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Abstract— In this paper, derivatives of mutual information
for a general linear Gaussian vector channel are considered.
We consider two applications. First, it is shown how the cor-
responding gradient relates to the minimum mean squared error
(MMSE) estimator and its error matrix. Secondly, we determine
the directional derivative of mutual information and use this
geometrically intuitive concept to characterize the capacity-
achieving input distribution of the above channel subject to
certain power constraints. The well-known water-filling solution
is revisited and obtained as a special case. Also for shaping
constraints on the maximum and the Euclidean norm of mean
powers explicit solutions are derived. Moreover, uncorrelated sum
power constraints are considered. The optimum input can here
always be achieved by linear precoding.

I. INTRODUCTION

In this paper, we consider linear vector channels with
Gaussian noise and input distribution, in standard notation,

Y = HX + n. (1)

The complex r × t matrix H describes the linear transfor-
mation the signal undergoes during transmission. The random
noise vector n ∈ Cr is circularly symmetric complex Gaussian
distributed (see [1]) with expectation 0 and covariance matrix
E(nn∗) = Ir, denoted by n ∼ SCN(0, Ir). Finally, X

denotes the complex zero mean input vector with covariance
matrix

E(XX∗) = Q

where Q may be selected from some set of nonnegative
definite feasible matrices Q. We assume complete channel
state information in that H is known at the transmitter and
the receiver.

An important example are multiple-input multiple-output
(MIMO) channels. Seminal work in [1] and [2] has shown
that the use of multiple antennas at both ends significantly
increases the information-theoretic capacity in rich scattering
propagation environments. Other systems can be described by
the same model, e.g., CDMA systems, broadcast and multiple-
access channels, as well as frequency-selective wideband
channels, cf. [3], [4].

The information-theoretic capacity is given by the maximum
of the mutual information as

C = max
Q∈Q

I(X, Y ) = max
Q∈Q

log det(I + HQH∗)

over all feasible covariance matrices Q = E(XX∗) of the
input X, see [1]. The diagonal elements (q11, . . . , qtt) of Q

represent the average power assigned to the transmit antennas.
Gradients and directional derivatives of mutual information

are the main theme of the present paper. After introducing the
general framework and notation in Section II, we establish an
interesting relation between information and estimation theory
in the vein of [5] in Section III. Furthermore, we explicitly
determine capacity-achieving distributions, or equivalently the
mean power assignment to subchannels, for four types of
power constraints in Section IV.

In case of sum power constraints at the transmitter, the
capacity and the associated optimum power strategy is given
by the well known water-filling principle, see [1], [6], [7], [8].
By our methodology, this solution is easily verified as being
optimal, and furthermore extended to shaping constraints of
the following type.

Since maxx∗x=1 x∗Qx = λmax(Q) holds, see [9, p. 510],
it follows that

max
1≤i≤t

qii ≤ max
1≤i≤t

λi(Q), (2)

where λmax(Q) denotes the maximum eigenvalue and
λ1(Q), · · · , λt(Q) the eigenvalues of Q. Furthermore,

t
∑

i=1

q2
ii ≤

t
∑

i,j=1

|qij |
2 =

t
∑

i=1

λ2
i (Q) (3)

holds for the average antenna powers qii. Any upper bound on
the maximum eigenvalue, or the Euclidean norm of the eigen-
values hence shapes the maximum power across antennas, or
the norm of the power vector, respectively, cf. [10].

Finally, uncorrelated power assignments are investigated
in Section IV-D which are appropriate when considering
multiple-access channels. Most of the effort found in literature
has gone into devising algorithms for numerical solutions. We
characterize optimal solutions by directional derivatives and
give explicit results in certain special cases, including the case
of linear precoding at the transmitter.

II. DERIVATIVES OF MUTUAL INFORMATION

We begin by introducing the general framework and
notation used throughout the paper. Let f be a real-valued
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concave function with convex domain C and x̂, x ∈ C. The
directional derivative of f at x̂ in the direction of x is defined
as

Df(x̂, x) = lim
α→0+

1

α

[

f
(

(1 − α)x̂ + αx
)

− f(x̂)
]

=
d

dα
f
(

(1 − α)x̂ + αx
)

∣

∣

∣

α=0+
,

(4)

see, e.g., [11]. Since f is concave,
(

f((1−α)x̂+αx)−f(x̂)
)

/α
is monotone increasing with decreasing α ≥ 0, and the
directional derivative always exists.

If C is a subset of a Hilbert space with inner product 〈·, ·〉,
it is well known that

Df(x̂, x) = 〈∇f(x̂), x − x̂〉, (5)

whenever ∇f , the derivative of f in the strong sense, exists.
Optimum points are characterized by directional derivatives

as follows, for a proof see, e.g., [11].

Proposition 1: Let C be a convex set and f : C → R a
concave function. Then the maximum of f is attained at x̂ if
and only if Df(x̂, x) ≤ 0 for all x ∈ C.

The geometrically intuitive concept of directional deriva-
tives is now used for determining the capacity of vector chan-
nel (1) subject to certain power constraints. By the arguments
in [1] capacity is obtained as the maximum of the mutual
information over all admissible input distributions of X as

C = max
Q∈Q

I(X, Y ) = max
Q∈Q

log det(Ir + HQH∗).

In the sequel we characterize the covariance matrix Q̂ that
achieves capacity by computing the directional derivative of
mutual information

f : Q → R : Q 7→ log det(Ir + HQH∗).

It is well known that f is concave whenever its domain Q is
convex such that the directional derivative exists.

Proposition 2: Let Q be convex and Q̂, Q ∈ Q. The
directional derivative of f at Q̂ in the direction of Q is given
by

Df(Q̂, Q) = tr
[

H∗(Ir + HQ̂H∗)−1H (Q − Q̂)
]

. (6)

The proof relies on the chain rule for real valued func-
tions of matrix argument X, and the fact that d

dX
det X =

(det X)(X−1)∗, cp. [12], where X∗ denotes the Hermitian
of X.

From (5) and Proposition 2 we also conclude that the strong
derivative of f at Q̂ in the Hilbert space of all complex t× t
matrices endowed with the inner product 〈A, B〉 = tr AB∗,
see [13, p. 286], amounts to

∇f(Q̂) = H∗(Ir + HQ̂H∗)−1H . (7)

III. APPLICATION I: GRADIENTS AND ESTIMATION

In this section we assume that Y = HX + n is a linear
vector channel with X and n not necessarily Gaussian. Denote
by C the covariance of noise n. The linear minimum mean
squared error (LMMSE) estimator in this non-Gaussian case
is equal to the MMSE estimator in the Gaussian case, which
is given in [5], [14]. A well known consequence of the
orthogonality principle (see [15]) is that the LMMSE estimator
X̂ is given by

X̂ = QH∗ (C + HQH∗)−1
Y

with error matrix

E =
(

Q−1 + H∗C−1H
)−1

. (8)

Leaving the non-Gaussian case and turning back to
model (1), we see that matrix Q − Q ∇f(Q) Q plays an
important role in this framework.

Proposition 3: The MMSE estimator and its error matrix
are related to the derivative of the mutual information by

X̂ =
(

Q − Q ∇f(Q) Q
)

H∗Y ,

E = Q − Q ∇f(Q) Q.

Proof: The representation of E is direct from (8). Using
the formula (I +A)−1A = I−(I +A)−1 with A = HQH∗

gives

Q ∇f(Q) QH∗Y

= QH∗[I + HQH∗]−1HQH∗Y

= QH∗
(

I − [I + HQH∗]−1
)

Y

= QH∗Y − X̂

which completes the proof.
A related connection between derivatives of mutual informa-

tion with respect to H and the MMSE estimator is presented
in the recent work [5]. Fundamental connections between the
derivative of the mutual information w.r.t. the SNR and the
MMSE are derived in [16].

IV. APPLICATION II: ACHIEVING CAPACITY

Achieving capacity with an appropriate power distribution
means to maximize f(Q) over the set of possible power
assignments Q. According to Proposition 1 some matrix Q̂

maximizes f(Q) over some convex set Q if and only if
Df(Q̂, Q) ≤ 0 for all Q ∈ Q. By (6) this leads to

tr
[

H∗(Ir + HQ̂H∗)−1H Q
]

≤ tr
[

H∗(Ir + HQ̂H∗)−1H Q̂
] (9)

for all Q ∈ Q. Hence, we obtain the following new charac-
terization of capacity-achieving covariance matrices.

Proposition 4: maxQ∈Q f(Q) is attained at Q̂ if and only
if Q̂ is a solution of

max
Q∈Q

tr
[

∇f(Q̂) Q
]

. (10)
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The main value of this equivalence is that once a candidate
for maximizing f(Q) over Q is claimed it can be verified by
merely checking the simple linear inequality (9). Moreover,
in concrete cases explicitly evaluable representation of the
optimum are obtained, as is developed in the following.

A. Sum Power Constraints

We first investigate total power constraints

Qtot = {Q ≥ 0 | tr Q ≤ L},

where Q ≥ 0 denotes that Q is Hermitian and nonnegative
definite. Obviously, the set Qtot is convex. Covariance matri-
ces Q which achieve capacity, i.e., solutions of

max
tr Q≤L

log det(Ir + HQH∗) (11)

are now characterized as follows.

Proposition 5: Q̂ is a solution of (11) if and only if

λmax

(

∇f(Q̂)
)

=
r

L
−

1

L
tr(Ir + HQ̂H∗)−1. (12)

Proof: On one hand

max
tr Q≤L

tr
[

∇f(Q̂)Q
]

= L λmax

(

∇f(Q̂)
)

,

and on the other

tr
[

∇f(Q̂)Q̂
]

= r − tr (Ir + HQ̂H∗)−1

holds. The assertion thus follows from (10).
It is easy to see that the well-known water-filling solution

Q̂wf = V diag(ν − γ−1
i )+V ∗

with the singular value decomposition H = UΓ 1/2V ∗

actually satisfies condition (12). Here, ν is defined as the
water level above the inverse positive eigenvalues γi of H∗H

defined by
∑

i:γi>0

(

ν − γ−1
i )+ = L.

Using H = UΓ 1/2V ∗ and the optimal solution Q̂wf it is
straightforward to show that λmax

(

∇f(Q̂)
)

= 1
ν . On the other

hand, using the same decomposition, after some algebra we
obtain tr

[

Ir−(Ir +HQ̂wfH
∗)−1

]

= L
ν , which verifies (12).

B. Maximum Eigenvalue Constraints

An analogous characterization can be derived if the maxi-
mum eigenvalue is bounded by some constant L as

Qmax =
{

Q ≥ 0 | λmax(Q) ≤ L
}

.

By inequality (2) this limits the maximum power across
antennas, hence forming a peak power constraint.

From Fischer’s minmax representation λmax(A) =
maxx∗x=1 x∗Ax, cf. [9, p. 510], it follows that the set Qmax

is convex. We aim at determining the solution of

max
λmax(Q)≤L

log det
(

Ir + HQH∗
)

. (13)

Proposition 6: The maximum in (13) is attained at Q̂ =
LIt with value

∑r
i=1 log(1 + Lγi), where γi, i = 1, . . . , r,

denote the eigenvalues of H∗H .

Proof: Let H = UΓ 1/2V ∗ denote the singular value
decomposition of H . An upper bound for maximization prob-
lem (10) with Q̂ = LIt is derived as

max
λmax(Q)≤L

tr
[

∇f(Q̂)Q
]

≤
r

∑

i=1

Lγi

1 + Lγi
,

where trAB ≤
∑

λ(i)(A)λ(i)(B) for the ordered eigenval-
ues of nonnegative definite Hermitian matrices A and B has
been used, see [9, H.1.g, p.248]. Equality holds if Q = LIt,
which proves optimality of Q̂ = LIt.

The optimum value itself is now easily determined by
inspection.

C. Sum of Squared Power Constraints

We consider constraints of the form

Qsqu =
{

Q = (qij)i,j=1,...,t ≥ 0 |
(

t
∑

i,j=1

|qij |
2
)1/2

≤ L
}

.

By inequality (3) the above L is also an upper bound on the
Euclidean norm of mean powers across antennas, which may
be interpreted as approximating simultaneous peak and sum
power constraints by a single constraint. Furthermore, it holds
that

t
∑

i,j=1

q2
ij = tr

[

Q2
]

=

t
∑

i=1

λ2
i (Q) = ‖Q‖2

2,

where ‖Q‖2 =
(
∑t

i,j=1 q2
ij

)1/2
denotes the `2-norm in the

Hilbert space of all t×t Hermitian matrices with inner product
〈A, B〉 = tr[AB]. Hence, Qsqu may be written as

Qsqu =
{

Q = (qij)i,j=1,...,t ≥ 0 |
(

t
∑

i=1

λ2
i (Q)

)1/2
≤ L

}

.

Applying the Cauchy-Schwarz inequality to (10) gives

max
Q∈Qsqu

tr
[

∇f(Q̂) Q
]

≤ ‖∇f(Q̂)‖2 max
Q∈Qsqu

‖Q‖2

= L ‖∇f(Q̂)‖2,

and the maximum is attained iff Q = L
‖∇f(Q̂)‖2

∇f(Q̂).

Hence, by (10), Q̂ is an optimum argument over Qsqu if
and only if

L ‖∇f(Q̂)‖2 = tr
[

∇f(Q̂) Q̂
]

. (14)

We seek a solution of (14) in the set of power assignments
Q of the form

Q = V diag(q1, . . . , qt)V
∗,

with V from the singular value decomposition H = UΓ 1/2V

of H . We will show that a solution exists already in this subset
of Qsqu, which solves the problem. Let γi denote the positive
eigenvalues of H∗H and HH∗, respectively, augmented by
zeros whenever appropriate. After some tedious but elementary
matrix algebra equation (14) reads as

L
(

t
∑

i=1

( γi

1 + γiq̂i

)2
)1/2

=

t
∑

i=1

γiq̂i

1 + γiq̂i
.
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Again by the Cauchy-Schwarz inequality, the left hand side of
the above is greater than or equal to the right hand side for
any Q̂ ∈ Qsqu, with equality if and only if

q̂i =
αγi

1 + γiq̂i
, i = 1, . . . , t,

for some α > 0 such that
∑

i q̂2
i = L2. This is a quadratic

equation in qi with the unique solution

q̂i = 0, if γi = 0,

q̂i =

√

1

4γ2
i

+ α −
1

2γi
, if γi > 0,

α such that
t

∑

i=1

q̂2
i = L2.

(15)

Because of monotonicity in α the solutions q̂i can be easily
determined numerically.

In summary, we have obtained an explicit solution to

max
Q∈Qsqu

log det(Ir + HQH∗) (16)

as follows.
Proposition 7: Q̂ is a solution of (16) if and only if

Q̂ = V diag(q̂1, . . . , q̂t)V
∗

with q̂i given by (15).

D. Uncorrelated Sum Power Constraints

We next consider total power constraints that arise in a
multiple access channel in which only limited communication
is possible between users. We assume that the total transmit
power of all users is constrained (which does imply limited
coordination, perhaps via the base station) so that the con-
straining set is

Qle =
{

Q = diag(q1, . . . , qt) | qi ≥ 0,

t
∑

i=1

qi ≤ L
}

.

The key difference between the multiple access setup and
the general MIMO setup is that here Q is constrained to be
diagonal, which precludes coordination between the users at
the data symbol rate. We aim at finding the solution of

max
Q∈Qle

log det(Ir + HQH∗)

= max
qi≥0,

P

i
qi≤L

log det
(

Ir +

t
∑

i=1

qihih
∗
i

)

,
(17)

where hi denotes the ith column of H .
The same problem is encountered when determining the

sum capacity of a MIMO broadcast channel with t antennas
at the transmitter and a single antenna at each of r receivers.
This capacity coincides with the sum rate capacity of the dual
MIMO multiple access channel, a duality theory developed in
[3], [4], [17], [18]. In the work [19] algorithmic approaches
are discussed and developed for the broadcast channel with
scalars qi substituted by positive definite matrices.

Another very related paper is [20], which considers water-
filling in flat fading CDMA multiple access channel. This
paper differs from the present one in that it considers an
ergodic power constraint (i.e., the average is taken over time,
as the fading coefficients change), the model is for CDMA
(rather than MIMO) and the numerical solution emerges in
the limit as the number of users, and spreading factor, grow
to infinity. Nevertheless, our derivation of (19) below provides
an alternative approach to the derivation of (23) in [20].

A general class of algorithms for maximizing mutual in-
formation subject to power constraints based on interior point
methods is designed in [21]. Such general algorithms can be
applied to problem (17), but in the present paper we wish to
identify structural results for the particular problem at hand,
and identify connections to the directional derivatives that are
the main topic of the present paper.

The maximum in (17) is attained at the boundary of Qle,
i.e, in the convex set

Qeq =
{

Q = diag(q1, . . . , qt) | qi ≥ 0,

t
∑

i=1

qi = L
}

.

This follows easily from the fact that Ir + HQ1H
∗ ≤

Ir + HQ2H
∗ whenever Q1 ≤ Q2, and the monotonicity of

log det A on the set of nonnegative definite Hermitian matrices
A, see [9, F.2.c., p. 476].

Hence, in the sequel we deal with the problem

max
qi≥0,

P

i
qi=L

log det
(

Ir +

t
∑

i=1

qihih
∗
i

)

. (18)

By (10) some power allocation Q̂ = diag(q̂1, . . . , q̂t) solves
(18) if and only if it is a solution of

max
Q∈Qeq

tr
[

∇f(Q̂)Q
]

= max
qi≥0,

P

i
qi=L

t
∑

i=1

qih
∗
i (Ir + HQ̂H∗)−1hi,

where hi denotes the i-th column of H .
In the following we assume that none of the hi equals zero,

thereby excluding the case that some of the transmit antennas
are irrelevant. Obviously,

max
qi≥0,

P

i
qi=L

t
∑

i=1

qih
∗
i (Ir + HQ̂H∗)−1hi

≤ L max
1≤i≤t

{

h∗
i (Ir + HQ̂H∗)−1hi

}

.

Equality holds if the quadratic forms all have the same value,
i.e., if there exists some λ such that

h∗
i (Ir + HQ̂H∗)−1hi = λ (19)

for all i = 1, . . . , t. Since hi 6= 0 and since (Ir +HQ̂H∗)−1

is positive definite, λ > 0 follows.
Condition (19) is also necessary for an extreme point of

f
(

diag(q1, . . . , qt)
)

subject to
∑

i qi = L, as may be easily
seen from a Lagrangian setup. Additionally making use of
convexity we have thus proved the following result.
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Proposition 8: If some Q̂ = diag(q̂1, . . . , q̂t) ∈ Qeq satis-
fies (19), then Q̂ is a solution of

max
Q∈Qeq

log det(Ir + HQH∗).

On the other hand, any maximizing point Q̂ of log det(Ir +
H diag(q1, . . . , qt)H

∗) subject to
∑

i qi = L satisfies (19).

Note that in the second part of the above Proposition we
have omitted the constraints qi ≥ 0 such that physically mean-
ingful solutions are obtained from (19) only if the solution has
nonnegative components.

The central condition (19) can be further evaluated. Denote
by matrix

Ai = Ir +
∑

j 6=i

qjhjh
∗
j .

Applying the matrix inversion lemma to (19), namely to
h∗

i

(

Ai + qihih
∗
i

)−1
hi = λ gives

h∗
i

(

A−1
i −

qiA
−1
i hih

∗
i A

−1
i

1 + qih
∗
i A

−1
i hi

)

hi = λ

such that (19) is equivalent to

qi =
1

λ
−

1

h∗
i A

−1
i hi

, i = 1, . . . , t. (20)

From the constraints,
∑

i qi = L is required. Equating the sum
over the right hand side of (20) to L yields

1

λ
=

L

t
+

1

t

t
∑

i=1

1

h∗
i A

−1
i hi

.

This makes (20) a fixed point equation which may be used
for deriving iterative schemes. Any fixed point is an optimum
solution to (17) provided it has nonnegative components.

In the following special case we get an explicit result.
Assume that the columns of H = (h1, . . . , ht) are pairwise
orthogonal, i.e., H∗H = It. Then applying the generalized
matrix inversion lemma, cf. [13, p.124],

(A + CD∗)−1 = A−1 − A−1C(I + D∗A−1C)−1D∗A−1,

and setting Qi = diag(q1, . . . , qi−1, 0, qi+1, . . . , qt) yields

h∗
i A

−1
i hi = h∗

i (Ir + HQiH
∗)−1hi

= h∗
i

(

Ir − HQ
1/2
i (I + Q

1/2
i H∗HQ

1/2
i )−1Q

1/2
i H∗

)

hi

= h∗
i hi − 0 = 1

In summary, it follows that

qi =
L

t
+ 1 − 1 =

L

t
for all i = 1, . . . , t,

i.e., all the powers qi of an optimal solution are equal in this
case.

Orthogonality of the columns of H can be achieved by
linear precoding, see [22]. Write H = H̃B, where the r × t
matrix H̃ of rank t describes the physical channel and B a
t × t precoding matrix. It holds that

H∗H = B∗H̃∗H̃B = B∗T diag(γi)T
∗B

for some unitary matrix T and diagonal matrix of positive
eigenvalues γi, i = 1, . . . , t. Choosing B = T diag(γ

−1/2
i )

yields H∗H = It, as desired. While such precoding is itself
suboptimal, in terms of the criteria expressed in (17), it has the
advantage that the signal processing at the receiver is much
simplified, and this signal processing needs to occur at the
symbol rate. Given such precoding, an equal power allocation
is then optimal, as shown above.
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