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Abstract—In this paper we address the linear precoding and de-
coding design problem for a bidirectional orthogonal frequency-
division multiplexing (OFDM) communication system, between
two multiple-input multiple-output (MIMO) full-duplex (FD)
nodes. The effects of hardware distortion as well as the channel
state information error are taken into account. In the first step,
we transform the available time-domain characterization of the
hardware distortions for FD MIMO transceivers to the frequency
domain, via a linear Fourier transformation. As a result, the
explicit impact of hardware inaccuracies on the residual self-
interference (RSI) and inter-carrier leakage (ICL) is formulated
in relation to the intended transmit/received signals. Afterwards,
linear precoding and decoding designs are proposed to enhance
the system performance following the minimum-mean-squared-
error (MMSE) and sum rate maximization strategies, assuming
the availability of perfect or erroneous channel state information
(CSI). The proposed designs are based on the application of
alternating optimization over the system parameters, leading
to a necessary convergence. Numerical results indicate that the
application of a distortion-aware design is essential for a system
with a high hardware distortion, or for a system with a low
thermal noise variance.

Keywords—Full-duplex, MIMO, OFDM, hardware impairments,
MMSE.

I. INTRODUCTION

FULL-Duplex (FD) transceivers are known for their ca-
pability to transmit and receive at the same time and

frequency, and hence have the potential to enhance the spectral
efficiency [2]. Nevertheless, such systems suffer from the
inherent self-interference (SI) from their own transmitter. Re-
cently, specialized self-interference cancellation (SIC) techni-
ques, e.g., [3]–[6], have demonstrated an adequate level of
isolation between transmit (Tx) and receive (Rx) directions
to facilitate an FD communication and motivated a wide
range of related studies, see, e.g., [7]–[10]. A common idea
of such SIC techniques is to subtract the dominant part of
the SI signal, e.g., a line-of-sight (LOS) SI path or near-end
reflections, in the radio frequency (RF) analog domain so that
the remaining signal can be further processed in the baseband,
i.e., digital domain. Nevertheless, such methods are still far
from perfect in a realistic environment mainly due to i) aging
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and inherent inaccuracy of the hardware (analog) elements, as
well as ii) inaccurate CSI in the SI path, due to noise and
limited channel coherence time. In this regard, inaccuracy of
the analog hardware elements used in subtracting the dominant
SI path in RF domain may result in severe degradation of
SIC quality. This issue becomes more relevant in a realistic
scenario, where unlike the demonstrated setups in the lab en-
vironment, analog components are prone to aging, temperature
fluctuations, and occasional physical damage. Moreover, an
FD link is vulnerable to CSI inaccuracy at the SI path in
environments with a small channel coherence time, see [11,
Subsection 3.4.1]. A good example of such challenge is a high-
speed vehicle that passes close to an FD device, and results in
additional reflective SI paths1.

In order to combat the aforementioned issues, an FD
transceiver may adapt its transmit/receive strategy to the ex-
pected nature of CSI inaccuracy, e.g., by directing the transmit
beams away from the moving objects or operating in the
directions with smaller impact of CSI error. Moreover, the
accuracy of the transmit/receiver chain elements can be con-
sidered, e.g., by dedicating less power, or ignoring the chains
with noisier elements in the signal processing. In this regard,
a widely used model for the operation of a multiple-antenna
FD transceiver is proposed in [12], assuming a single carrier
communication system, where CSI inaccuracy as well as the
impact of hardware impairments are taken into account. A
gradient-projection-based method is then proposed in the same
work for maximizing the sum rate in an FD bidirectional setup.
Building upon the proposed benchmark, a convex optimization
design framework is introduced in [13], [14] by defining a
price/threshold for the SI power, assuming the availability
of perfect CSI and accurate transceiver operation. While
this approach reduces the design computational complexity,
it does not provide a reliable performance for a scenario
with erroneous CSI, particularly regarding the SI path [15].
Consequently, the consideration of CSI and transceiver error
in an FD bidirectional system is further studied in [16], [17]
by maximizing the system sum rate, in [18] by minimizing
the sum mean-squared-error (MSE), and in [19], [20] for
minimizing the system power consumption under a required
quality of service.

The aforementioned works focus on modeling and design
methodologies for single-carrier FD bidirectional systems,
under frequency-flat channel assumptions. In this regard, the
importance of extending the previous designs for a multi-
carrier (MC) system with a frequency selective channel is

1Since the object is moving rapidly, the reflective paths are more difficult
to be accurately estimated.
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threefold. Firstly, due to the increasing rate demand of the
wireless services, and following the same rationale for the
promotion of FD systems, the usage of larger bandwidths beco-
mes necessary. This, in turn, invalidates the usual frequency-
flat assumption and calls for updated design methodologies.
Secondly, unlike the half-duplex (HD) systems where the
operation of different subcarriers can be safely separated in
the digital domain, an FD system is highly prone to the ICL
due to the impact of hardware distortions on the strong SI
channel2. This, in particular, calls for a proper modeling of
the ICL as a result of non-linear hardware distortions for
FD transceivers. And finally, the channel frequency selectivity
shall be opportunistically exploited, by means of a joint design
of the linear transmit and receive strategies at all subcarriers,
in order to enhance the system performance.

A. Related works on FD MC systems
In the early work by Riihonen et al. [21], the performance of

a combined analog/digital SIC scheme is evaluated for an FD
OFDM transceiver, taking into account the impact of hardware
distortions, e.g., limited analog-to-digital convertor (ADC)
accuracy. The problem of resource allocation and performance
analysis for FD MC communication systems is then addressed
in [22]–[28], however, assuming a single antenna transceiver.
Specifically, an FD MC system is studied in [22]–[24] in
the context of FD relaying, in [26], [27] and [25] in the
context of FD cellular systems with non-orthogonal multiple
access (NOMA) capability, and in [28] for rate region analysis
of a hybrid HD/FD link. Moreover, an MC relaying system
with hybrid decode/amplify-and-forward operation is studied
in [29], with the goal of maximizing the system sum rate
via scheduling and resource allocation. However, in all of
the aforementioned designs, the behavior of the RSI signal
is modeled as a purely linear system. As a result, the impacts
of the hardware distortions leading to ICL, as observed in [21],
are neglected.

B. Contribution and paper organization
In this paper we study a bidirectional FD MIMO OFDM

system, where the impacts of hardware distortions leading to
imperfect SIC and ICL are taken into account. Our main con-
tributions, together with the paper organization are summarized
as follows:
• In the seminal work by Day et al. [12], an FD MIMO

transceiver is modeled considering the impacts of hardware
distortions in transmit/receiver chains, which is then ex-
tensively used for the purpose of FD system design and
performance analysis, e.g., [16], [19], [30]–[34]. In the first
step, we extend the available time-domain characterization
of hardware distortions into an FD MIMO OFDM setup
via a linear discrete Fourier transformation. The obtained
frequency-domain characterization reveals the statistics of
the RSI and ICL, in relation to the intended transmit/receive
signals at each subcarrier. Please note that this is in contrast
to the available prior works on FD MC systems [22]–[29],

2For instance, a high-power transmission in one of the subcarriers will result
in a higher RSI in all of the sub-channels due to, e.g., a higher quantization
and power amplifier noise levels.

where ICL is neglected and RSI signal is modeled via a
purely linear system.
• Building on the obtained characterization, linear trans-

mit/receive strategies are proposed in order to enhance the
system performance. In Section III, an alternating quadratic
convex program (QCP), denoted as AltQCP, is proposed in
order to obtain a minimum weighted MSE transceiver de-
sign. The known weighted-minimum-MSE (WMMSE) met-
hod [35] is then utilized to extend the AltQCP framework
for maximizing the system sum rate. For both algorithms,
a monotonic performance improvement is observed at each
step, leading to a necessary convergence.
• In Section IV, we extend the studied system to an asymme-

tric OFDM FD bidirectional setup, where an FD transceiver
with a large antenna array simultaneously communicates
with multiple single-antenna FD transceivers. The extended
scenario is particularly relevant, both due to the recent
advances in building FD massive MIMO transceivers [36]
as well as the signified impact of hardware distortions due
to the lower per-element cost (e.g., low resolution quanti-
zation [37]). An algorithm for joint power and subcarrier
allocation is then proposed, following the successive inner
approximation (SIA) framework [38], with a guaranteed
convergence to a solution satisfying Karush–Kuhn–Tucker
(KKT) conditions.
• In Section V the proposed design in Section III is extended

by also taking into account the impact of CSI error. In
particular, a worst-case MMSE design is proposed as an
alternating semi-definite program (SDP), denoted as AltSDP.
Similar to the previous methods, a monotonic performance
improvement is observed at each step, leading to a necessary
convergence. Moreover, a methodology to obtain the most
destructive CSI error matrices is proposed. This is done
by converting the resulting non-convex quadratic problem
into a convex program, in order to facilitate worst-case
performance analysis under CSI error.
Numerical simulations show that the application of a

distortion-aware design is essential, as transceiver accuracy
degrades, and ICL becomes a dominant factor.

C. Mathematical Notation

Throughout this paper, column vectors and matrices are
denoted as lower-case and upper-case bold letters, respecti-
vely. Mathematical expectation, trace, inverse, determinant,
transpose, conjugate and Hermitian transpose are denoted by
E{·}, tr(·), (·)−1 | · |, (·)T , (·)∗ and (·)H , respectively. The
Kronecker product is denoted by ⊗. The identity matrix with
dimension K is denoted as IK and vec(·) operator stacks the
elements of a matrix into a vector. 0m×n represents an all-
zero matrix with size m × n. ‖ · ‖2 and ‖ · ‖F respectively
represent the Euclidean and Frobenius norms. diag(·) returns
a diagonal matrix by putting the off-diagonal elements to
zero. bAici=1,...,K denotes a tall matrix, obtained by stacking
the matrices Ai, i = 1, . . . ,K. R{A} represents the range
(column space) of the matrix A. The set FK is defined
as {1, . . . ,K}. The set of real, positive real, and complex
numbers are respectively denoted as R,R+,C.
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Table I. USED SYMBOLS

k, i, l index of a subcarrier, communication direction,
and a transmit/receive chain

I,V,U set of comm. directions, precoder and decoder matrices
Ni,Mi, di number of transmit and receive antennas and data streams

ski (s̃
k
i ) transmitted (estimated) data symbol

Ui
k(Vi

k) linear decoder (precoder) matrix
yki (ỹ

k
i ) received signal before (after) SI cancellation

Hk
ij , H̃

k
ij the exact, and estimated CSI matrix

∆k
ij ,D

k
ij CSI error, and the set of feasible CSI errors

ζkij ,D
k
ij radius and shaping matrix for the feasible CSI error region

ekr,i(e
k
t,i) receiver (transmitter) distortion over the subcarrier k

Θrx,i(Θtrx,i) diagonal matrix of receive (transmit) distortion coefficients
νki ,Σ

k
i collective residual SI plus noise signal, and its covariance

nki , σ
2
i,k additive thermal noise and its variance

uki (v
k
i ) undistorted received (transmitted) signal

xki , Pi transmit signal, and the maximum transmit power

II. SYSTEM MODEL

A bidirectional OFDM communication between two MIMO
FD transceivers is considered. Each communication direction
is associated with Ni transmit and Mi receive antennas, where
i ∈ I, and I := {1, 2} represents the set of the communication
directions. The desired channel in the communication direction
i and subcarrier k ∈ FK is denoted as Hk

ii ∈ CMi×Ni where K
is the number of subcarriers. The interference channel from i
to j-th communication direction is denoted as Hk

ji ∈ CMj×Ni .
All channels are quasi-static3, and frequency-flat in each
subcarrier.

The transmitted signal in the direction i, subcarrier k is
formulated as

xki = Vk
i s
k
i︸ ︷︷ ︸

=:vki

+ekt,i,
∑
k∈FK

E
{
‖xki ‖22

}
≤ Pi, (1)

where ski ∈ Cdi and Vk
i ∈ CNi×di respectively represent

the vector of the data symbols and the transmit precoding
matrix, and Pi ∈ R+ imposes the maximum affordable
transmit power constraint. The number of the data streams
in each subcarrier and in direction i is denoted as di, and
E{ski ski

H} = Idi . Moreover, vki ∈ CNi represents the desired
signal to be transmitted, where ekt,i models the inaccurate
behavior of the transmit chain elements, i.e, transmit distortion,
see Subsection II-A for more details.

The received signal at the destination can be consequently
written as

yki = Hk
iix

k
i + Hk

ijx
k
j + nki︸ ︷︷ ︸

=:uki

+ekr,i, (2)

where nki ∼ CN
(
0Mi

, σ2
i,kIMi

)
is the additive thermal noise.

Similar to the transmit signal model, ekr,i represents the receiver
distortion and models the inaccuracies of the receive chain
elements. The known, i.e., distortion-free, part of the SI is
then subtracted from the received signal, employing an SIC
scheme. This is formulated as

ỹki : = yki −Hk
ijV

k
j s
k
j = Hk

iiV
k
i s
k
i + νki , (3)

3It indicates that the channel is constant in each communication frame, but
may vary from one frame to another frame.

where ỹki is the received signal in direction i and subcarrier
k, after SIC. Moreover, the aggregate interference-plus-noise
term is denoted as νki ∈ CMi , where

νki = Hk
ije

k
t,j + Hk

iie
k
t,i + ekr,i + nki , j 6= i. (4)

Finally, the estimated data vector is obtained at the receiver as

s̃ki =
(
Ui

k
)H

ỹki , (5)

where Uk
i ∈ CMi×di is the linear receive filter.

A. Limited dynamic range in an FD OFDM system

In the seminal work by Day et al. [12], a model for the
operation of an FD MIMO transceiver is given, relying on
the experimental results on the impact of hardware distortions
[39]–[42]. In this regard, the inaccuracy of the transmit chain
elements, e.g., DAC error, PA and oscillator phase noise, are
jointly modeled for each antenna as an additive distortion, and
written as xl(t) = vl(t) + et,l(t), see Fig. 1, such that

et,l(t) ∼ CN
(
0, κlE

{
|vl(t)|2

})
, et,l(t)⊥vl(t), (6)

et,l(t)⊥et,l′ (t), et,l(t)⊥et,l(t
′
), l 6= l

′
∈ LT , t 6= t

′
, (7)

please see [12, Section II. B,C], [30, Section II. C,D], [16],
[19], [31]–[33] for a similar distortion characterization for FD
transceivers4. In the above arguments, t denotes the instance
of time, and vl, xl, and et,l ∈ C are respectively the baseband
time-domain representation of the intended transmit signal, the
actual transmit signal, and the additive transmit distortion at
the l-th transmit chain. The set LT represents the set of all
transmit chains. Moreover, κl ∈ R+ represents the distortion
coefficient for the l-th transmit chain, relating the collective
power of the distortion signal, over the active spectrum, to the
intended transmit power.

In the receiver side, the combined effects of the inaccurate
hardware elements, i.e., ADC error, AGC and oscillator phase
noise, are presented as additive distortion terms and written as
yl(t) = ul(t) + er,l(t) such that

er,l(t) ∼ CN
(
0, βlE

{
|ul(t)|2

})
, er,l(t)⊥ul(t), (8)

er,l(t)⊥er,l′ (t), er,l(t)⊥er,l(t
′
), l 6= l

′
∈ LR, t 6= t

′
, (9)

where ul, er,l, and yl ∈ C are respectively the baseband
representation of the intended (distortion-free) received signal,
additive receive distortion, and the received signal from the
l-th receive antenna. The set LR represents the set of all
receive chains. Similar to the transmit chain characterization,
βl ∈ R+ is the distortion coefficient for the l-th receive chain,
see Fig. 1. The frequency domain representation of the sampled

4It is worth mentioning that the accuracy of the above-mentioned mo-
deling varies for different implementations of FD transceivers, depending
on the complexity and the used SIC method. In this regard, the statistical
independence of distortion elements defined in (iii) and (iv) also hold for
an advanced implementation of an FD transceiver, assuming a high signal
processing capability. This is since any correlation structure in the distortion
signal can be exploited and removed in order to reduce the RSI via advanced
signal processing, see [4, Subsection 3.2]. However, the linear dependence of
the remaining distortion signal variance to the desired signal strength varies
for different SIC implementations, and should be estimated separately for each
transceiver.
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time domain signal is obtained as

xkl =
1√
K

K−1∑
m=0

xl(mTs)e
− j2πmkK = (10)

1√
K

K−1∑
m=0

vl(mTs)e
− j2πmkK︸ ︷︷ ︸

=:vkl

+
1√
K

K−1∑
m=0

et,l(mTs)e
− j2πmkK︸ ︷︷ ︸

=:ekt,l

,

ykl =
1√
K

K−1∑
m=0

yl(mTs)e
− j2πmkK = (11)

1√
K

K−1∑
m=0

ul(mTs)e
− j2πmkK︸ ︷︷ ︸

=:ukl

+
1√
K

K−1∑
m=0

er,l(mTs)e
− j2πmkK︸ ︷︷ ︸

=:ekr,l

,

where Ts is the sampling time, and KTs is the OFDM block
duration prior to the cyclic extension, see [43] for a detailed
discussion on OFDM technology.

Lemma II.1. The impact of hardware distortions in the
frequency domain is characterized as

ekt,l ∼ CN

0,
κl
K

∑
m∈FK

E
{
|vml |2

} , ekt,l⊥vkl , ekt,l⊥ekt,l′ , (12)

ekr,l ∼ CN

0,
βl
K

∑
m∈FK

E
{
|uml |2

} , ekr,l⊥ukl , ekr,l⊥ekr,l′ , (13)

transforming the statistical independence, as well as the
proportional variance properties from the time domain.

Proof: See the Appendix.

The above lemma indicates that the distortion signal vari-
ance at each subcarrier, relates to the total distortion power
at the corresponding chain, indicating the impact of ICL.
This can be interpreted as a variance-dependent thermal noise,
where the temporal independence of signal samples results in
a flat power spectral density over the active communication
bandwidth. In this part we consider a general framework
where the transmit (receive) distortion coefficients are not
necessarily identical for all transmit (receive) chains belonging
to the same transceiver, i.e., different chains may hold different
accuracy due to occasional damage and aging. This assumption
is relevant in practice since it enables the design algorithms to
reduce communication task, e.g., transmit power, on the chains
with noisier elements. Following Lemma II.1, the statistics of
the distortion terms, introduced in (1), (2) can be inferred as

ekt,i ∼ CN

(
0Ni ,Θtx,i

∑
k∈FK

diag
(
E
{

vki v
k
i

H
}))

, (14)

ekr,i ∼ CN

(
0Mi

,Θrx,i

∑
k∈FK

diag
(
E
{

uki u
k
i

H
}))

, (15)

where Θtx,i ∈ RNi×Ni (Θrx,i ∈ RMi×Mi ) is a diagonal
matrix including distortion coefficients κl/K (βl/K) for the

Tx chain Rx chain

Figure 1. Limited dynamic range is modeled by injecting additive distortion
terms at each transmit or receive chain. et,l and er,l denote the distortion
terms, and nl represents the additive thermal noise.

corresponding chains5.
Via the application of (14)-(15) on (4), the covariance of the

received collective interference-plus-noise signal is obtained as

Σk
i := E

{
νki ν

k
i

H
}

≈
∑
j∈I

Hk
ijΘtx,jdiag

∑
l∈FK

Vl
jV

l
j

H

Hk
ij

H
+ σ2

i,kIMi

+ Θrx,idiag
( ∑
l∈FK

(
σ2
i,lIMi +

∑
j∈I

Hl
ijV

l
jV

l
j

H
Hl
ij

H
))

, (16)

where Σk
i ∈ CMi×Mi is obtained considering 0 ≤ βl � 1,

0 ≤ κl � 1, and hence ignoring the terms containing higher
orders of the distortion coefficients in (16).

B. Remarks
• In this section, we have assumed the availability of perfect

CSI and focused on the impact of non-linear transceiver
distortions. This assumption is relevant for the scenarios
with stationary channel, e.g., a backhaul directive link
with zero mobility [44], where an adequately long training
sequence can be applied, see [12, Subsection III.A]. The
impact of the CSI inaccuracy is later addressed in Section V.
• As expected, the role of the distortion signals on the RSI,

including the resulting ICL, is evident from (16). It is
the main goal of the remaining parts of this chapter to
incorporate and evaluate this impact on the design of the
defined MC system6.

III. LINEAR TRANSCEIVER DESIGN FOR MULTI-CARRIER
COMMUNICATIONS

Via the application of Vk
i and Uk

i , as the linear transmit
precoder and receive filters, the MSE matrix of the defined
system is calculated as

Ek
i : = E

{(
s̃ki − ski

) (
s̃ki − ski

)H}
=
(
Uk
i

H
Hk
iiV

k
i − Idi

)(
Uk
i

H
Hk
iiV

k
i − Idi

)H
+ Uk

i

H
Σk
iU

k
i , (17)

5A simpler mathematical presentation can be obtained by assuming the
same transceiver accuracy over all antennas, similar to [12], [30]. In such a
case, the defined diagonal matrices can be replaced by a scalar.

6Please note that the obtained modeling and design framework for the
OFDM systems can be similarly generalized to any MC technology with
orthogonal waveforms, i.e., with zero intrinsic interference. For a number of
the recently developed waveforms, e.g., the filter banked multi-carrier (FBMC)
scheme where the adjacent waveforms are not orthogonal [61], the main insight
of this work still holds, i.e., the non-linear hardware distortions lead to RSI
and ICL, which is detrimental to the performance of FD systems. However, the
exact characterization and design of the transmit (receive) strategies require
non-trivial extensions.
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where Σk
i is given in (16). In the following we propose

two design strategies for the defined system, proposing an
alternating QCP framework.

A. Weighted MSE minimization via Alternating QCP (AltQCP)

An optimization problem for minimizing the weighted sum
MSE is written as

min
V,U

∑
i∈I

∑
k∈FK

tr
(
SkiE

k
i

)
(18a)

s.t. tr
(
(INi +KΘtx,i)

∑
l∈FK

Vl
iV

l
i

H
)
≤ Pi, ∀i ∈ I,

(18b)
where X := {Xk

i , ∀i ∈ I, ∀k ∈ FK}, with X ∈ {U,V},
and (18b) represents the transmit power constraint. It is worth
mentioning that the application of Ski � 0, as a weight matrix
associated with Ek

i is two-folded. Firstly, it may appear as
a diagonal matrix, emphasizing the importance of different
data streams and different users. Secondly, it can be applied as
an auxiliary variable which later relates the defined weighted
MSE minimization to a sum-rate maximization problem, see
Subsection III-B.

It is observed that (18) is not a jointly convex problem.
Nevertheless, it holds a QCP structure separately over the
sets V and U, in each case when other variables are fixed.
In this regard, the objective (18a) can be decomposed over
U for different communication directions, and for different
subcarriers. The optimal MMSE receive filter can be hence
calculated in closed form as

Uk
i,mmse =

(
Σk
i + Hk

iiV
k
i V

k
i

H
Hk
ii

H
)−1

Hk
iiV

k
i . (19)

Nevertheless, the defined problem is coupled over Vk
i , due to

the impact of ICL, as well as the power constraint (18b). The
Lagrangian function, corresponding to the optimization (18)
over V is expressed as

L (V, ι) :=
∑
i∈I

(
ιiPi (V) +

∑
k∈FK

tr
(
SkiE

k
i

))
, (20)

Pi (V) := −Pi + tr
(
(INi +KΘtx,i)

∑
l∈FK

Vl
iV

l
i

H
)
, (21)

where ι := {ιi, i ∈ I} is the set of dual variables. The dual
function, corresponding to the above Lagrangian is defined as

F (ι) : = min
V
L (V, ι) (22)

where the optimal Vk
i is obtained as

Vk
i

?
=
(
Jki + ιi (INi +KΘtx,i) + Hk

ii

H
Uk
i S

k
iU

k
i

H
Hk
ii

)−1
×Hk

ii

H
Uk
i S

k
i , (23)

and

Jki : =
∑
l∈FK

∑
j∈I

(
Hk
ji

H
diag

(
Ul
jS

l
jU

l
j

H
Θrx,j

)
Hk
ji

+ diag
(
Hl
ji

H
Ul
jS

l
jU

l
j

H
Hl
jiΘtx,i

))
. (24)

Due to the convexity of the original problem (18) over V, the
defined dual problem is a concave function over ι, with Pi(V)
as a subgradient, see [45, Eq. (6.1)]. As a result, the optimal
ι is obtained from the maximization

ι? = argmax
ι≥0

F (ι) , (25)

following a standard subgradient update, [45,
Subsection 6.3.1].

Utilizing the proposed optimization framework, the alterna-
ting optimization over V and U is continued until a stable point
is obtained. Note that due to the monotonic decrease of the
objective in each step, and the fact that (18a) is non-negative
and hence bounded from below, the defined procedure leads
to a necessary convergence. Algorithm 1 defines the necessary
optimization steps.

Algorithm 1 Alternating QCP (AltQCP) for weighted MSE mini-
mization

1: `← 0; (set iteration number to zero)
2: V← right singular matrix initialization, see [46, Appendix A]
3: U← solve (19)
4: repeat
5: `← `+ 1
6: V← solve (23) or QCP (18), with fixed U
7: U← solve (19) or QCP (18) with fixed V
8: until a stable point, or maximum number of ` reached
9: return {U,V}

B. Weighted MMSE (WMMSE) design for sum rate maximi-
zation

Via the utilization of Vk
i as the transmit precoders, the

resulting communication rate for the k-th subcarrier and for
the i-th communication direction is written as

Iki = log2
∣∣∣Idi + Vk

i

H
Hk
ii

H(
Σk
i

)−1
Hk
iiV

k
i

∣∣∣ , (26)

where Σk
i is defined in (16). The sum rate maximization

problem can be hence presented as

max
V

∑
i∈I

∑
k∈FK

ωiI
k
i , s.t. (18b). (27)

where ωi ∈ R+ is the weight associated with the communica-
tion direction i. The optimization problem (27) is intractable
in the current form. In the following we propose an iterative
optimization solution, following the WMMSE method [35].
Via the application of the MMSE receive linear filters from
(19), the resulting MSE matrix is obtained as

Ek
i,mmse =

(
Idi + Vk

i

H
Hk
ii

H (
Σk
i

)−1
Hk
iiV

k
i

)−1
. (28)

By recalling (26), and upon utilization of Uk
i,mmse, we observe

the following useful connection to the rate function
Iki = −log2

∣∣Ek
i,mmse

∣∣ , (29)
which facilitates the decomposition of rate function via the
following lemma, see also [35, Eq. (9)].
Lemma III.1. Let E ∈ Cd×d be a positive definite matrix.
The maximization of the term −log |E| is equivalent to the
maximization

max
E,S
− tr (SE) + log |S|+ d, (30)
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where S ∈ Cd×d is a positive definite matrix, and we have
S = E−1, (31)

at the optimality.
Proof: See [47, Lemma 2].

By recalling (29), and utilizing Lemma III.1, the original
optimization problem over V can be equivalently formulated
as

max
V,U,S

∑
i∈I

ωi
∑
k∈FK

(
log
∣∣Ski ∣∣+ di − tr

(
SkiE

k
i

))
s.t. (18b),

(32)
where S := {Ski � 0, ∀i ∈ I, ∀k ∈ FK}. The obtained
optimization problem (32) is not a jointly convex problem.
Nevertheless, it is a QCP over V when other variables are
fixed, and can be obtained with a similar structure as for
(18). Moreover, the optimization over U and S is respectively
obtained from (19), and (31) as Ski = Ek

i
−1. This facilitates an

alternating optimization where in each step the corresponding
problem is solved to optimality, see Algorithm 2. The defined
alternating optimization steps results in a necessary conver-
gence due to the monotonic increase of the objective in each
step, and the fact that the eventual system sum rate is bounded
from above.

Algorithm 2 AltQCP-WMMSE design for sum rate maximization
1: Algorithm 1, Steps 1-2 (initialization)
2: repeat
3: Algorithm 1, Steps 5-7
4: S← Ski =

(
Ek
i

)−1

5: until a stable point, or maximum number of ` reached
6: return {V}

IV. BIDIRECTIONAL FD MASSIVE MIMO SYSTEMS:
JOINT POWER AND SUBCARRIER ALLOCATION

In this part, we extend the studied system into an asymmetric
setup, where an FD transceiver equipped with a large antenna
array (e.g., a basestation) performs a bidirectional commu-
nication with multiple FD single-antenna nodes (e.g., users).
Thanks to the FD capability and multi-user beamforming, the
communication at different directions can flexibly coexist on
shared subcarriers, improving the spectral efficiency, or can
be accommodated on different subcarriers in order to control
the interference. Please note that the impact of hardware
impairments is known to be significant for a system with a
large antenna array, due to the lower per-element cost, e.g.,
low resolution ADC and DAC [37]. This signifies the role of
the characterization in Lemma II.1 regarding the impact of
hardware impairments for an FD MIMO OFDM system. In
order to extend the defined setup to an asymmetric one, we
denote the set of communication directions from (to) the users
to (from) the massive MIMO transceiver as IUL (IDL), such
that I = IUL ∪ IDL. Moreover, the lower-case notations7 (f̃ki )

7The channel dimensions are accordingly obtained as Hk
ij ∈ C1 when

i ∈ IUL, j ∈ IDL, hkii ∈ CM̃ (C1×Ñ ) when i ∈ IUL(IDL), and Hk
ji ∈

CM̃×Ñ when i ∈ IDL, j ∈ IUL. Ñ (M̃ ) represents the number of transmit
(receive) antennas at the massive MIMO transceiver.

fki and uki are used to represent the (normalized) transmit and
receive linear filters8. Moreover, we have fki = f̃ki

√
pi,k where

pi,k denotes the transmit power. In this part, we perform a joint
subcarrier and power allocation with the goal of maximizing
the system sum rate. An upper bound on the achievable
information rate is obtained as

RUB
i,k = γ0log2

(
1 +

∣∣∣(uki )H hkiif̃
m
i

∣∣∣2
2
pi,k

σ2
i,k +

∑
j∈I
∑
m∈FK γ

km
ij pj,m

)
(33)

where 0 < γ0 < 1 indicates the portion of the frame duration
dedicated to data communication, and

γkmij : = δkmij

∣∣∣∣(uki )H Hm
ij f̃

m
j

∣∣∣∣2︸ ︷︷ ︸
co-channel interference

+

+
(
uki

)H
Hk
ijΘtx,jdiag

(
f̃mj

(
f̃mj

)H)(
Hk
ij

)H
uki︸ ︷︷ ︸

transmitter distortion

+
(
uki

)H
Θrx,idiag

(
Hm
ij f̃

m
j

(
f̃mj

)H (
Hm
ij

)H)
uki︸ ︷︷ ︸

receiver distortion

, (34)

where δkmij = 0 if k 6= m or j ∈ IDL, i ∈ IUL and otherwise
δkmij = 1. Please note that the given upper bound in (33)
is obtained similar to [49] assuming an accurate CSI, please
see Section V for the consideration of CSI error. It is worth
mentioning the impact of hardware distortions on the RSI,
as well as the ICL is evident from (34)9. The optimization
problem for maximizing the system sum rate is formulated as

max
pi,k≥0

∑
i∈I

ωi
∑
k∈FK

RUB
i,k, s.t.

∑
k∈FK

pi,k ≤ Pi, i ∈ IUL, (35a)∑
i∈IDL

∑
k∈FK

pi,k ≤ Pi, i ∈ IDL. (35b)

It can be observed that (35) falls into the class of smooth
difference-of-convex (DC) optimization problems. In this re-
gard, we propose an iterative optimization, following the
SIA framework [38] which is proven to converge to a point
satisfying KKT optimality conditions. Let pi,k,0 be a feasible
transmit power value. Then, employing the first order Taylor’s
approximation on the concave terms, RUB

i,k is lower-bounded as

RUB
i,k ≥ γ0log2

(∥∥∥hkii∥∥∥2
2
pi,k +

∑
j∈I

∑
m∈FK

γkmij pj,m + σ2
i,k

)
− γ0log2

(∑
j∈I

∑
m∈FK

γkmij pj,m,0 + σ2
i,k

)

−
γ0
∑
j∈I
∑
m∈FK γ

km
ij (pj,m − pj,m,0)

log(2)
∑
j∈I
∑
m∈FK γ

km
ij pj,m,0 + σ2

i,k

=: RUB
i,k, (36)

8Due to the properties of the large antenna arrays, the transmit precoder and
receive filters are usually chosen via a maximum ratio transmission/combining
(MRT/MRC) strategy [37], a projection to the null-space of the SI channel [36]
or via a joint user and SI spatial zero-forcing [48], [49], resulting in a different
performance-complexity tradeoff.

9In particular to a massive MIMO transceiver, where low-resolution quanti-
zation is used, the distortion coefficient κl in Θtx,i (and similarly βl in Θrx,i)
is obtained as κl [dB] = −6.02bl, where bl is the number of quantization
bits at the chain l.
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where RUB
i,k is a jointly concave function over pi,k, facilita-

ting an iterative update where in each iteration the convex
problem max

pi,k≥0

∑
i∈I
∑
k∈FK R

UB
i,k s.t. (35b) is solved to the

optimality. The proposed iterative update is continued until
a stable solution is obtained. It can be observed that RUB

i,k

represents a tight and global lower bound to RUB
i,k , with a shared

slope at the point of approximation pj,m,0
10. As a result, the

proposed iterative update follows the requirements set in [38,
Theorem 1], with a proven convergence to a solution satisfying
the KKT conditions.

V. ROBUST DESIGN WITH IMPERFECT CSI
In many realistic scenarios the CSI matrices can not be

estimated or communicated accurately due to the limited
channel coherence time as a result of, e.g., reflections from
a moving object, or due to dedicating limited resource on the
training/feedback process. This issue becomes more significant
in an FD system, due to the strong SI channel which calls
for dedicated silent times for tuning and training process,
see [12, Subsection III.A]. In particular, the impact of CSI
error on the defined MC FD system is three-fold. Firstly,
similar to the usual HD scenarios, it results in the erroneous
equalization in the receiver, as the communication channels
are not accurately known. Secondly, it results in an inaccurate
estimation of the received signal from the SI path, and thereby
degrades the SIC quality. Finally, due to the CSI error, the
impact of the distortion signals may not be accurately known,
as the statistics of the distortion signals directly depend on the
channel situation. In this part we extend the proposed designs
in Section III where the aforementioned uncertainties, resulting
from CSI error, are also taken into account.

A. Norm-bounded CSI error
In this part we update the defined system model in Section II

to the scenario where the CSI is known erroneously. In this
respect we follow the so-called deterministic model [51],
where the error matrices are not known but located, with a
sufficiently high probability, within a known feasible error
region11. This is expressed as

Hk
ij = H̃k

ij + ∆k
ij , ∆k

ij ∈ Dkij , i, j ∈ I, (37)
and

Dkij :=
{
∆k
ij

∣∣ ‖Dk
ij∆

k
ij‖F ≤ ζkij

}
, ∀i, j ∈ I, k ∈ FK ,

(38)

where H̃k
ij is the estimated channel matrix and ∆k

ij represents
the channel estimation error. Moreover, Dk

ij � 0 and ζkij ≥ 0
jointly define a feasible ellipsoid region for ∆k

ij which gene-
rally depends on the noise and interference statistics, and the
used channel estimation method. For further elaboration on the

10This is directly concluded for a first-order Taylor’s approximation on any
smooth convex function [50].

11The feasible error region can be obtained from the statistical distribution
of the true CSI values, as a minimum radius ball or ellipsoid containing the
true CSI values with a desired confidence probability, or via the knowledge of
the CSI quantization strategy, in case the CSI error is dominated by feedback
quantization.

used error model see [51] and the references therein.
The aggregate interference-plus-noise signal at the receiver is
hence updated as
νki = Hk

ije
k
t,j + Hk

iie
k
t,i + ekr,i + ∆k

ijV
k
j s
k
j + nki , j 6= i ∈ I,

(39)
where Σk

i , representing the covariance of νki , is expressed in
(40).

B. Alternating SDP (AltSDP) for worst-case MSE minimiza-
tion

An optimization problem for minimizing the worst-case
MSE under the defined norm-bounded CSI error is written
as

min
V,U

max
Y

∑
i∈I

∑
k∈FK

tr
(
SkiE

k
i

)
,

s.t. (18b), ∆k
ij ∈ Dkij , ∀i, j ∈ I, k ∈ FK , (41)

where Y := {∆k
ij , ∀i, j ∈ I, ∀k ∈ FK}, and Ek

i is
obtained from (17) and (40). Note that the above problem is
intractable, due to the inner maximization of quadratic convex
objective over Y, which also invalidates the observed convex
QCP structure in (18). In order to formulate the objective into
a tractable form, we calculate∑

k∈FK

tr
(
SkiE

k
i

)
=
∑
k∈FK

(∥∥∥Wk
i

H
(
Uk
i

H
Hk
iiV

k
i − Idi

)∥∥∥2
F

+
∥∥∥Wk

i

H
Uk
i

H
∆k
i3−iV

k
3−i

∥∥∥2
F
+ σ2

i,k

∥∥∥Wk
i

H
Uk
i

H
∥∥∥2
F

+
∑
j∈I

∑
l∈FNj

∑
m∈FK

∥∥∥Wk
i

H
Uk
i

H
Hk
ij (Θtx,j)

1
2 ΓlNjV

m
j

∥∥∥2
F

+
∑
j∈I

∑
l∈FMi

∑
m∈FK

∥∥∥Wk
i

H
Uk
i

H
(Θrx,i)

1
2 ΓlMiH

m
ijV

m
j

∥∥∥2
F

+

∥∥∥∥∥∥∥Wk
i

H
Uk
i

H

Θrx,i

∑
q∈FK

σ2
i,q

 1
2

∥∥∥∥∥∥∥
2

F

)
(42)

=
∑
j∈I

∑
k∈FK

∥∥∥ckij + Ck
ijvec

(
∆k
ij

)∥∥∥2
2
, (43)

where ΓlM is an M×M zero matrix except for the l-th diagonal
element equal to 1. In the above expressions Wk

i =
(
Ski
) 1

2 ,
and

ckij :=

δijvec
(
Wk

i
H
(
Uk
i
H

H̃k
ijV

k
j − Idjδij

))⌊
vec
(
Wk

i
H

Uk
i
H

H̃ij (Θtx,j)
1
2 ΓlNjV

m
j

)⌋
l∈FNj ,m∈FK⌊

vec
(
Wm

i
HUm

i
H (Θrx,i)

1
2 ΓlMiH̃

k
ijV

k
j

)⌋
l∈FMi ,m∈FK

δijvec
(

Wk
i
H

Uk
i
H
(
σ2
i,kIMi + Θrx,i

∑
m∈FK σ

2
i,m

) 1
2

)


,

(44)
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Σk
i = ∆k

ijV
k
jV

k
j

H
∆k
ij

H
+
∑
j∈I

Hk
ijΘtx,jdiag

∑
l∈FK

Vl
jV

l
j

H

Hk
ij

H
+Θrx,idiag

(∑
l∈FK

(
σ2
i,lIMi+

∑
j∈I

Hl
ijV

l
jV

l
j

H
Hl
ij

H
))

+σ2
i,kIMi . (40)

Ck
ij :=

Vk
j
T ⊗

(
Wk

i
H

Uk
i
H
)⌊(

(Θtx,j)
1
2 ΓlNjV

m
j

)T
⊗
(
Wk

i
H

Uk
i
H
)⌋

l∈FNj ,m∈FK⌊
Vk
j
T ⊗

(
Wm

i
HUm

i
H (Θrx,i)

1
2 ΓlMi

)⌋
l∈FMi ,m∈FK

0Midi×MiNi


,

(45)
where δij is the Kronecker delta where δij = 1 for i = j

and zero otherwise. Moreover we have ckij ∈ Cd̃ij×1, Ck
ij ∈

Cd̃ij×MiNj such that
d̃ij := didj (1 +K (Nj +Mi)) + diMi. (46)

Please note that (42) is obtained by recalling (17) and (40) and
the known matrix equality [52, Eq. (516)], and (44)-(45) are
calculated via the application of [52, Eq. (496), (497)].

By applying the Schur’s complement lemma on the epigraph
form of the quadratic norm (43), i.e.,

∥∥ckij+Ck
ijvec

(
∆k
ij

) ∥∥2
2
≤

τkij , the optimization problem (41) is equivalently written as

min
V,U,T

max
Y

∑
i∈I

∑
k∈FK

τkij , s.t. (18b), ‖bkij‖F ≤ ζkij , (47a)[
0 bkij

HD̃k
ij
HCk

ij
H

Ck
ijD̃

k
ijb

k
ij 0d̃ij×d̃ij

]
+

[
τkij ckij

H

ckij Id̃ij

]
� 0,

(47b)
where T := {τkij , ∀i, j ∈ I, ∀k ∈ FK} and

D̃k
ij := INj ⊗

(
Dk
ij

)−1
, (48)

∆̃k
ij := Dk

ij∆
k
ij , bkij := vec

(
∆̃k
ij

)
, (49)

are defined for notational simplicity. The problem (47) is
still intractable, due to the inner maximization. The following
lemma converts this structure into a tractable form.

Lemma V.1. Generalized Petersen’s sign-definiteness lemma:
Let Y = YH , and X,P,Q are arbitrary matrices with
complex valued elements. Then we have

Y � PHXQ + QHXHP, ∀X : ‖X‖F ≤ ζ, (50)
if and only if

∃λ ≥ 0,

[
Y − λQHQ −ζPH

−ζP λI

]
� 0. (51)

Proof: See [53, Proposition 2], [54].

By choosing the matrices in Lemma V.1 such that X = bkij ,

Q =
[
−1, 01×d̃ij

]
and

Y =

[
τkij ckij

H

ckij Id̃ij

]
,P =

[
0MiNj×1, D̃k

ij
HCk

ij
H
]
,

the optimization problem in (47) is equivalently written as

min
V,U,T,M

∑
i,j∈I

∑
k∈FK

τkij (52a)

s.t. Fki,j � 0, Gi � 0, ∀i, j ∈ I, k ∈ FK , (52b)

where M := {λkij , ∀i, j ∈ I, k ∈ FK}, and

Gi : =

[
Pi ṽHi
ṽi I

]
, ṽi :=

⌊
vec
(
(I +KΘtx,i)

1
2 Vk

i

)⌋
k∈FK

,

Fki,j : =

 τkij − λkij ckij
H 01×MiNj

ckij Id̃ij −ζkijCij
kD̃k

ij

0MiNj×1 −ζkijD̃k
ij
HCk

ij
H λkijIMiNj

 .
Similar to (32), the obtained problem in (52) is not a jointly, but
a separately convex problem over V and U, in each case when
the other variables are fixed. In particular, the optimization over
V,T,M is cast as an SDP, assuming a fixed U. Afterwards,
the optimization over U,T,M is solved as an SDP, assuming
a fixed V. The described alternating steps are continued until
a stable point is achieved, see Algorithm 3 for the detailed
procedure.

Algorithm 3 Alternating SDP (AltSDP) for worst-case MMSE
design under CSI error.

1: `← 0; (set iteration number to zero)
2: V,U← similar initialization as Algorithm 1
3: repeat
4: `← `+ 1
5: V,T,M← solve SDP (52), with fixed U
6: U,T,M← solve SDP (52), with fixed V
7: until a stable point, or maximum number of ` reached
8: return {U,V}

C. WMMSE for sum rate maximization
Under the impact of CSI error, the worst-case rate maximi-

zation problem is written as

max
V

min
Y

∑
i∈I

∑
k∈FK

Iki (53a)

s.t. (18b), ∆k
ij ∈ Dkij , ∀i, j ∈ I, k ∈ FK . (53b)

Via the application of Lemma III.1, and (29) the rate maximi-
zation problem is equivalently written as

max
V

min
Y

max
U,W

∑
i∈I

∑
k∈FK

(
log
∣∣∣Wk

i W
k
i

H
∣∣∣

+ di − tr
(
Wk

i

H
Ek
iW

k
i

))
(54a)

s.t. (53b), (54b)
where W := {Wk

i , ∀i ∈ I, ∀k ∈ FK}. The above problem
is not tractable in the current form, due to the inner min-max
structure. Following the max-min exchange introduced in [47,
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Section III], and undertaking similar steps as in (43)-(52a) the
problem (54) is turned into

max
V,U,W,T,M

∑
i∈I

∑
k∈FK

(
2log

∣∣Wk
i

∣∣+ di −
∑
j∈I

τkij

)
(55a)

s.t. Fki,j � 0, Gi � 0, ∀i, j ∈ I, k ∈ FK , (55b)

where Fki,j ,Gi are defined in (52). It is observable that the
transformed problem holds a separately, but not a jointly, con-
vex structure over the optimization variable sets. In particular,
the optimization over V,T,M and U,T,M are cast as SDP
in each case when other variables are fixed. Moreover, the
optimization over W can be efficiently implemented using
the MAX-DET algorithm [55], see Algorithm 4. Similar to
Algorithm 3, due to the monotonic increase of the objective
in each optimization iteration the algorithm convergences to a
stationary point. See [47, Section III] for arguments regarding
convergence and optimization steps for a problem with a
similar variable separation.

Algorithm 4 AltSDP-WMMSE algorithm for worst-case rate max-
imization under CSI error

1: Algorithm 1, Steps 1-3 (initialization)
2: repeat
3: W,T,M← solve MAT-DET (52), with fixed V,U
4: Algorithm 3, Steps 4-6
5: until a stable point, or maximum number of ` reached
6: return {U,V}

D. Worst case CSI error
It is beneficial to obtain the least favorable CSI error

matrices, as they provide guidelines for the future channel
estimation strategies. For instance, this helps us to choose
a channel training sequence that reduces the radius of the
CSI error feasible regions in the most destructive directions.
Moreover, such knowledge is a necessary step for cutting-set-
based methods [56] which aim to reduce the design complexity
by iteratively identifying the most destructive error matrices
and explicitly incorporating them into the future design steps.
In the current setup, the worst-case channel error matrices are
identified by maximizing the weighted MSE objective in (41)
within their defined feasible region. This is expressed as

max
Y

∑
i∈I

∑
k∈FK

tr
(
Wk

i
HEk

iW
k
i

)
, (56a)

s.t.
∥∥Dk

ij∆
k
ij

∥∥
F
≤ ζkij , ∀i, j ∈ I, k ∈ FK . (56b)

Due to the uncoupled nature of the error feasible set, and the
value of the objective function over ∆k

ij , following (43), the
above problem is decomposed as

min
bkij

−
∥∥∥Ck

ijD̃
k
ijb

k
ij

∥∥∥2
2
− 2Re

{
bkij

HD̃k
ij
HCk

ij
Hckij

}
− ckij

Hckij

(57a)
s.t. bkij

Hbkij ≤ ζkij2, (57b)
where Re{·} represents the real part of a complex value. Note
that the objective in (57a) is a non convex function and can not
be minimized using the usual numerical solvers in the current
form. Following the zero duality gap results for the non-convex

quadratic problems [57], we focus on the dual function of (57).
The corresponding Lagrangian function to (57) is constructed
as
L
(
bkij , ρ

k
ij

)
=

bkij
HAk

ijb
k
ij − 2Re

{
bkij

HD̃k
ij
HCk

ij
Hckij

}
− ckij

Hckij − ρkijζkij2,
(58)

where ρkij is the dual variable and

Ak
ij := ρkijINjMi

− D̃k
ij
HCk

ij
HCij

kD̃k
ij . (59)

Consequently, the value of the dual function is obtained as
g
(
ρkij
)
=

− ckij
HCk

ijD̃
k
ij

(
Ak
ij

)−1
D̃k
ij
HCk

ij
Hckij − ckij

Hckij − ρkijζkij2,
if Ak

ij � 0, and D̃k
ij
HCk

ij
Hckij ∈ R{Ak

ij}, and otherwise is
unbounded from below12. By applying the Schur complement
lemma, the maximization of the dual function is written using
the epigraph form as

max
ρkij≥0, φkij

− φkij (60a)

s.t.

[
φkij − ckij

Hckij − ρkijζkij2 ckij
HCk

ijD̃
k
ij

D̃k
ij
HCk

ij
Hckij Ak

ij

]
� 0,

(60b)
where φkij ∈ R is an auxiliary variable13. By plugging the
obtained dual variable ρkij into (58), and considering the fact
that −D̃k

ij
HCk

ij
HCk

ijD̃
k
ij +ρ

k
ij
?INjMi � 0 as a result of (60),

the optimal value of bkij is obtained from (58) as

bkij
? =

(
−D̃k

ij
HCk

ij
HCk

ijD̃
k
ij + ρkij

?INjMi

)−1
D̃k
ij
HCk

ij
Hckij ,

where (·)? represents the optimality and the worst case ∆k
ij is

consequently calculated via vec(∆k
ij) = D̃k

ijb
k
ij
?.

E. Computational complexity

The proposed designs in Section III and V are based on the
alternative design of the optimization variables. Furthermore,
it is observed that the consideration of non-linear hardware
distortions, leading to ICL, as well as the impact of CSI error,
result in a higher problem dimension and thereby complicate
the structure of the resulting optimization problem. In this
part, we analyze the arithmetic complexity associated with the
Algorithm 3. Note that Algorithm 3 is considered as a general
framework, containing Algorithm 1 as a special case, since it
takes into account the impacts of hardware distortion jointly
with CSI error.

The optimization over V,U are separately cast as SDP. A

12If one of the aforementioned conditions is not satisfied, an infinitely large
value of bij can be chosen in the negative direction of Aij , if Ak

ij is not
positive semi-definite, or in the direction D̃k

ij
HCk

ij
Hckij within the null-space

of Ak
ij .

13Note that the semi-definite presentation in (60b) automatically satisfies
Ak
ij � 0, and D̃k

ij
HCk

ij
Hckij ∈ R{Ak

ij}.
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general SDP problem is defined as

min
z

pT z, s.t. z ∈ Rn, Y0 +

n∑
i=1

ziYi � 0, ‖z‖2 ≤ q,

where the fixed matrices Yi are symmetric block-diagonal,
with M diagonal blocks of the sizes lm×lm, m ∈ FM , and de-
fine the specific problem structure, see [58, Subsection 4.6.3].
The arithmetic complexity of obtaining an ε-solution to the
defined problem, i.e., the convergence to the ε-distance vicinity
of the optimum is upper-bounded by

O(1)

(
1 +

M∑
m=1

lm

) 1
2
(
n3 + n2

M∑
m=1

l2m + n

M∑
m=1

l3m

)
digit (ε) ,

where O(1) is a positive constant and invariant to the problem
dimensions [58], and digit(ε) is obtained from [58, Sub-
section 4.1.2] and affected by the required solution precision.
The required computation of each step is hence determined by
size of the variable space and the corresponding block diagonal
matrix structure, which is obtained in the following:

1) Optimization over V,T,M: The size of the variable
space is given as n = 2K

(
4 +

∑
i∈I diNi

)
. Moreover, the

block sizes are calculated as lm = 2 + 2KdiNi, ∀i ∈ I,
corresponding to the semi-definite constraint on Gi, and as
lm = 2 + 2d̃ij + 2MiNj , ∀i, j ∈ I, k ∈ FK , corresponding
to the semidefinite constraint on Fki,j from (52). The overall
number of the blocks is calculated as M = 2 + 4K.

2) Optimization over U,T,M: The size of the variable space
is given as n = 2K

(
4 +

∑
i∈I diMi

)
. The block sizes are

calculated as lm = 2 + 2d̃ij + 2MiNj , ∀i, j ∈ I, k ∈ FK ,
corresponding to the semidefinite constraint on Fki,j from (52).
The overall number of the blocks is calculated as M = 4K.

3) Remarks: The above analysis intends to show how the
bounds on computational complexity are related to different
dimensions in the problem structure. Nevertheless, the actual
computational load may vary in practice, due to the structure
simplifications and depending on the used numerical solver.
Furthermore, the overall algorithm complexity also depends
on the number of optimization iterations required for conver-
gence. See Subsection VI-A for a study on the convergence
behavior, as well as a numerical evaluation of the algorithm
computational complexity.

VI. SIMULATION RESULTS

In this section we evaluate the behavior of the studied
FD MC system via numerical simulations. In particular, we
evaluate the proposed designs in Sections III and V for
various system situations, and under the impact of transceiver
inaccuracy and CSI error. Communication channels Hk

ii follow
an uncorrelated Rayleigh flat fading model with variance ρ.
For the SI channel we follow the characterization reported in
[42], indicating a Rician distribution for the SI channel. In this
respect we have Hij ∼ CN

(√
ρsiKR
1+KR

H0,
ρsi

1+KR
IMi
⊗ INj

)
where ρsi represents the SI channel strength, H0 is a deter-
ministic term,14 and KR is the Rician coefficient. For each
channel realization, the resulting performance is evaluated by

14For simplicity, we choose H0 as a matrix of all-1 elements.
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Figure 2. Average convergence behavior for AltQCP and AltSDP algorithms.
AltQCP converges with fewer steps, and leads to a smaller optimality gap
compared to AltSDP. Both algorithms converge in 10-30 iterations.
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Figure 3. Comparison of the algorithm computational complexities, in terms
of the required CPU time (CT), for different system dimensions, i.e., different
K and M . κ represents the hardware inaccuracy, i.e., Θrx,i = κIMi ,Θtx,i =
κINi .

employing different design strategies and for various system
parameters. The overall system performance is then averaged
over 100 channel realizations. Unless otherwise is stated, the
following values are used to define our default setup: K = 4,
KR = 10, M := Mi = Nj = 2, ρ = −20 dB, ρsi = 1,
σ2

n := σ2
i,k = −30 dB, Pmax := Pi = 1, di = 1, κ = −30 dB

where Θrx,i = κIMi
and Θtx,i = κINi , and ζkij = −15 dB,

ωi = 1, ∀i, j ∈ I, k ∈ FK .

A. Algorithm analysis
Due to the alternating structure, the convergence behavior of

the proposed algorithms is of interest, both as a verification for
algorithm operation as well as an indication of the algorithm
efficiency in terms of the required computational effort. In
this part, the performance of AltQCP and AltSDP algorithms
are studied in terms of the average convergence behavior and
computational complexity. Moreover, the impact of the choice
of the algorithm initialization is evaluated.
In Fig. 2 the average convergence behavior is depicted for dif-
ferent values of κ [dB]. In particular, ”Min” and ”Avg” curves
respectively represent the minimum, and the average value of
the algorithm objective at the corresponding optimization step
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over the choice of 20 random initializations. Moreover, ”RSM”
represents the right-singular matrix initialization proposed in
[46, Appendix A]. It is observed that the algorithms converge,
within 10− 30 optimization iterations, specially as κ is small.
Although the global optimality of the final solution can not be
verified due to the possibility of local solutions, the numerical
experiments suggest that the applied RSM initialization shows
a better convergence behavior compared to a random initi-
alization. Moreover, it is observed that a higher transceiver
inaccuracy results in a slower convergence and a gap with
optimality. This is expected, as larger κ leads to a more
complex problem structure. Note that the algorithm AltQCP
shows a smaller value of objective compared to that of AltSDP
for any value of κ, since the impact of CSI error is not
considered in the algorithm objective.

In addition to the algorithm convergence behavior, the
required computational complexity is affected by the problem
dimension, and the required per-iteration complexity, see Sub-
section V-E. In Fig. 3, the required computation time (CT) is
depicted for different number of antennas, as well as different
number of subcarriers15. It is observed that the AltSDP results
in a significantly higher CT, compared to AltQCP. This is
expected as the consideration of CSI error in AltSDP results
in a larger problem dimension, and hence higher complexity.
Moreover, the obtained closed-form solution expressions in Al-
tQCP result in a more efficient implementation. Nevertheless,
the required CT for AltQCP is still higher than the threshold-
based low-complexity approaches, see Subsection VI-B1, due
to the expanded problem dimension associated with the impact
of RSI and ICL.

B. Performance comparison
In this part we evaluate the performance of the proposed

AltSDP and AltQCP algorithms in terms of the resulting
worst-case MSE, see Subsection V-D, under various system
conditions.

1) Comparison benchmarks: In order to facilitate a me-
aningful comparison, we consider popular approaches for
the design of FD single-carrier bidirectional systems, or the
available designs for other MC systems with simplified as-
sumptions, see Subsection I-A. The following approaches are
hence implemented as our evaluation framework:
• AltSDP: The AltSDP algorithm proposed in Section V. The

impact of the hardware distortions leading to ICL, as well
as CSI error are taken into account.

• AltQCP: The AltQCP algorithm proposed in Section III. The
algorithm operates on the simplified assumption that the CSI
error does not exist, i.e., ζ = 0, and hence focuses on the
impact of hardware distortions.

• HD: The AltSDP algorithm is used on an equivalent HD
setup, where the communication directions are separated via
a time division duplexing (TDD) scheme.

15Please note that the obtained CT may change depending on the used
software or hardware platforms. Hence, they are reported merely as a nume-
rical comparison measure [59], [60]. The reported CT is obtained using an
Intel Core i5 − 3320M processor with the clock rate of 2.6 GHz and 8 GB
of random-access memory (RAM). As our software platform we have used
MATLAB 2013a, on a 64-bit operating system.

• κ = 0: The impact of CSI error is taken into account similar
to, e.g., [15], [29]. Nevertheless the impact of hardware
distortion, leading to ICL, is ignored.
• SC: The optimal single carrier design applied to the defined

MC system, following a similar approach as in [12], [16].
The impact of CSI error and hardware distortions are taken
into account.

Other than the approaches that directly deal with the impact
of RSI, e.g., [12], [16], a low complexity design framework is
proposed in [13], [14], by introducing an interference power
threshold, denoted as Pth. In this approach, it is assumed that
the SI signal can be perfectly subtracted, given the SI power
is kept below Pth. In this regard, we evaluate the extended
version of [14] on the defined MC setup for three values of
Pth:
• Pth−{∞,High,Low}: representing a design by respectively

choosing Pth = ∞, Pi, Pi/10, representing a system with
perfect, high, and low dynamic range conditions.
2) Visualization: In Figs. 4 (a)-(h) the average performance

of the defined benchmark algorithms in terms of the worst-
case (WC) MSE are depicted. The average sum rate behavior
of the system is depicted in Fig. 4 (i)-(l).

In Fig. 4 (a) the impact of transceiver inaccuracy is depicted
on the resulting WC-MSE. It is observed that the estimation
accuracy is degraded as κ increases. For the low-complexity
algorithms, where the impact of hardware distortion is not
considered, the resulting MSE goes to infinity as κ increases.
Nevertheless, the resulting MSE reaches a saturation point for
the distortion-aware algorithms, i.e, AltSDP and AltQCP. This
is since for the data streams affected with a large distortion
intensity, the decoder matrices are set to zero which limits the
resulting MSE to the magnitude of the data symbols. More-
over, the AltSDP method outperforms the other performance
benchmarks for all values of κ. It is worth mentioning that
the significant gain of an FD system with low κ over the
HD counterpart, disappears for a larger levels of hardware
distortion where AltSDP and HD result in a close performance.

In Fig. 4 (b) the impact of the CSI error is depicted. It is
observed that the estimation MSE increases for a larger value
of ζ. For the low-complexity algorithms where the impact of
CSI error is not considered, the resulting MSE goes to infinity,
as ζ increases. Nevertheless, the performance of the AltSDP
method saturates by choosing zero decoder matrices, following
a similar concept as for Fig. 4 (a). It is observed that the
performance of the AltSDP and AltQCP methods deviate as
ζ increases, however, they obtain a similar performance for a
small ζ. Similar to Fig. 4 (a), a significant gain is observed
in comparison to the HD and SC cases, for a system with
accurate CSI.

In Fig. 4 (c) the impact of the thermal noise variance is
depicted. It is observed that the resulting performance degrades
for the distortion-aware algorithms, as the noise variance
increases. Nevertheless, we observe a significant performance
degradation for the threshold-based algorithms, particularly
Pth−Low, in the low noise regime. This is since the imposed
interference power threshold tends to reduce the transmit
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power, which results in a larger decoder matrices in a low-
noise regime. This, in turn, results in an increased impact
of distortion. Nevertheless, as the noise variance increases,
the algorithm chooses decoding matrices with a smaller norm
in order to reduce the impact of noise. This also reduces
the impact of hardware distortions. Similar to Fig. 4 (a), the
proposed AltSDP method outperforms the other comparison
benchmarks. It is observed that the performance degradation
caused by ignoring the CSI error in AltQCP, or by applying a
simplified single carrier design, is significant particularly for
a system with a small noise variance.

In Fig. 4 (d) the impact of the communication channel
strength is observed on the resulting system performance. It
is observed that the MSE decreases in most parts as the
communication channel becomes stronger. Nevertheless, the
system performance saturates, due to the impact of hardware
distortion which increase proportional to the transmit/receive
power at each chain. Moreover, the performance of the met-
hods with a perfect hardware/CSI assumption saturates at a
higher MSE, due to the impact of the ignored effect. Moreover,
the algorithms AltQCP and AltSDP result in an approximately
similar performance for a system with a high channel strength.
This is since for a high ρ regime, the impact of thermal noise
and CSI error become less significant. As a result the system
performance is dominated by the impact of distortion which
is amplified due to the higher channel strength.

In Fig. 4 (e) the impact of the number of subcarriers is
observed on the resulting MSE. It is observed that a higher
number of subcarriers result in a higher error for all benchmark
methods. This is expected as a higher number of subcarriers
enables a higher number of communication streams, resulting
in a lower available per-stream power. The performance of
the SC design reaches optimality of a single carrier system,
as expected. Nevertheless the performance of the SC scheme
deviates from optimality as K increases, and results in the
highest MSE in comparison to the evaluated benchmarks, for
K ≥ 5. This is expected, as higher independent subcarriers
represent a channel with a higher frequency selectivity which
calls for a specialized MC design.

In Fig. 4 (f) the impact of the number of antennas is obser-
ved. As expected, a higher number of antennas results in an
increased performance for all of the performance benchmarks.
In particular, a higher number of antennas enables the system
to better overcome the CSI error, for a fixed ζ, and also to
direct the transmit power in the desired channel and not in the
SI path.

In Fig. 4 (g) the impact of the accuracy of transmit and
receiver chains are studied, where κ[dB]+β[dB] = Ksum, i.e.,
the sum-accuracy (in dB scale) is fixed. For instance, for an FD
transceiver with massive antenna arrays where the utilization
of analog cancelers is not feasible, and also the quantization
bits are considered as costly resources, the value of Ksum is
related to the total number of quantization bits. The similar
evaluation regarding the number of transmit/receive antennas is
performed in Fig. 4 (h), where Mt+Mr =Msum. It is observed
that different available resources, i.e., Ksum, Msum, result in
different optimal allocations. However, as a general insight, it
is observed that the performance is degraded when resources

are concentrated only on transmit or receive side. Please note
that similar approach can be used for evaluating different cost
models for accuracy and antenna elements, regarding different
system setups, or SIC specifications.

In Fig. 4 (i)-(l) the average sum rate behavior of the system
depicted. In Fig. 4 (i), the impact of hardware inaccuracy is
depicted. It is observed that a higher κ results in a smaller
sum rate. Moreover, the obtained gains via the application
of the defined MC design in comparison to the designs with
frequency-flat assumption, and via the application of FD setup
in comparison to HD setup, are evident for a system with
accurate hardware conditions. Conversely, it is observed that a
design with consideration of hardware impairments is essential
as κ increases. In Fig. 4 (j) and (k), the opposite impacts of
noise level, and the maximum transmit power are observed on
the system sum rate. It is observed that the system sum rate
increases as noise level decreases, or as the maximum transmit
power increases16. In both cases, the gain of AltQCP method,
in comparison to the methods which ignore the impact of
hardware distortions are observed for a high SNR conditions,
i.e., for a system with a high transmit power or a low noise
level. In Fig 4 (l) the performance of the asymmetric setup,
studied is Section IV, is depicted, assuming |I| = 5, and
di = 1. It is observed that the gain of FD system (over the
HD counterpart) vanishes rapidly as the hardware distortions
increase.

VII. CONCLUSION

The application of bi-directional FD communication pre-
sents a potential for improving the spectral efficiency. Nevert-
heless, such systems are limited due to the impact of RSI. This
issue becomes more crucial in a MC system, where the RSI
spreads over multiple carriers, due to the impact of hardware
distortion. In this work we have presented a modeling and
design framework for an FD MIMO OFDM system, taking
into account the impact of hardware distortions leading to ICL,
as well as the impact of CSI error.

It is observed that the application of a distortion-aware
design is essential, as transceiver accuracy degrades, and ICL
becomes a dominant factor. Moreover, a significant gain is
observed compared to the usual single-carrier approaches, for
a channel with frequency selectivity. However, the aforemen-
tioned improvements are obtained at the expense of a higher
design computational complexity.

APPENDIX

We start the proof with the characterization of the impact
of distortion on the transmit chains. The proof to the receiver
characterization is obtained similarly. The statistical indepen-
dence properties at the frequency domain directly follows
from the time domain statistical independence et,l(t)⊥vl(t),
and et,l(t)⊥et,l′ (t), and the linear nature of the transformation
in (10). The Gaussian and zero-mean properties similarly
follow for ekt,l as a linearly weighted sum of the zero-mean

16For the algorithms with a zero-distortion assumption, the maximum allo-
wed transmit power is utilized to reduce the impact of thermal noise. However,
this result in an amplified distortion effect, and a reduced performance as SNR
increases, also see the MSE peaks in Fig. 4 (c)-(d) for the same algorithms.
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Gaussian values et,l(mTs). The variance of ekt,l can be hence
obtained as

E
{∣∣∣ekt,l∣∣∣2}=E

{
1

K

(
K−1∑
m=0

et,l(mTs)e
− j2πmk

K

)(
K−1∑
n=0

e∗t,l(nTs)e
j2πnk
K

)}
(61)

=
1

K

K−1∑
m=0

K−1∑
n=0

E
{
et,l(mTs)e

∗
t,l(nTs)

}
e−

j2π(m−n)k
K (62)

= κlE
{
|vl(t)|2

}
(63)

=
κl
K

K∑
m=1

E
{
|vml |2

}
(64)

where (61) is obtained via direct application of (10), and
(63) is obtained from (6), and the statistical independence of
et,l at the subsequent time samples from (7). The identity (64)
follows from the Parseval’s theorem on the energy conversation
over orthonormal Fourier basis.
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