purpose, similar to (19) and (21) we focus on the signal and po-
wer values at the destination, after the application of z. In this
respect, the values of wtx,wrx, z and ω will be calculated as
a joint alternating optimization. This is done by replacing Hrd
with zHHrd in the design of wtx, and dT with

(
zT ⊗ zH

)
in

(43)-(46). The steps 2-6 in Algorithm 2 are then repeated until
a stable point is achieved, or a maximum number of iterations
is expired. The performance of the proposed (Alt)MuStR1
algorithms in terms of the resulting communication rate,
convergence, and computational complexity are studied via
numerical simulations in Subsection VI-A. In particular, it is
observed that the performance of the AltMuStR1 algorithm
reaches close to the performance of GP, with a significantly
lower computational complexity.

F. Convergence

Due to the proposed SDNR approximation, as well as
the sub-optimal solutions for wtx,wtx at each iteration, the
convergence of the AltMuStR1 algorithm is not theoretically
guaranteed. However, it is observed via numerical simulations
in SubsectionVI-A, that the algorithm shows a fast average
convergence, with a close performance to the proposed GP
method for a wide range of system parameters.

G. Computational complexity

In this part we study the computational complexity associa-
ted with AltMuStR1, following simular arguments as given in
Subsection IV-E.

1) Algorithm complexity: The calculation of wrx is domi-
nated by the expressions (39), (40). Exploiting the rank-1
structure of the matrix hsrh

H
sr incurring O

(
M3

r + 2M2
r Mt

)
FLOPs. Similarly, the calculation of wtx is dominated by
(37), resulting in O

(
11M3

t /3 + 2M2
t Mr + 2M2

t Md
)

FLOPs.
Together with the calculation of z this requires in total

O
(
γ3

(
M3

r + 11M3
t /3 + 2M2

r Mt + 2M2
t Mr + 2M2

t Md +M3
d
) )
(51)

FLOPs, where γ3 is the number of the AltMuStR1 algorithm
iterations.
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2) Processing complexity: Since W follows a general rank-
1 structure, the amplification is simplified to only Mt +Mr +
1 complex multiplications, and Mr − 1 summations, totaling
Mt + 2Mr FLOPs.

VI. SIMULATION RESULTS

In this section we evaluate the behavior of the studied FD-
AF relaying setup via numerical simulations. In particular, we
evaluate the proposed GP design in Section IV, as well as the
(Alt)MuStR1 algorithms in Section V, under the impact of har-
dware inaccuracies, in comparison with the available relevant
methods in the literature. We assume that hsr,Hrd and hsd fol-
low an uncorrelated Rayleigh flat-fading model, where ρsr, ρrd
and ρsd ∈ R+ represent the path loss. For the self-interference
channel, we follow the characterization reported in [21]. In this
respect we have Hrr ∼ CN

(√
ρrrKR

1+KR
H0,

1
1+KR

IMt ⊗ IMr

)
where ρrr represents the self-interference channel strength, H0

is a deterministic term7 and KR is the Rician coefficient. For
each channel realization the resulting performance in terms of
the communication rate, i.e., log2(1 + SDNR), is evaluated by
employing different design strategies and for various system
parameters. The overall system performance in terms of the
average rate, i.e., Ravg, is then evaluated via Monte-Carlo
simulations by employing 500 channel realizations. Unless
explicitly stated, the defined parameters in Table II are used
as our default setup.

A. Algorithm analysis
In this subsection we study the behavior of the proposed

iterative algorithms, i.e., GP and (Alt)MuStR1, in terms of the
convergence speed, approximation accuracy, and computatio-
nal complexity. Moreover, we study the gap of the proposed
GP method with the optimality, with the help of an extensive
numerical simulation.

1) Convergence: Both GP and AltMuStR1 operate based on
iterative update of the variables, until a stable point is obtained.
A study on the convergence behavior of these algorithms are
necessary, in order to verify the algorithm function, and also
as a measure of the required computational effort.

In Fig. 4 (a) the average convergence behavior of the GP
algorithm is depicted. At each iteration, the obtained perfor-
mance is depicted as a percentage of the final performance after
convergence, where SDNR? is the SDNR at the convergence. It
is observed that the convergence speed is different, for different
values of transceiver inaccuracy. This is expected, as a higher
distortion results in the complication of the mathematical struc-
ture by signifying non-quadratic terms, see (17), and requires
the application of the projection procedure (Subsection IV-A1)
more often. It is observed from our simulations that the
algorithm requires 102 to 104 number of iterations to converge,
depending on the value of the distortion coefficients κ, β.

In Fig. 4 (b) the average convergence behavior of the
proposed AltMuStR1 is depicted. Note that unlike GP, Alt-
MuStR1 operates based on the local increase of SDNR in the

7For simplicity, we choose H0 as a matrix of all-1 elements.

defined relaying segments, see Section V. Hence, a theoretical
guarantee on the monotonic increase of the overall SDNR
in each iteration is not available. Nevertheless, the numerical
evaluation shows that the algorithm converges within much
fewer number of iterations, with an effective increase in each
step. Similar to GP, a higher value of κ, β results in a slower
convergence.

2) Computational complexity: Other than the required num-
ber of iterations, the computational demand of an algorithm is
impacted by the required per-iteration complexity. In Fig. 4 (c),
the required CPU time of the proposed algorithms are depicted
as the number of antennas increase. The reported CPU time is
obtained using an Intel Core i5 − 3320M processor with the
clock rate of 2.6 GHz and 8 GB of random-access memory
(RAM). As our software platform we have used MATLAB
2013a, on a 64-bit operating system. While the GP method
is considered as the performance benchmark, the proposed
(Alt)MuStR1 algorithms show a significant advantage to the
GP algorithm in terms of computational complexity.

3) Approximation accuracy: The proposed (Alt)MuStR1
algorithms are based on the used approximation (46) and (47).
In this regard, the choice of the approximation order K leads
to a trade-off between algorithm complexity and the resulting
performance. In Fig. 4-(d) the exact, and approximated SDNR
values are depicted for a pessimistic case of κ = 0.1. By
repeating such experiments, we have decided on K = 5
as a good balance between approximation accuracy and the
resulting complexity.

4) GP optimality gap: Via the application of the gradient
ascend the proposed GP converges with a monotonically
increasing objective. Nevertheless, the global optimality of the
resulting stationary point may not be guaranteed, due to the
possibility of a local extrema. In Fig. 4 (e) the performance of
GP algorithm is evaluated with multiple random initializations,
where the best converging point is considered as the algorithm
solution. It is observed that the occurrence of the non-optimum
solutions is more likely for higher values of κ, β, as a larger
number of initial points results in a better performance. Nevert-
heless, no significant performance improvement is observed
by employing more than C1 = 10 number of random initial
points. We consider the obtained performance of the GP
algorithm with C1 = 10 as our performance benchmark for
FD-AF relaying hereinafter.

5) Rank profile: In the proposed (Alt)MuStR1 method, a
rank-1 relay amplification is assumed. Hence, it is interesting
to observe how the solution to the GP method behaves in terms
of the matrix rank. In Fig. 4 (f) the energy distribution of the
singular values of the obtained relay amplification from the
GP method is depicted. It is observed that for most of the
distortion conditions, the highest singular value holds almost
all of the energy, indicating an approximately rank-1 property.

B. Performance comparison

In this part we evaluate the performance of the proposed
designs, in comparison with the available designs in the
literature.
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TABLE II. DEFAULT SETUP PARAMETERS

Parameter Pmax := Ps,max = Pr,max σ2
n := σ2

nr = σ2
nd κ = β M := Mt = Mr = Md ρrr ρsr = ρrd ρsd KR

Value 1 [Watt] −40 [dBW] −40 [dB] 4 1 −30 [dB] −60 [dB] 10

10
0

10
1

10
2

10
3

10
4

0

10

20

30

40

50

60

70

80

90

100

Iteration Number

P
er
ce
n
tg
e
of

lo
g 2

( 1
+

S
D
N
R

�
)

 

 

GP, κ = −60 dB
GP, κ = −40 dB
GP, κ = −20 dB
GP, κ = 0 dB

(a) Convergence-GP

1 2 3 4 5 6 7 8 9 10
65

70

75

80

85

90

95

100

Iteration Number
P
er
ce
n
tg
e
o
f

lo
g 2

( 1
+

S
D
N
R

�
)

 

 

AltMuStR1, κ = −60 dB
AltMuStR1, κ = −40 dB
AltMuStR1, κ = −20 dB
AltMuStR1, κ = 0 dB

(b) Convergence-AltMuStR1

2 3 4 5 6 7 8 9 10
−3

−2

−1

0

1

2

3

M

lo
g 1

0

( C
om

p
u
ta
ti
on

T
im

e)

 

 
GP
MuStR1
AltMuStR1

(c) CPU Time

1.5 2 2.5 3 3.5

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ω

S
D
N
R

 

 
SDNR −Exact
SDNR −Approximate

K = {1, 2, 3, 4, 5, 7, 9, 11, 15,∞}

(d) SDNR Approximation

−60 −50 −40 −30 −20 −10 0 10 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

R
a
v
g
[B

it
s/
se
c.
/H

z]

κ = β [dB]

−37−36.5−36−35.5
3.9

3.95

4

−10−9.5 −9 −8.5

1.6

1.65

1.7C1 = 2{0,1,2,...9}

(e) GP-Initialization

−60 −50 −40 −30 −20 −10 0 10 20
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

S
in
gu

la
r
M
o
d
e
E
n
er
gy

R
at
io

[d
B
]

κ = β [dB]

(f) Singular energy distribution

Fig. 4. Numerical algorithm analysis, including the average convergence behavior of the proposed GP algorithm (a), the AltMuStR1 algorithm (b), a comparison
on computational complexity (c), accuracy of the SDNR approximation (d), impact of algorithm initialization on the GP method (e), and the singular mode
energy profile for the obtained W from the GP method (f).

1) Available design approaches: We divide the relevant
available literature on the FD-AF relaying design into three
main approaches. Firstly, as considered in [22], [23], the
SIC is purely relegated to the relay receiver end, via a
combined time domain analog/digital cancellation techniques.
The aforementioned approach imposes no design constraint
on the self-interference power, i.e., Pintf ≤ ∞, where Pintf
represents the self-interference power prior to analog/digital
cancellation8. Secondly, the SIC is purely done via transmit
beamforming at the null space of the relay receive antennas,
e.g., [25]–[30], hence imposing a zero interference power
constraint for transmit beamforming design, i.e., Pintf ≤ 0.
Finally, as a generalization of the aforementioned extreme ap-
proaches, a combined transmit beamforming and analog/digital
cancellation at the receiver is considered in [33], [34]. In
the aforementioned case it is assumed that the received self-
interference power should not exceed a certain threshold (Pth),
i.e., Pintf ≤ Pth. In all of the aforementioned cases, due

8This approach is equivalent to ignoring the impact of SIC in the beamfor-
ming design, as it has been usual in the earlier literature.

to the perfect hardware assumptions, and upon imposition
of the required self-interference power constraint, the SIC is
assumed to be perfect. In our simulations, we evaluate the
generalized approach in [33], [34] by once assuming a high
self-interference power threshold, i.e., Pth = Pr,max, denoted as
’Pth-High’, and once assuming a low self-interference power
threshold, i.e., Pth = 0.01 × Pr,max, denoted as ’Pth-Low’9.
Moreover, the proposed approach in [38] is evaluated as a sub-
optimal solution, where a power adjustment method is done at
the relay, assuming a maximum ratio combining/transmission
(MRC/MRT)10. The performance of an FD-AF relay with
perfect hardware, i.e., κ = 0, is also illustrated as ’FD-Perf.’.

2) Decoding gain: Other than the defined approaches for
FD-AF relaying, it is interesting to evaluate the impact of

9Note that the application of Pth = 0, and Pth = ∞ is not feasible in
our scenario. This is since Pth = 0 strictly requires that Mt > Mr, and the
Pth = ∞ often results in a non-stable relay function due to the impact of
the distortion. Nevertheless, the chosen scenarios ’Pth-High’ and ’Pth-Low’
closely capture the nature of the aforementioned designs.

10MRT corresponds to the utilization of the dominant eigenvector of Hrd,
when Md > 1.
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Fig. 5. The comparison of average system performance Ravg under different parameter ranges.

decoding in the studied system. This is since in a DF relay,
the discussed distortion loop is significantly alleviated as
the decoding process eliminates the inter-dependency of the
received residual interference intensity to the relay transmit
power. In order to adopt the available literature to our setup, we
follow a modified version of the approach given in [12], [14],
where an SDNR maximization problem is studied at a MIMO
DF relay. In order to provide a fair comparison, the same setup
and system assumptions including the FD transceiver model
are used for the DF relaying case. Moreover, the obtained
performance for an FD-DF system in terms of the optimality
gap, is numerically evaluated via utilization of several random
initializations. The detailed implementation of the DF process
is given in [49, Section VI], but eliminated in the current
manuscript due to the space limitations.

3) Numerical results: In Figs. 5 (a)-(f) the average commu-
nication rate is evaluated under various system parameters.

In Fig. 5 (a) the impact of the transceiver inaccuracy is
depicted. It is observed that as κ = β increase, the communi-
cation performance decreases for all methods. In this respect,
the HD setup remains more robust against the hardware
distortions, and outperforms the FD setup for large values of
κ = β. This is since the strong self-interference channel, as the
main cause of distortion, is not present for a HD setup. Relative
to the benchmark performance for the FD-AF relaying (GP), a
significant decoding gain is observed for the big values of κ,

where the system performance is dominated by the impact of
distortion loop, see Subsection II-D. Moreover, it is observed
that the proposed AltMuStR1 method performs close to the
GP method for different values of κ. The performance of
’Pth-High’ reaches close to optimality for a small κ, where
the ’Pth-Low’ reaches a relatively better performance as κ
increases. Nevertheless, both of the aforementioned methods
degrade rapidly for higher values of κ. This is expected, as the
impacts of hardware inaccuracies are not taken into account in
the aforementioned approaches.

In Fig. 5 (b) and (c), the opposite impact of the thermal noise
variance, σ2

n = σ2
nr = σ2

nd, and the maximum transmit power,
Pmax = Ps,max = Pr,max, is observed on the average system
performance. This is expected, as an increase (decrease) in
Pmax (σ2

n ) increases the signal-to-noise ratio, while keeping
the signal-to-distortion ratio intact. Furthermore, it is observed
that in a low noise (high power) region the performance of the
methods with perfect hardware assumptions saturate. This is
since the role of hardware distortions become dominant for a
high power or a low noise system.

In Fig. 5 (d) the resulting system performance is depicted
with respect to the number of antennas. It is observed that
the performance of all methods increase as the number of
antennas increase. Moreover, the performance of the proposed
(Alt)MuStR1 methods remain close to the benchmark GP
performance. This is promising, considering the increasing
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computational complexity of the GP method as the number
of antenna increases.

In Fig. 5 (e) the impact of the relay position is observed.
In this regard, it is assumed that the source is located with
the distance dsr from the relay where the relay is located
with the distance drd = 20 − dsr from the source. The path
loss values for each link is then obtained as ρX = 0.1

d2X
,

X ∈ {sr, rd}. As expected, the decoding gain decreases when
the relay is positioned close to the source or destination.
Interestingly, the performance of the (Alt)MuStR1 methods
are slightly dominated by ’Pth-High’, when relay is positioned
very close to the source. The reason is that in such a situation
the bottleneck shifts to the relay-destination path as the source-
relay channel is very strong and is not degraded by the impact
of distortion from the self-interference path. Nevertheless, the
distortion awareness in (Alt)MuStR1 destructively limits the
performance of the relay-destination path in order to avoid
distortion on the relay receiver. It is worth mentioning that
this mismatch does not appear for the GP method, since the
final SDNR is considered as the optimization objective which
remains relevant for any relay position.

In Fig. 5 (f) the impact of the self-interference channel
intensity is depicted. It is observed that the performance of
the FD relay operation, for all design methods, degrades as
the ρrr increase while the performance of the HD method is
not changed. As expected, the performance of the methods
with perfect hardware assumptions degrades faster compared
to the proposed methods. Moreover, the performance of the
proposed AltMuStR1 method remains close to that of GP, for
different values of the self-interference channel intensity. It
is observed that the MRC/MRT method suffers from a rapid
degradation, when κ or ρrr increases, also see Fig. 5 (a). This is
expected, since the transmit/receive filters are designed with no
consideration of the impact of distortion, e.g., the instantaneous
CSI regarding the self-interference channel is not effectively
used to control the impact of distortion.

In Fig. 6 the impact of the accuracy of transmit and receiver
chains are studied, where κ[dB] + β[dB] = Asum, i.e., the
sum-accuracy (in dB scale) is fixed. For instance, for an FD
transceiver with massive antenna arrays where the utilization
of analog cancelers is not feasible, and also the quantization
bits are considered as costly resources, the value of Asum is
related to the total number of quantization bits. The similar
evaluation regarding the number of transmit/receive antennas
is performed in Fig. 7, where Mt +Mr =Msum. It is observed
that different available resources, i.e., Asum, Msum, result in
different optimal allocations. However, as a general insight, it
is observed that the performance is degraded when resources
are concentrated only on transmit or receive side. Please note
that similar approach can be used for evaluating different cost
models for accuracy and antenna elements, regarding different
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system setups, or SIC specifications11.
In Table III a compact comparison is made between the

studied relaying strategies in terms of the algorithm computati-
onal complexity, processing complexity, as well as the resulting
performance under different impairment conditions (κ = β).
The percentage values indicate the performance improvement
in the scale of the optimal FD-AF performance, compared to
three common relaying schemes. This includes the HD-AF
relaying, the FD-DF relaying, as well as the FD-AF relaying
with simplified modeling, i.e., the best choice among ’Pth-
High’ and ’Pth-Low’ schemes. As expected, the gain of a
design with consideration of the distortion is invaluable for a
large κ, and can be achieved with a reasonable computational
complexity, via the utilization of the AltMuStR1 algorithm.

VII. CONCLUSION

The impact of hardware inaccuracies is of particular im-
portance for an FD transceiver, due to the high strength

11For instance, if the implemented SIC uses analog cancelers as proposed
by [56], the total number of chains can be counted as Mt + 2Mr, or as
MtMr +Mt +Mr, with the implementation in [6], c.f. [4]. In case of the
antenna canceler proposed by [7], the total number of antennas are counted as
Mr +2Mt. If a setup with different number of transmit/receive chains is used,
then the cost model for chain accuracy can be also modified as κMt+βMr =
Asum. Depending on the chosen cost model, different trade-off curves can be
obtained.
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TABLE III. COMPLEXITY-PERFORMANCE TRADEOFF FOR DIFFERENT RELAYING STRATEGIES.

Alg. Complexity (alg.) Complexity (proc.) κ = −60 dB κ = −30 dB κ = −10dB Compared to

GP O
(
16/3(γ1 + γ2)M

6
)

2M2 −M
-10%
+49%
0.1 %

-19%
+38%
+31 %

-48%
-15%

+99 %

FD-DF
HD-AF

FD-Simple

AltMuStR1 O
(
(γ335/3)M

3
)

3M
-10%
+49%
0.1 %

-21%
+36%
+29 %

-79%
-38%

+76 %

FD-DF
HD-AF

FD-Simple

of the self-interference channel. In particular, for an FD-AF
relaying system, such impact is significant due to the inter-
dependency of the relay transmit power, as well as the residual
self-interference, which results in a distortion loop effect. In
this work, we have analytically observed the aforementioned
effect, and proposed optimization strategies to alleviate the
resulting degradation. It is observed that the proposed GP
algorithm can be considered as the performance benchmark,
though, imposing a high computational complexity. On the
other hand, the proposed (Alt)MuStR1 methods provide a
significant reduction in the complexity, at the expense of a
slightly lower performance. In particular, the comparison to
the available schemes in the literature reveals that for a system
with a small thermal noise variance, or a high power or
transceiver inaccuracy, the application of a distortion-aware
design is essential. Moreover, it is observed that an FD-
DF relay is more robust against the increase of hardware
distortions, compared to an FD-AF relay. This is expected,
since the observed distortion loop for FD-AF relays does not
exist for an FD-DF relay, due to decoding.

APPENDIX A
OPTIMAL PS AS A FUNCTION OF W

Let W and z be the fixed (given) relay amplification and
receive filter, respectively. From (15)-(21), the SDNR at the
destination can be written as a function of Ps

SDNR(Ps) =
α1Ps

α2Ps + α3
, (52)

where α1, α2, α3 ∈ R+, such that
α1 := zHHrdWhsrh

H
sr WHHH

rd z,

α2 := q (W, z) vec
(
hsrh

H
sr

)
+ zHhsdh

H
sd z− α1,

α3 := zHzσ2
nd + q (W, z) vec

(
σ2

nrIMr

)
,

q (W, z) : =
(
zT ⊗ zH

)
(H∗rd ⊗Hrd) Θ

(
W,Hrr, κ, β

)
.
(53)

It is observed, by taking the first and second order derivatives
of the obtained function in (52), that SDNR is an increasing
and concave function over Ps, which concludes the proof.

APPENDIX B
EQUIVALENT TRANSMIT DISTORTION CHANNEL

EXPRESSION

Via the application of wtx, the collective received distortion
power due to the relay transmission, here denoted as θ1, is

written as

θ1 = Pr,maxκtr
(
Hrrdiag

(
wtxw

H
tx

)
HH

rr +Hrddiag
(
wtxw

H
tx

)
HH

rd

)
+ Pr,maxβtr

(
diag

(
Hrrwtxw

H
tx HH

rr

))
=
∑
i∈FMt

∑
X∈{rr, rd}

Pr,maxκtr
(
HXΓMt

i wtxw
H
tx ΓMt

i

H
HH
X

)
+
∑
i∈FMr

Pr,maxβtr
(
ΓMr
i Hrrwtxw

H
tx HH

rr ΓMt
i

H)
= κPr,max

∑
i∈FMt

∑
X∈{rr, rd}

∥∥∥HXΓMt
i wtx

∥∥∥2
2

+ βPr,max

∑
i∈FMt

∥∥∥ΓMr
i Hrrwtx

∥∥∥2
2

= Pr,max

∥∥∥∥∥
[
b
√
κHXΓMt

i wtxci∈FMt , X∈{rr, rd}
b
√
βΓMr

i Hrrwtxci∈FMr

] ∥∥∥∥∥
2

2

= Pr,max

∥∥∥∥∥
[
b
√
κHXΓMt

i ci∈FMt , X∈{rr, rd}
b
√
βΓMr

i Hrrci∈FMr

]
︸ ︷︷ ︸

=:HD,tx

wtx

∥∥∥∥∥
2

2

,

(54)
where ΓMi is an M × M all-zero matrix, except for the i-
th diagonal element equal to one, and HD,tx is viewed as the
equivalent distortion channel.

APPENDIX C
DERIVATION OF (41)-(42) AND THE COEFFICIENTS

(43)-(47)

The desired signal power at the destination prior to the
application of z, here denoted as θ2, can be calculated applying
the known matrix equalities [50, Eq. (486), (487), (496)] as
θ2 = Pstr

(
HrdWhsrh

H
sr WHHH

rd

)
= ωPstr

(
Hrdwtxw

H
rx hsrh

H
sr

(
wtxw

H
rx

)H
HH

rd

)
= ωPsd

T
Mt

( (
H∗rd(wtxw

H
rx )∗

)
⊗
(
Hrdwtxw

H
rx

) )
vec
(
hsrh

H
sr

)
= ωPsd

T
Mt

(H∗rd ⊗Hrd) W̃vec
(
hsrh

H
sr

)
= ωad, (55)

where ad and dMt are respectively defined in (43) and imme-
diately after (47), and W̃ := (wtxw

H
rx )∗⊗(wtxw

H
rx ). Similarly,

following (13)-(16) and the matrix identity [50, Eq. (186)] the
noise+interference power at destination, here denoted as θ3, is
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calculated as
θ3 = N − adω + tr

(
HrdE{routrHout}HH

rd

)
(56)

= N − adω + dTMd
(H∗rd ⊗Hrd) vec

(
E{routrHout}

)
= N − adω + dTMd

(H∗rd ⊗Hrd)
(
IM2

t
+ κSMt

D

)
×
(
IM2

t
− ωW̃C

)−1
ωW̃c

= N − adω + dTMd
(H∗rd ⊗Hrd)

(
IM2

t
+ κSMt

D

)
×

∑
k∈{0···∞}

(
ωW̃C

)k
ωW̃c

(57)

≈ N − adω +
∑
k∈FK

dTMd
(H∗rd ⊗Hrd)

(
IM2

t
+ κSMt

D

)
×
(
W̃C

)k−1
W̃cωk (58)

≈ a0 +
∑
k∈FK

akω
k, (59)

where K represents the approximation order, N := σ2
ndMd +

Ps‖hsd‖22, and ak is defined in (44) and (46). Note that the
identity in (57) holds for any feasible relay transmit strategy,
see (22b). This stems from the fact that the effect of the
distortion components are attenuated after passing through
the loop process, i.e., ωW̃C, in each consecutive symbol
duration12. Following the same arguments as in (56)-(58) we
calculate the relay transmit power as

tr
(
E{routr

H
out}

)
(60)

= dTMt

(
IM2

t
+ κSMt

D

)(
IM2

t
− ωW̃C

)−1
ωW̃c

= dTMt

(
IM2

t
+ κSMt

D

) ∑
k∈{0···∞}

(
ωW̃C

)k
ωW̃c (61)

≈
∑
k∈FK

dTMt

(
IM2

t
+ κSMt

D

)(
W̃C

)k−1
W̃cωk (62)

≈ b0 +
∑
k∈FK

bkω
k, (63)

where bk is defined in (47).
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