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Abstract—The present correspondence deals with the rate and
power allocation problem for multi-user orthogonal frequency
division multiple access (OFDMA). Using directional derivatives
we first derive an explicit solution of the single-user OFDM power
allocation problem for a general class of rate-power functions. In
a nested algorithm, this solution is used to determine the solution
of the closely related rate allocation problem for both the single-
user and multi-user case with proportionality constraints. The
results are applied to a widely used class of rate-power function.

Index Terms—directional derivatives, generalized water-filling,
multi-user channels, OFDM

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is a
modulation technique capable of providing broadband trans-
mission over wireless channels. Applications include wireless
multimedia and Internet access as well as next-generation mo-
bile communication systems. The advantages of multi-access
over OFDM are flexibility of allocating subcarriers to users,
adaptive rate and power allocation, high spectral efficiency,
low receiver complexity and simple implementation by the
inverse fast Fourier transform (IFFT) and FFT, see [1], [2].
OFDM can also be integrated with multiple-input multiple-
output (MIMO) techniques to raise the diversity gain and
increase capacity, see [2], [3].

A central problem in OFDMA is rate and power allocation
of users to subcarriers. Fixed resource allocation assigns a
predetermined set of subcarriers to each user. Since the scheme
is fixed regardless of the current channel condition, it is far
from being optimal. Subcarriers which appear in deep fade
to one user may be in good condition for others. Dynamic
resource allocation assigns subcarriers adaptively to users
according to the current channel conditions.

In the literature, there are essentially two approaches to
dynamic resource allocation. First, the so called margin adap-
tive (MA) objective is to minimize the overall power subject
to individual data rate constraints. On the other hand, the
rate adaptive (RA) problem aims at maximizing the overall
transmission rate subject to power constraints. Various studies
tackle the MA problem in the single-user case. In [4] a greedy
bit-removing algorithm was proposed. The algorithm assigns
the maximal allowable number of bits to each subcarrier
initially, and then removes bit-by-bit from the subcarriers
which recover the maximal transmit power. This algorithm was

proved to be optimal. However, it has a fairly high complexity
and is almost inapplicable for practical applications. The bit
allocation in multi-user scenarios has been investigated in [5].
Fast greedy approaches are suggested in [6], [7]. Greedy
algorithms are used to determine both how many and which
subcarriers are assigned to each user. However, the result is
often not unique and sometimes unstable.

Proportional fairness is a concept to share the medium
between different user classes, where proportionality factors
may be associated to billing rates. The problem of maximizing
rates subject to proportional fairness and power constraints
is addressed in [8], [9], [10]. Assuming a fixed subcarrier
assignment the authors devise algorithms which converge to
the optimal solution provided that actually all subcarriers
are engaged. A standard Lagrangian and Newton-Raphson
setup is used to determine optimal solutions, however, an
approximation is used in the high channel-to-noise ratio case.

We suggest an alternative approach, in detail the contribu-
tions of this paper are as follows.

1. We introduce different OFDMA objectives and con-
straints in a single framework and directly relate power and
rate optimization.

2. The single-user margin adaptive problem is solved by the
easy and elegant method of directional derivatives leading to a
generalized water-filling solution, interpreted in two different
ways.

3. A nested algorithm is designed for solving the single-
user and multi-user rate adaptive problem with proportional
fairness conditions.

4. This algorithm is fully implemented and extensively
tested for a class of widely used rate-power functions.

The material in this contribution is organized as follows. We
start with a precise problem formulation in Section II. After
introducing directional derivatives and their basic properties,
the single-user OFDM optimal allocation problem is solved
in Section III. Section IV deals with the optimal solution
of the multi-user rate adaptive problem with proportionality
constraints using iterated water-filling. In Section V the results
are applied to a widely used class of rate-power functions. We
also briefly report on numerical performance.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a multi-user OFDM system with N subcarriers
and K users. Each user k ∈ {1, . . . ,K} has a requirement of

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.



Rk bits per OFDM symbol. Each subcarrier can be used by
only one user at any given time.

Perfect channel state information (CSI) is assumed to be
available during transmission. Let hk,n denote the known
channel-gain of subcarrier n for user k, and σ2

k,n the according
noise power. Hence, uk,n = hk,n/σ

2
k,n is the channel-to-noise

ratio (CNR). If power pk,n is expended on subcarrier n for
the transmission to user k, then pk,n hk,n/σ2

k,n = pk,n uk,n is
the received signal-to-noise ratio (SNR).

The interrelation between power and rate is described by
the nonnegative rate-power function ψ : R+ → R+. ψ

(
rk,n

)
denotes the received power which is needed to transmit rate
rk,n over subcarrier n to user k. It is quite natural to assume
that ψ is convex with ψ(0) = 0 and, hence, monotone
increasing. ψ depends on the maximal bit error rate (BER)
that can be tolerated and on the available combinations of
modulation and coding schemes.

The following constraints are used to describe the different
types of problems.

N∑
n=1

rk,n ≥ Rk, k = 1, . . . ,K (1)

N∑
n=1

rk,n r�,n = 0, k, � = 1, . . . ,K, k �= � (2)

rk,n ≥ 0, k = 1, . . . ,K, n = 1, . . . , N (3)

The margin adaptive objective is to find a subcarrier as-
signment of minimal overall transmit power such that each
user receives the required data rate. In mathematical terms
this reads as

min
K∑
k=1

N∑
n=1

ψ(rk,n)
uk,n

(4)

such that (1), (2) and (3) holds. The minimum overall
power achieved in (4) is denoted by p∗MA(R), where R =
(R1, . . . , Rk) comprises the rate demands.

Introducing additional binary variables ak,n ∈ {0, 1} with
the meaning ak,n = 1, whenever subcarrier n is assigned
to user k, and ak,n = 0, otherwise, leads to the following
equivalent formulation.

min
K∑
k=1

N∑
n=1

ak,n
ψ(rk,n)
uk,n

(5)

such that (3) and the following holds.

N∑
n=1

ak,n rk,n ≥ Rk, k = 1, . . . ,K (6)

K∑
k=1

ak,n ≤ 1, n = 1, . . . , N (7)

A binary matrix A = (ak,n)k=1,...,K,n=1,...,N fulfilling
(7) is called subcarrier assignment. If A is fixed the margin
adaptive problem reduces to solving (5) over rk,n ≥ 0 such

that (6) holds. The corresponding minimum overall power is
denoted by p∗MA(R,A).

Problems (4) and (5) represent complicated mixed contin-
uous and combinatorial optimization problems since a joint
decision on subcarrier and power allocation has to be made.

The rate adaptive objective is to find a subcarrier assignment
of maximal throughput such that each user receives at least the
required rate and the overall transmit power is limited by some
P > 0. This reads as

max
K∑
k=1

N∑
n=1

rk,n (8)

such that (1), (2), (3) and

K∑
k=1

N∑
n=1

ψ(rk,n)
uk,n

≤ P (9)

holds. Let r∗RA(R, P ) denote the corresponding optimal overall
rate.

Finally, we define the rate adaptive problem with pro-
portionality constraints. In this case, rates are assumed to
be proportional to a given fixed initial vector r(0) ∈ R

K
+

with r̄(0) =
∑K
k=1 r

(0)
k . The aim is to find the maximum

proportionality factor α ≥ 0 such that each user receives
rate αr̄(0) and the total power budget is met. This may be
formalized as

maxα (10)

such that (2), (3), (9) and
∑N
n=1 rk,n = αr

(0)
k , k = 1, . . . ,K

holds. The optimal achievable rate for the proportional max-
imization problem is denoted by r∗RA(r(0), P ) and the corre-
sponding optimal factor by α∗

RA(r(0), P ). For a fixed assign-
ment A we apply analogously the notations r∗RA(r(0), P,A)
and α∗

RA(r(0), P,A).
If there is only one user, that is K = 1, the problem becomes

much easier. In the following we give explicit solutions to the
single-user OFDM problems, which will be employed later
as a building block for deriving the optimal solution of the
multi-user problem (10). Directional derivatives turn out to be
a powerful aid for this purpose.

III. SINGLE-USER OFDM

We start with a short description of the concept of direc-
tional derivatives and its application to the optimization of
convex functions f with convex domain C. Let x0, x ∈ C.
The directional derivative of f at x0 in the direction of x is
defined as

Df(x0, x) = lim
β→0+

1
β

[
f
(
(1− β)x0 + βx

)
− f(x0)

]
=

d

dβ
f
(
(1− β)x0 + βx

)∣∣∣
β=0+

,

(11)

see, e.g., [11]. Since f is convex,
(
f((1 − β)x0 + βx) −

f(x0)
)
/β is monotone decreasing with decreasing β ≥ 0, and

the directional derivative always exists.
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If C is a subset of a Hilbert space with inner product 〈·, ·〉,
it is well known that

Df(x0, x) = 〈∇f(x0), x− x0〉, (12)

whenever ∇f , the derivative of f , exists.
Optimal points are characterized by directional derivatives

as follows, for a proof see [11].

Proposition 1: Let C be a convex set and f : C → R a
convex function. Then the minimum of f is attained at x∗ if
and only if Df(x∗, x) ≥ 0 for all x ∈ C.

We apply this principle to solving the single-user OFDM
margin adaptive problem with N subcarriers. Let

R =
{

r = (r1, . . . , rN ) | ri ≥ 0,
∑N
i=1 ri = R

}
denote the admissible rate region. The power allocation prob-
lem (4) then reads as

min
r∈R

N∑
i=1

ψ(ri)
ui

. (13)

Note, that the optimal solution is attained at the boundary of
constraint (1) as the rate-power function ψ : R+ → R+ is
continuous (due to convexity). Hence, the function f(r) =∑N
i=1 ψ(ri)/ui is convex as well. The directional derivative

of f exists, and for differentiable ψ it is easily determined as

Df(r̂, r) =
N∑
i=1

ψ′(r̂i)
ui

(ri − r̂i). (14)

By Proposition 1, some rate allocation r̂ ∈ R is optimal
if and only if Df(r̂, r) ≥ 0 for all r ∈ R. Applying this
condition to (14) yields that r̂ ∈ R is optimal if and only if

ψ′(r̂i)
ui

= λ for all i with r̂i > 0 (15)

for some constant λ ≥ 0. Equation (15) is equivalent to the
following

r̂i =

{
ψ′−1(λui), if λui > ψ′(0),
0, otherwise,

λ such that
N∑
i=1

r̂i = R.

(16)

ψ′(0) is understood as the right sided derivative of the convex
rate-power function ψ at 0, which exists. Hence, optimality is
also characterized by condition (16).

The solution of the single-user rate adaptive problem (8)
is closely related to the optimal solution of the single-user
margin adaptive problem (4). Note that in the single-user case
R ≥ 0 is a one-dimensional parameter.

Proposition 2: The optimal solutions of the single-user rate
and margin adaptive problem satisfy

p∗MA(r∗RA(R,P )) = P.

Furthermore, for all R′ ≥ R it holds that

r∗RA(R, p∗MA(R′)) = R′. (17)

The above is easy to prove, bearing in mind that the
optimal solutions are obtained at the boundary of the inequality
constraints (1) and (9), respectively. Using Proposition 2 and
solution (16) of the margin adaptive problem a solution of the
rate adaptive problem is obtained as

r∗RA(R,P ) = max{R′ ≥ R | p∗MA(R′) ≤ P}.

This result is carried over to the multi-user problem in the
next section.

IV. ITERATED WATER-FILLING

We consider the multi-user rate adaptive problem with
proportionality constraints for the case of some fixed pre-
determined subcarrier allocation A. Accordingly, additional
constraints

rk,n = 0, whenever ak,n = 0, (18)

k = 1, . . . ,K, n = 1, . . . , N , are introduced. The additional
A in the definitions of p∗MA, r∗RA and α∗

RA indicates that
the corresponding problems are solved subject to a given
assignment A by constraints (18).

The following Proposition is analogous to Proposition 2 in
the single-user case.

Proposition 3: For the multi-user OFDM problems with
fixed assignment A it holds that

p∗MA

(
α∗

RA(r(0), P,A) r(0),A
)

= P.

Furthermore, for all α′ ≥ α it holds that

r∗RA

(
α r(0), p∗MA(α′r(0),A),A

)
= α′r̄(0).

A direct consequence of Proposition 3 is the following.

Proposition 4: The optimal solution of the rate and margin
adaptive problem subject to proportionality constraints and a
fixed assignment A satisfy

r∗RA(r(0), P,A)

= r̄(0) max{α ∈ R+ | p∗MA(αr(0),A) ≤ P}.

Hence, a solution to the proportional rate adaptive problem
may be determined by a nested algorithm where in the outer
loop α is increased and in the inner loop p∗MA(αr(0),A) is
computed until the maximum power P is reached.

Since the assignment of subcarriers is fixed by A, determin-
ing p∗MA(αr(0),A) decomposes into K separate subproblems
as

p∗MA(αr(0),A) =
K∑
k=1

p∗MA(αr(0)k ). (19)

Each p∗MA(αr(0)k ) means solving a single-user margin adaptive
problem by generalized water-filling (16), which can be done
efficiently. Details of how to implement the necessary steps
in an efficient way are given in the next chapter for a general
class of rate-power functions.
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Fig. 1. Power-Rate Function, cf. [7]

V. A CONCRETE CLASS OF RATE-POWER FUNCTIONS

As an approximation to actually implementable rate-power
functions we use ψ(r) = a(2r − 1), r ≥ 0, depicted in
Fig. 1. It is widely used in the literature (e.g., [12]) and
well motivated by achievable rates using PSK and QAM
modulation schemes, see [13]. The function, its inverse, and
the respective derivatives are given by

ψ(r) = a
(
2r − 1

)
, r ≥ 0,

ψ−1(p) = log2

(
1 +

p

a

)
, p ≥ 0,

ψ′(r) = a(ln 2)2r, r ≥ 0,

ψ′−1(y) = log2

( y

a ln 2

)
, y ≥ a ln(2).

(20)

Parameter a > 0 depends on the maximal acceptable BER and
the available combinations of modulation and coding schemes.

Fig. 2 shows the optimal rate allocation for a single-user
margin adaptive problem with three subcarriers and parameters
u1 = 0.05, u2 = 0.2, u3 = 0.5, and a = 0.7. The value λ = 5
yields rates r1 = 0, r2 = 1.05, r3 = 2.4 corresponding to an
overall rate R = 3.45. Fig. 2 also demonstrates the generalized
water-filling principle. If ψ′(r) were a linear function, ψ′(r) =
ψo + r, say, then the values r̂i would represent the water-
pouring height on top of ψ0

ui
to achieve constant water level λ.

Function ψ′ distorts the amount of water filled onto ψ′(0)
ui

. In
Fig. 2(a), the shaded area corresponds to the amount of water
filled into the system of inverted goblets connected by thin
tubes. In general, the shape of the bins is determined by the
function

h(x, u) =
u

2ψ′′(ψ′−1(xu))
, x ≥ a ln(2)

u
.

In the following we describe how to determine the single-
user water-filling solution (16) for rate-power functions of
type (20). Let Um = {i1, . . . , im} denote the set of indices
corresponding to the m largest CNRs ui1 ≥ · · · ≥ uim
and um = (ui1 , . . . , uim). gMean(um) and hMean(um)
denote the geometric and harmonic mean, respectively, of the
components of um. Let m∗ be the largest m ≤ N such that

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

5

10

15

Subcarrier 1 Subcarrier 2 Subcarrier 3
x

r̂2 r̂3

← 1
2 ln(2)x ←

1
2 ln(2)(x−0.4)

1
2 ln(2)(1.2−x) →

λ
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u3

(a) Generalized Water-Filling
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Fig. 2. An optimal rate allocation for ψ′(r) = 0.7(ln 2)2r , three subcarriers
with u1 = 0.05, u2 = 0.2, u3 = 0.5. λ = 5 yields the rates r1 = 0,
r2 = 1.05, r3 = 2.4 corresponding to a total rate R = 3.45.

log2

(
uim

gMean(um)2
R/m

)
is positive. The optimal solution (16)

is then given as

λ∗ =
a ln(2)

gMean(um∗)
2R/m

∗
,

r∗i =

{
log2

(
ui

gMean(um∗ )
2R/m

∗
)
, if i ∈ Um∗

0, otherwise
, (21)

with optimal value

p∗MA(R) =
∑

i∈Um∗

ψ(r∗i )
ui

= am∗
[

1
gMean(um∗)

2
R

m∗ − 1
hMean(um∗)

]
.

(22)

Note that parameter a has no influence on the optimal rates.
However, the optimal power is proportional to that value. From
Proposition 2 the optimal rate for the single-user rate adaptive
problem is derived as

r∗RA(R,P ) = m∗
RA·

log2

(
gMean(um

∗
RA)

[
P

am∗
RA

+
1

hMean(um∗
RA)

])
(23)
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Algorithm 1 ITERATEDWATERFILLING(Power P )
αmin←GETMINIMALALPHA() {with γk = gk(1), cf. (25)}
αmax ←GETMAXIMALALPHA()
pmin ←GETPOWER(αmin) {cf. (24)}
pmax ←GETPOWER(αmax)
while

(
1− pmin

P > ε
)

do
αmin ←αmin + (αmax − αmin) P−pmin

pmax−pmin

pmin ←GETPOWER(αmin)
end while

The number of used channels for the margin and rate
adaptive objective may differ. Therefore, m∗

RA has to be
chosen as the largest m such that the smallest rate
log2

(
uim

[
P
am + 1

hMean(um)

])
is positive. Combining de-

composition (19) and equation (22) for the multi-user case
gives

p∗MA(αr(0),A)

=
K∑
k=1

am∗
k

[
1

gMean(um
∗
k

k )
2

αr
(0)
k

m∗
k − 1

hMean(um
∗
k

k )

]
.

(24)

Formula (24) can be efficiently computed such that the
nested algorithm derived from Proposition 4 is applicable. The
outer iteration is considered in the following. We first give a
lower and upper bound which is of great help in the numerical
computations.

Proposition 5: For a multi-user rate adaptive problem with
proportionality constraints

min
r∗RA (γkP )

r
(0)
k

≤ α∗
RA ≤ max

r∗RA (γkP )

r
(0)
k

holds for all γ = (γ1, . . . , γK) ∈ R
K
+ with

∑K
k=1 γk = 1.

The algorithm ITERATEDWATERFILLING(Power P ) numer-
ically computes the optimal parameter α∗

RA of a given multi-
user rate adaptive problem with proportionality constraints. It
stops if the relative error of the current power pmin is less
than ε. First, α∗

RA is limited by the bounds of Proposition 5.
Excellent results were obtained by the intuitively motivated
choice γk = gk(1) with

gk(x) =
p∗MA(xr(0)k )∑K
l=1 p

∗
MA(xr(0)l )

. (25)

In the algorithm, the corresponding powers pmin and pmax
are computed according to (24). The overall transmit power
is convex in the rates because it is a linear combination of
convex functions ψ. Consequently, its inverse is concave. The
rate is proportional to the water level α, such that the function
representing the water level given a power is concave. This
ensures that the updates of αmin stay below the optimal level
α∗

RA within each loop. The updates converge strictly monotonic
increasing to α∗

RA corresponding to the desired power P .
Fig. 3 illustrates the first three steps of the algorithm. The
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αmax
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Fig. 3. Visualization of ITERATEDWATERFILLING(P )

complexity of the algorithm is O(K), as functions involved
have complexity O(K).

Our algorithm cannot be directly compared to [10], since
in that paper an approximation is used leading to a violation
of the proportionality constraints. However for benchmarking
purposes we have implemented a standard Newton-Raphson
method for computing α∗

RA. Algorithm 1 is slightly superior.
In summary, the nested algorithm converges extremely fast to
the optimal proportional rate allocation, normally using less
than four iterations to achieve error bound ε = 10−4.
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