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Analysis of Mobile Packet Radio Networks 
in Rayleigh Fading Environments 

Rudolf Mathar, Jurgen Mattfeldt, and Rolf Hager 

Abstract-In this paper, we consider a Rayleigh fading channel 
for mobile radio networks. The distribution of cumulated in- 
stantaneous interference power is determined when interfering 
stations are located at random. The corresponding distances 
from a reference station are represented by a (deterministically 
delayed) renewal process with finite horizon. This distribution 
serves as a basis for determining the probability of successful 
transmission. We start with a short survey on existing models in 
the literature. 

I. INTRODUCTION 

OMMUNICATION within mobile radio environments C has drawn increasing attention during the last years. 
An economical use of the scarce resource “radio channel” 
is essential, due to growing networks with large numbers of 
stations. The results are narrowband radio frequency channels 
shared among varying numbers of radio stations. 

Research in the field of mobile communication has produced 
a lot of investigations on different components of communi- 
cation systems. In this paper, we focus on modeling the most 
important communication resource, the channel itself. There 
exist a large number of characteristics leading to different 
mathematical models which allow for analytical investigations 
of communication systems. 

In its simplest form, the transmitted signal power is assumed 
to be constant within the transmission range, leading to the 
so-called ideal channel model. A more realistic model must 
take account of the variation of signal strength (depending on 
time and space), called fading. Multipath propagation causes 
short-term variations of signal power, which usually is very 
closely approximated by a Rayleigh distribution. In the case 
of a direct line of sight, this probability law is replaced by a 
Rice distribution. The movement of vehicles is accompanied 
by shadowing effects due to obstacles like buildings in urban 
environments, large vehicles (trucks), etc. Therefore, the area 
mean signal power varies slowly compared to short-term 
variation. Lognormal distributions are well suited to describe 
the variability of the mean. 

Due to the competition for channel capacity by different 
stations. cochannel interference occurs. This can be modeled 
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either as binary (complete destruction in the case of a colli- 
sion), or depending on the strongest received signal power. 
If a specific capture ratio is exceeded, the strongest signal 
succeeds, and this signal is captured by the receiver. The 
capture effect has strong impacts on the performance of mobile 
communication networks [ 101. Typical bit or packet error rates 
directly result from certain fading and capture conditions. 

Obviously, the performance of a communication system un- 
der a certain network and node model is heavily influenced by 
the channel model. In the literature, various publications with 
specific configurations of models and evaluation techniques 
can be found. Subsequently, we give a brief survey. 

The simple ideal channel model has served as a basis for a 
number of investigations on network performance with radio 
channels using the slotted ALOHA protocol, see [5],  [7], [8], 
[ 121. In this paper, we generalize the spatial distributional 
model used in these references. 

A more realistic channel model is used in [3], taking 
into account the propagation power law. The authors analyze 
packet radio networks (PRN’s) with slotted ALOHA and 
capture. Different improvements of throughput due to capture 
ratios, and additional techniques for analyzing performance 
are considered. 

In the following publications, analyses of fading effects 
can be found. Hansen and Meno [4] investigate bit error 
rates (BER) under the condition of superimposed lognormal 
distribution of area mean signal level and a Rayleigh fading 
threshold model. A strong interdependence between BER and 
relative signal level is shown. French [2] studies the effect of 
Rayleigh fading on channels. Quantitative interrelationships 
between cochanne! interference and reuse distance factors are 
found. Zainal and Garcia [ 131 consider ALOHA channels 
with Rayleigh fading and different capture threshold models. 
Various results on throughput and load under specific noise 
considerations are investigated. Prasad [ 101 analyzes PRN’s 
with Rayleigh fading channels with capture and lognormal dis- 
tributed area mean signal power. Network nodes are assumed 
to access the channel by the ISMA protocol. Interesting curves 
of throughput are obtained. Prasad and Liu [ l l ]  compare 
ALOHA and ISMA type protocols in Rice and Rayleigh 
fading environments with capture. No specific mobility model 
is used in [lo], [ 1 I]. The number of interferers is assumed 
as Poissonian, all interferers with i.i.d. distances from the 
reference station. This, of course, is strongly simplifying. 

Further performance investigations first of all need a more 
refined channel model. A key point is to investigate the 
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environment), see [6 ] .  Accordingly, the distribution of the 
signal power X of T at E is characterized by the density - - ---- ' d" d"x 

0 c1 cz c3 c4 M k k 
T,  7 2  73  74 f x ( x )  = -exp ( - -), x 2 0. 

E 

Fig. 1. Location of stations. 

distribution of cumulated instantaneous interference power in 
a Rayleigh fading channel. Mathar and Mattfeldt [9] determine 
this distribution via Laplace transforms using a deterministic 
lattice and a Poisson point process as a model for positions of 
interferers in one and two dimensions, respectively. Though 
valuable approximations turn out, certain degeneracies occur 
due to the infinite location model with arbitrarily close stations. 

In this paper, we consider a renewal process controlling 
the distances of interfering stations, and truncate this process 
at a finite horizon M .  This seems to be a model closely 
adapted to certain realistic scenarios. Taking the capture effect 
into consideration, we will obtain numerical solutions of 
interference power distribution and probability of a successful 
transmission via an interesting integral equation. 

11. MODEL ASSUMITIONS 

We consider a station E being prepared to receive a signal 
from some transmitter T.  The distance between E and T is 
denoted by d. Furthermore, we assume an infinite number of 
interfering stations T I ,  Tz, . . . whose distances from E follow 
a (nondelayed) renewal process 

N = s w { n E N o I  c:="=,z 5 t } , t 2 0 ,  (1) 

with i.i.d. interarrival times (spacings between neighboring 
stations) rn, n E N. 7, is assumed to have density f T ( y )  
with distribution function 

F7(y) < 1 for all y E R. and F ( 0 )  = 0. ( 2 )  

The whole scenario may be visualized by locating E at the 
origin of the nonnegative real axis, and interfering stations at 
positions 0 < C1 < Cz < . . . E W. We take account of the 
process only up to a finite horizon, given by a fixed number 
M .  Fig. 1 gives a comprehensive view of the locations. 

Transmission of T to E is jammed by transmission of 
stations in the interval [O, MI whose number Nhf is random 
and finite with probability one. The cumulated instantaneous 
interference power at E may be described by the random 
variable 

Furthermore, X and {Sz, rz } ,  i E N are assumed to be 
independent. 

We take account of the capture effect, i.e., the ability of E to 
capture the reference signal from T ,  if its power X sufficiently 
exceeds the joint power S of all interfering stations. Thus, the 
probability of a successful transmission from T to E is given 
by 

Psuc = P ( X  2 K , X / S  2 7 )  

P(S  5 X / y  I X = x ) f x ( x )  dx 
= lm 
= lm P ( s  L x/r)fx(x) dx, ( 5 )  

where K is a certain minimum threshold for a signal to be 
decodable, and y denotes the relevant capture (signal-to-noise) 
ratio. 

The key problem in (5) is to determine Fs,  the distribution 
function of cumulated instantaneous interference power S .  For 
this purpose, we introduce the delayed renewal process 
a 2 0, which will play an important role in the following: 

= sup { n  E No I a + c,"=l rZ 5 t } , t  2 0. (6) 

where sup 8 is defined as zero. In our context, N,(") counts the 
number of interfering stations within distance t ,  when each T, 
is located at a + El=, r e .  Obviously, it holds that N,(O) = Nt 
from (1). Analogously to the above we define 

as the sum of interference power S,!") over all stations T; 
within distance M ,  when stations are distributed according to 
the process N,("). Let 

(7) 

denote the distribution function of S(").  By successively 
conditioning on the position of the first interfering station TI 
and its signal power S:") at E ,  we get the following: 

g(a, s )  = P(S(" )  5 s ) ,  s 2 0, 

P(S(" )  5 s) = P ( N k )  = 0) 

+ LM-" P(S(" )  5 s I c1 = y + a )  . f,(y) dy 

= 1 - F . ( M  - a )  
r M - a  P S  

(3) 

S,  denoting the individual transmission power of station Ti at + J, f,(y) J P(S(" )  5 s I c1 = y + a,  si"' = r )  
0 

'(51 + '1.. ) dr dy 
IC 

cxp ( - (Y + E.  We assume a Rayleigh fading channel with no direct line 
of sight between transmitting stations and E ,  such that the 
distribution of S,, conditional on C, = d,, has density 

.~ 
k 

= 1 - F,(M - a )  

where k d i a  is the average signal power determined by the 
constant k (electromagnetic environment) and CY E [Z, 51 (radio 
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This yields the following integral equation for g(a ,  s), ( a ,  s )  E 
[ O ; M ]  x [0,m) = VM. 

g ( a ,  s )  = 1 - F,(M - a )  

. g ( a + y , s - r ) d r d y  
= 1 - F,(M - u )  

+ .pJ,” f T ( Y  - a)  h(Y, s - .) S(Y. .) dr 44 (8) 

where h(y. r )  = $ exp ( - q), r, y 2 0. The distribution 
function of S in (3) is obtained from a solution as g(O,s), 
s 2 0. 

111. SOLVING THE INTEGRAL EQUATION 

The aim of this chapter is to show that g(u,s)  is com- 
pletely characterized by the integral equation (8). Moreover, a 
numerical method to calculate g(a,  s) is given. Both aspects 
are pursued by the following theorem and its proof. 

Theorem: Let F ( y )  be a distribution function with F(0)  = 
0, F ( y )  < 1 for all y E W, and continuous density f (y) ,  y E R. 
Suppose that the function h(u. u )  2 0, u. IJ 2 0, is continuous 
and fulfills h( u. 1 1 )  dv = 1 for all ‘u > 0. Then, for each 
fixed M > 0, the integral equation 

g(.. s )  = 1 - F ( M  - u )  

+ ii’f 1‘ f ( Y  - a )  h(Y, s - g ( Y .  r )  dr dY 

(a.3) E VAf (9) 

has a unique continuous solution on VLv. 

mation [l], we consider the sequence {gn}nE-+, with 
Proofi According to the method of successive approxi- 

go(& s )  = 1 - F ( M  - a ) ,  ( a .  s )  E Vnr 
gn+l (n .  5) = 1 - F ( M  - a )  

+ l’yf(,v - a) h(y, s - r )  Sn(Y, T )  fh dy 

( a ,  s) E VAI. (10) 

By assumption, for q~ = S U ~ , ~ [ ~ , ~ ~ ~  F(.L-), we have qhf < 1 
and 
190(”.S) - Y l ( U .  9>1 

= .I,”J;’ j ( y  - u )  h(y. s - r )  (1 - F ( M  - y)) dr  dy 

I l-’f f ( Y  - a) h ( Y ,  .s - .) drd?l 
&I 

I f(Y - a )  4 4  I q h I .  

It follows that for all n E No 

Isr1(a..5) - YrL+l(a.S)I 

I / ” y > ( Y - a ) h ( y . - 5  a 0  -.) 1gn(Y . r )  - g n - I ( Y , T ) l d r d s  

A I 
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since by induction l gn - l (a ,  s )  - gn(a,s)l 5 q i f , 7 L  E N. The 
sequence {gn}nENo converges uniformly on [O, M] x [O, m), - ~ ( m  -+ ca), m I n. ( a , s )  E Vnr. The 
limit function g of the sequence {gn}7LENo satisfies integral 
equation (9), since 

t ~ ~ u s e  lgn(Z) - gm(.)I I Cy=m lgz+l(u. S) - gz (a , s ) I  I 

g ( a , s )  = lim g n ( a , s )  
n+m 

=1- F ( M  - a )  

+ l h f l S f ( y  - u )  h(y , r  - s )  n-+m lim g n - l ( y . r ) d r d y  

=1- F ( M  - a )  

+LAfiSf(Y - a )  h(Y. r - 3) d Y ,  dr dy.  

Limit and integrals may be interchanged because {gn}nENo is 
a uniformly convergent sequence of continuous functions. 

Now, suppose that g ( a , s ) ,  ( a s )  E V A f ,  is a different 
continuous solution of (9). Let V~2.s = { ( a ,  s) E V,W 10 5 
s I SI, s > 0, and llgllDnr s = s~P(,.s)ED,,,,s I.G(a. s)l. Then, 

and for arbitrary n E N 

Unfortunately, in this case, the method of successive approx- 
imation cannot be applied because the integral operator Z, 
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0.5 

S 

Fig. 2. g ( 0 . s ) .  0 5 rr 5 10, 0 5 .s 5 20, X = 0.75, M = 10. 

defined by 

fails to be a contraction. 

IV. NUMERICAL RESULTS 

It seems to be rarely hard to derive a closed form expression 
g(a,  s) from integral equation (9). Nevertheless, the proof 
of existence and uniqueness of a solution is numerically 
constructive. Carrying out iteration (1  1) on a discrete grid for 
( a . s )  over D,bf allows us to calculate a solution at arbitrary 
precision. 

We have applied this idea to g(a, s) with a Poisson process 
describing positions of interfering stations, Le., i.i.d. exponen- 
tially distributed interarrival times T~ in ( 2 )  with density 

f p ( y )  z e--xy , Y20. 
The following calculations are based on the settings a = 2 
(free space propagation) and k = 1. Varying k simply means 
to rescale units of signal power. Fig. 2 shows the points 
g(a, s) plotted against ( a ,  s) as a 3-D surface in the rectangle 
0 5 Q 5 10, 0 5 s 5 20, for X = 0.75 and A4 = 10. As is 
expected from representation (7), g(a,  s) increases for fixed s 
with increasing delay constant a, i.e., stochastically decreasing 
interference power S(").  On the other hand, for any fixed a, 
we have a distribution function in s with an atom at s = 0 
corresponding to the event {S(") = O}. 

The cut at a = 0, i.e., g(0, s ) ,  s 2 0, yields the distribution 
function of cumulated interference power S in (3), which 
is represented in Fig. 3 for X = 0.1, 0.25, 0.5, 0.75, and 
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Fig. 3. g(0 .s ) .  0 5 s 5 20, X = 0.1.0.25.0.5,0.75, M = 10. 

0.: 1 
0.6 

Fig. 4. psuc(ti-.?). d = 3, A = 0.5,  Aif = 10. 

M = 10. With the help of this distribution function, the 
probability of a successful transmission p,,, may be derived 

Fixing X and the distance d between receiving and reference 
station, p,,, is a function of threshold K and signal-to-noise 
ratio y. Figs. 4 and 5 show psuc as a 3-D surface plot in the 
domain 0 5 ~ , y  5 10 for d = 1, A4 = 10, and X = 0.5 and 
0.2, respectively. The expected number of interfering stations 
in the interval [O, M ]  is 5 (0.5 stations between E and T 
on average) in the first case, and 2 (0.2) in the latter one. 
Obviously, p,,, increases as X decreases. It also becomes 
evident that even for moderate A-values the probability of a 
successful transmission is fairly low at reasonable values of 

by (5). 
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TABLE I1 
p b u C ( ~ r * , ) .  d = 1, X = 0.2, Ai = 10 

1.6 2.2 2.8 3.4 4.0 4.6 

0.3134 0.3042 0.2981 0.2861 0.2780 0.2752 
0.1195 0.1169 0.1150 0.1134 0.1123 0.1114 

0.8 

0.6 

0.4 

0 . 2  

0 

~ 

1 
2 
3 
4 
5 

~~ 

0.2266 0.2055 0.1894 0.1750 0.1618 0.1516 
0.0938 0.0871 0.0816 0.0766 0.0722 0.0689 
0.0367 0.0345 0.0326 0.0312 0.0299 0.0285 
0.0140 0.0133 0.0128 0.0122 0.0116 0.0113 
0.0053 0.0051 0.0049 0.0047 0.0045 0.0044 

K and y. X = 0.2 and K = 2, y = 2.8 for instance give 
p,,, = 0.1150. 

Tables I and I1 contain selected values from Figs. 4 and 5, 
respectively. 

V. CONCLUSIONS 

Unfortunately, even in the simplest case when stations are 
distributed according to a homogeneous Poisson process, the 
distribution of cumulated instantaneous interference power is 
rather complicated. Subsequent analysis of communication 
protocols along the lines of [IO],  [ 1 I ]  seems to be very tedious 
under the realistic interference power distribution derived in 
this paper. What we need is an easy-to-manage, but accurate, 
analytical approximation of g(0, s), s 2 0. This will be aimed 
at in future work. 

As has been pointed out, the method of successive approx- 
imation fails if A4 = 3c1. On the basis of the results in [9], we 
claim that the Laplace transform of g(0. s )  is given by 

for the nontrivial, up to a multiplicative constant unique 
solution g(a:  s )  of (1 I ) ,  if positions of stations are distributed 
according to a Poisson point process. 

K ’  

1 
2 
3 
4 

- 

0.0452 0.0446 0.0431 0.0429 0.0428 0.0424 
0.0168 0.0166 0.0165 0.0162 0.0158 0.0157 

5 I 0.0063 0.0061 0.0060 0.0060 0.0059 0.0058 
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