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Abstract

Conventionally, the uncertainties of channel coefficients are neglected, that is the estimated values of channel
coefficients are taken as the true values in the stage of data detection. In the communications community, it is
still an open question how to take into account the channel uncertainty for data detection/decoding, especially
in a low-complexity manner. In this paper, we propose a low-complexity receiver algorithm which utilizes soft
channel information. Channel coefficients are treated as variables and estimated in an element-wise manner. Their
uncertainties are represented by the variances. Instead of performing channel estimation and data detection in a
separate manner, this algorithm does everything in one stage, i.e., channel estimation and data detection/decoding
are carried out simultaneously over a general factor graph. The feasibility of this algorithm is verified by means
of Monte-Carlo simulations both in bit error ratio (BER) and channel estimation mean squared error (MSE).

1 Introduction
For reliable data communication over the air interface,
channel estimation is a task that we can never avoid.
However, due to the existence of additive noise either
from the front-end circuit or the surrounding environ-
ment, it is practically not possible for us to obtain the
exact channel state information. Uncertainty will exist
with the channel estimates as long as disturbances exist.
Nevertheless, channel uncertainty is often neglected in
conventional receivers. One reason is that channel co-
efficients are continuously valued, and it is not feasible
to express their uncertainties by common metrics of
reliability, such as log-likelihood ratio. Another reason
lies in the fact that channel estimation and data detec-
tion are carried out in different stages in conventional
receivers, which makes it troublesome to exchange
soft information. However, channel uncertainty remains
to be a critical issue for systems without accurate
channel knowledge, such as systems with fast-fading
channels and time-division duplexing (TDD) systems
with channel evaluation only performed for the uplink.

Multi-input multi-output (MIMO) systems are today
being widely deployed for wideband data communi-
cations. MIMO channels show dramatic capacity gain
w.r.t. single-input single-output (SISO) channels in an
environment rich of scattering [1]-[3]. On the other
hand, an MIMO receiver is generally more sensitive
to the channel estimation errors than an SISO one,
due to multi-antenna interferences (MAI). Traditionally,
people increase the power or the amount of time
slots allocated to training (pilot) symbols to improve
the channel estimation quality. Doing so however will
degrade either the power efficiency or the bandwidth
efficiency of the system. Hassibi et al. showed in
[4] that pure training-based channel estimation can be
highly suboptimal from the information theoretic point
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of view. In comparison, semiblind channel estimation
(SBCE) tries to extract the channel state information
carried by all observations, and is able to achieve
very low mean squared error (MSE) with using just
a few training symbols. Simulation results of SBCE
can be found in a number of papers [5]-[9]. Even
though, the uncertainty of channel estimates are all
neglected by available SBCE algorithms, and moreover
hard decisions of data symbols are used for iterative
channel estimation. Therefore, it deserves to be an
interesting topic to design a receiver which utilizes soft
channel information for data detection and adopts soft
data information during channel estimation.

In this paper, we will try to find a suitable metric
to carry the reliability of a channel estimate, and fur-
themore utilize this reliability information in the stage
of data detection. A graph-based iterative algorithm is
proposed for the task of joint channel estimation and
data detection in MIMO systems. Based on a general
factor graph, channel estimation and data detection are
carried out in the same stage. A characteristic feature
of this algorithm is that channel coefficients are esti-
mated element-wise instead of being jointly estimated
by means of matrix inversion. This feature makes the
algorithm a good prototype for systems whose channel
coefficients are difficult to be jointly estimated, such
as moving systems with very fast-fading channels.
Gaussian approximation is applied both for channel
estimation and data detection, which guarantees the
algorithm with a complexity strictly linear in all system
parameters, including the number of transmit antennas
and the number of receive antennas.

The remainder of this paper is organized as fol-
lows. Sec. 2 introduces a flat-fading MIMO channel
model and its corresponding factor graph. In Sec. 3,
the concepts of soft channel estimation and Gaussian
approximation are briefly outlined. Sec. 4 describes
the proposed algorithm in details, and Sec. 5 verifies
the feasibility of the proposed algorithm via simulation
results. Finally, Sec. 6 concludes the paper.
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Figure 1: Burst structure

2 System Model
2.1 Channel Model
Let NR denote the number of receive (Rx) antennas
and NT the number of transmit (Tx) antennas, the
equivalent discrete-time model of an MIMO channel
(including transmit and receive filter, physical channel
and baud-rate sampling) is given by

yn[k] =

NT∑
m=1

hn,m[k] · xm[k] + wn[k] , (1)

where k ∈ {0, 1, . . . , K − 1} is the discrete time index
with K denoting the burst length. yn[k] ∈ C is the
channel output at the n-th (1 ≤ n ≤ NR) Rx antenna at
time index k, and xm[k] ∈ {±1}1 is the channel input
at the m-th Tx antenna at time index k. hn,m[k] ∈ C

marks the coefficient of the sub-channel connecting the
n-th Rx antenna and the m-th Tx antenna at time index
k. wn[k] represents an additive white Gaussian noise
(AWGN) sample with zero mean and variance σ2

w.
For the sake of simplicity, block fading is assumed

throughout this paper, that is, all channel coefficients
keep constant within each data burst while vary in-
dependently from burst to burst. We also assume that
KT training symbols are transmitted per burst per Tx
antenna, as illustrated in Fig. 1, where KI denotes the
amount of data symbols per burst.

2.2 Factor Graph
A factor graph [10] is a bipartite graph visualizing
the factorization of certain global functions subject
to minimization or maximization. It is often helpful
in the design of low-complexity iterative processing
algorithms. Admitting the fact that uncertainties exist
in channel coefficients, a general factor graph of an
MIMO channel should include channel coefficients as
variables as well. Making the following independence
approximation2

p(Y |xm[k]) ≈
NR∏
n=1

p(yn[k] |xm[k]) , (2)

where Y is the matrix which collects all channel
outputs of the current data burst, a factor graph of an
MIMO channel will look like Fig. 2. The mark � stands
for the relationship between hn,m[k] and hn,m[k + 1].

1BPSK mapping is assumed throughout the paper for the sake of
simplicity. The extension of the proposed algorithm to higher-order
modulation formats can be done in a straightforward manner.

2This approximation is made to reduce the data detection com-
plexity. The authors would refer interested readers to [11], [12] for
detailed explanation on this issue.
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Figure 2: Factor graph of a block-fading MIMO chan-
nel, NT = NR = 2

Since we assume that the channel is constant within
each data burst, the relationship between hn,m[k] and
hn,m[k+1] is simply an equality. Nevertheless, for fast
fading channels, this � should be a suitable transfer
function which describes the degree of variation of
a channel coefficient between two neighboring time
indices. Due to limited space, details on this topic will
not be elaborated in this paper.

3 Preliminary Remarks
3.1 Soft Channel Estimation
Consider a real-valued SISO flat-fading channel model:

y = h · x + w, (3)

where w is a zero-mean AWGN sample with variance
σ2

w . If symbol x is known at the receiver side, a least-
squares channel estimator (LSCE) calculates

ĥ = y · x−1 , (4)

and passes ĥ to the data detector as the estimated
value of the channel coefficient. LSCE is widely ap-
plied in modern communication systems due to its low
complexity and desirable performance. Nevertheless, ĥ
in fact does not fully represent the information of h
contained in y. Connecting (3) and (4), we can easily
find that

h = ĥ − w · x−1. (5)

Since x is known, the product w · x−1 is a zero-mean
Gaussian variable with variance σ2

w/|x|2. Hence, the
complete information of h which we can extract from
y is that, h is a Gaussian distributed variable with mean
μh = ĥ and variance σ2

h = σ2
w/|x|2, as illustrated in

Fig. 3. In this case, we may say that σ2
h carries the

p(h)

ĥ

Figure 3: Probability density function of h

reliability information of ĥ. Certainly, the smaller σ2
h

is, the more reliable ĥ is.



hn,m

yn

MAI

xm

vn,m

yn

wn

hn,m

xm

Figure 4: Relationship between a data symbol and a
channel output

3.2 Gaussian Approximation
Considering an arbitrary data symbol xm

3 and one of
its channel outputs yn, we have the following equation

yn =

NT∑
i=1

hn,i · xi + wn

= hn,m · xm +

NT∑
i=1,i�=m

hn,i · xi

︸ ︷︷ ︸
MAI

+ wn︸︷︷︸
AWGN

, (6)

where MAI stands for multi-antenna interference. We
define vn,m as the effective noise sample in the obser-
vation yn w.r.t. the symbol xm:

vn,m
.
= yn − hn,m · xm , (7)

as illustrated in Fig. 4. If the probability density func-
tion (PDF) of vn,m can be approximated by a complex
Gaussian function:

p(vn,m) ≈
1

πσ2
vn,m

exp
(
−

|vn,m − μvn,m
|2

σ2
vn,m

)
, (8)

with

μvn,m

.
= E {vn,m}

σ2
vn,m

.
= E

{
|vn,m − μvn,m

|2
}

, (9)

the computation of likelihood function will be dramat-
ically simplified into

p(yn |xm) ≈
1

πσ2
vn,m

exp
(
−
|yn − hn,m xm − μvn,m

|2

σ2
vn,m

)
.

(10)
Hereafter, we will refer to a data detector using the
above Gaussian approximation as a Gaussian detec-
tor. If all channel coefficients are exactly known, this
approximation is indeed not accurate enough at high
signal-to-noise ratios (SNRs) due to the discreteness of
data symbols. However, if channel coefficients are not
exactly known, this approximation works pretty well
even at high SNRs. Simulation results will show that the
uncertainty of channel coefficients is in fact beneficial
for the accuracy of this Gaussian approximation.

3In this section, time index k is omitted for simplicity.

4 Graph-Based Iterative Gaussian
Detection with Soft Channel Esti-
mation (GIGD-SCE)

In this section, joint channel estimation and data de-
tection will be carried out in a general factor graph.
Soft channel estimation will be applied to improve
the system performance, while Gaussian approximation
will be applied to reduce the detection complexity. Due
to the common relationships between data symbols,
channel coefficients, and channel observations, a more
abstract notation is adopted for ease of explanation. In
the following, we use y to denote an observation node,
x to denote a symbol node, and h to denote a channel
coefficient node. The complicated indices n, m, and k
are in general replaced by a single index i.

4.1 Starting Point

To start the algorithm, we assume that all channel
coefficients are zero-mean Gaussian distributed, and all
subchannels have the same average power. This as-
sumption is valid for most of the practical applications.
Nevertheless, this assumption does not necessarily to
be accurate since this initial setup is discarded as soon
as the algorithm starts to run. Furthermore, we assume
that all data symbols are uniformly distributed within a
finite alphabet, which is always true.

4.2 Message Update in Observation Nodes

Revisiting Fig. 2, we will find that the relationship
between an observation node and its associated variable
nodes can be written as

y =

Q∑
i=1

hi · xi + w, (11)

where Q = NT is the amount of associated symbol
nodes or channel coefficient nodes, hi is the channel
coefficient linking y and xi, and w is the additive white
Gaussian noise sample. This relationship is visualized
in Fig. 5. In each iteration, one observation node will

y
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hQ xQ
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Figure 5: An observation node and its variable nodes

receive messages from its variable nodes in the form
of probability functions. Then new messages should
be generated and redistributed to these variable nodes
according to the Turbo principle, that is only extrinsic
information should be exchanged. A sketch diagram of
message propagation is given in Fig. 6.

4.2.1 Data Detection with Soft Channel Information

Based on (11), we define vm (1 � m � Q) as the
effective noise sample in the observation y w.r.t. the



y

xi

hi

xQhQ

h1

x1

y

xi

hi

xQhQ

h1

x1

Figure 6: Message exchange at an observation node

symbol xm:

vm
.
= y − hm · xm =

Q∑
i=1,i�=m

hi · xi + w . (12)

Approximating p(vm) as vm ∼ CN (μvm
, σ2

vm
), and

knowing that hm ∼ CN (μhm
, σ2

hm
), the log-likelihood

ratio (LLR) of symbol xm should be calculated as

LLR(xm) = 4 Re{μ∗
hm

(y − μvm
)}/(σ2

hm
+ σ2

vm
) .
(13)

In each iteration, LLR of each symbol is calculated
according to (13) and distributed over the factor graph.
For the readability of the main body, the mathematical
derivation of (13) is provided in Appendix.

To obtain the statistics of the effective noise sample,
we define

ξi
.
= hi · xi , (14)

so that

vm =

Q∑
i=1,i�=m

ξi + w . (15)

For short-hand notation, we also define

P(xi = +1) = Pi,+1

P(xi = −1) = Pi,−1 , (16)

which can be obtained from the LLR message of each
data symbol in a straightforward manner. Noting that
hi and xi are statistically independent, the PDF of ξi

can be written as

p(ξi) = Pi,+1 ·p(hi = ξi)+Pi,−1 ·p(hi = −ξi) , (17)

which is indeed a mixed Gaussian function with two
peaks. Applying hi ∼ CN (μhi

, σ2
hi

) and after some
mathematical derivation, we will obtain

μξi
= μhi

· (Pi,+1 − Pi,−1)

σ2
ξi

= σ2
hi

+ 4 Pi,+1Pi,−1|μhi
|2 . (18)

Finally, the mean and variance of vm can be calculated
as

μvm
=

Q∑
i=1,i�=m

μξi

σ2
vm

=

Q∑
i=1,i�=m

σ2
ξi

+ σ2
w . (19)

As a matter of fact, the effective noise sample vm

is a summation of Q − 1 independent mixed Gaussian
variables plus an independent Gaussian variable. Since
all these component variables are continuously valued,
the Gaussian approximation of vm works pretty well
even at high SNRs.

4.2.2 Channel Estimation with Soft Data Decision

Let us rewrite (12) into

y = hm · xm + vm . (20)

The information of hm contained in y is fully repre-
sented by the conditional probability density function
p(y|hm), which may be computed as follows:

p(y|hm) =
∑

xm∈{±1}

p(y|hm, xm)P(xm)

= Pm,+1

1

πσ2
vm

exp

(
−
|hm − (y − μvm

)|

σ2
vm

)
+

Pm,−1

1

πσ2
vm

exp

(
−
|hm + (y − μvm

)|

σ2
vm

)
. (21)

Excluding a priori information, we have

p(hm) = p(hm|y) ∝ p(y|hm) , (22)

and after considering the issue of normalization, the
following statement holds:

p(hm) = p(y|hm) . (23)

Clearly, it is again a mixed Gaussian function, which
is troublesome to be utilized in the stage of data detec-
tion, particularly when the data symbol xm is of higher-
order modulation formats other than BPSK. Therefore,
suitable approximation is necessary to simplify this
channel knowledge. Note that if the data detection is
carried out successfully, we will have

Pm,+1 � Pm,−1 (24)

or
Pm,+1 � Pm,−1 (25)

as the iteration goes on. It is reasonable to make the
approximation hm ∼ CN (μhm

, σ2
hm

) with

μhm
= (y − μvm

)(Pm,+1 − Pm,−1)

σ2
hm

= σ2
vm

+ 4Pm,+1Pm,−1|y − μvm
|2 , (26)

which are calculated according to (21) and (23).

4.3 Message Update in Symbol Nodes
Observing Fig. 2, it is clear that each symbol node is
connected with Q = NR observation nodes. This rela-
tionship is concisely depicted in Fig. 7. The message
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x

Figure 7: A symbol node and its observation nodes
update rule in a symbol node is very simple and in
fact nothing more than linear additions. The underlying
principles are that LLR messages from independent
observations are additive and only the extrinsic infor-
mation should be propagated in a factor graph. For
example, if a symbol node receives LLR messages from
its observation nodes as shown in the left part of Fig. 8,
then the updated LLR messages are generated just by
linear additions as shown in the right part of Fig. 8.
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4.4 Message Update in Coefficient Nodes
For block-fading channels, the channel coefficients
keep constant within each data burst. Therefore, each
channel coefficient node is associated with Q = K
observation nodes as depicted in Fig. 9. The message

yi
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Figure 9: A channel coefficient node and its observa-
tion nodes

update rule in a channel coefficient node is very similar
with that in a symbol node. The only difference is
that we replace the linear addition by a product. For
example, if a channel coefficient node receives PDF
messages from its observation nodes as shown in the
left part of Fig. 10, then the updated messages are
generated in a way shown in the right part of Fig. 10.
Note that the product of two Gaussian PDFs gives a

h

p2(h)

p3(h)

p1(h)
h

p1(h) · p3(h)

p2(h) · p3(h)

p1(h) · p2(h)

Figure 10: Message exchange at a channel coefficient
node

new Gaussian PDF. Suppose we have the following two
messages:

p1(h) : h ∼ CN (μ1, σ
2
1)

p2(h) : h ∼ CN (μ2, σ
2
2) , (27)

then the product of these two messages will be given
by

p1(h) · p2(h) : h ∼ CN (μh, σ2
h) (28)

with

μh = (σ2
2μ1 + σ2

1μ2)/(σ2
1 + σ2

2)

σ2
h = σ2

1σ
2
2/(σ2

1 + σ2
2) . (29)

4.5 Scheduling
Before the first iteration, the observation nodes con-
nected with training symbols update their messages
to channel coefficient nodes in order to provide a
reasonable starting point for the iterative processing
algorithm. Afterwards in each iteration, the message
updating operation is performed once per observation
node, per symbol node, and per channel coefficient
node. Using the same analysis as in [11], we will easily
find that the complexity of this algorithm is strictly
linear in the number of Tx antennas and Rx antennas.
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5 Numerical Results

5.1 Simulation Setup
For the numerical results provided in this section, a
block-Rayleigh-fading MIMO channel model is used.
The coefficient of each subchannel is normalized to
have an average power of 1. The SNR per bit Eb/N0

is calculated as 1/σ2
w, where σ2

w denotes the variance
of the additive noise.

We adopt a repetition code for the sake of simplicity,
and channel coding is done separately for each transmit
antenna. Coding rate is set to be 1/4. Scrambling
with fixed pattern is applied, that is, every second
bit of a code word is flipped. In case of short data
bursts, scrambling is mandatory for GIGD-SCE, since
it assumes that all data symbols come with zero mean.
Random interleaving is applied after scrambling in
order to make neighboring data symbols as independent
as possible.

5.2 Mean Squared Error
The theoretical tight bound of the MSE of unbiased
semi-blind channel estimation (SBCE) is given by the
Cramer-Rao lower bound (CRLB) [8], [9]. Detailed
explanation of CRLB is out of the scope of this paper.
Nevertheless, the CRLB for SBCE at high SNRs can be
understood in a quite intuitive way. The SBCE-CRLB
at high SNRs is given by the MSE of a least-squares
channel estimator which has full knowledge of all data
symbols and uses the whole burst to perform channel
estimation.

Fig. 11 gives a comparison between the MSE perfor-
mances of GIGD-SCE with the corresponding Cramer-
Rao lower bound. Here, n×n stands for a system with
n transmit antennas and n receive antennas. GIGD-
SCE demonstrates a superior performance in the sense
of channel estimation MSE. It approaches the CRLB
at high SNRs from rather early points. For a 4 × 4
system, it approaches CRLB at SNR ≈ 6 dB, while
for an 8 × 8 system, it approaches CRLB at SNR
≈ −2 dB. Necessary to be mentioned, GIGD-SCE
outputs the mean value and variance of each channel
coefficient. Here in Fig. 11, the mean values are taken
as hard channel estimates for the calculation of channel
estimation MSE. Unlike an LSCE or MMSE channel
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estimator, GIGD-SCE performs no matrix inversion at
all. It evaluates channel coefficients one by one with the
help of Gaussian approximation. Nevertheless, it works
pretty well as shown by the results.

At middle-range SNRs, GIGD-SCE shows a non-
linear behaviour just as all available semi-blind channel
estimation algorithms. At low SNRs, an interesting
phenomenon is that the MSE curves of GIGD-SCE are
even lower than the CRLB. This however tells us that
GIGD-SCE is a biased channel estimator at low SNRs.
For details on these two issues, the authors would refer
interested readers to [8], [9].

5.3 Bit Error Ratio
In this section, we check the BER performances of
GIGD-SCE in a 4×4 system and an 8×8 system. As a
comparison, we take the BER performances of graph-
based iterative Gaussian detector (GIGD) with known
channel coefficients. The algorithm of GIGD can be
simply obtained by removing the channel estimation
part of GIGD-SCE. Interested readers may refer to [11]
for more direct descriptions of GIGD.

Fig. 12 demonstrates the BER performances of
GIGD-SCE in repetition coded MIMO systems. As
we can see, the BER performances of GIGD-SCE are
desirable. The gap between GIGD-SCE and GIGD with
known channel is less than 2 dB in a 4 × 4 system.
Such a performance is already very good, since only
4 training symbols are inserted into each burst in this
case and we have 4 transmit antennas. When the system
deploys more antennas, the situation gets even better.
The gap between GIGD-SCE and GIGD with known
channel nearly vanishes in an 8 × 8 system. This
excellent BER performance in an 8 × 8 system can
be well explained by Fig. 11, as the quality of channel
estimation is optimal for SNR � −2 dB.

A very interesting phenomenon is that GIGD-SCE
outperforms GIGD with known channel at high SNRs,
which is contradictory to our preconceived ideas. This
is due to the fact that the Gaussian approximation of
MAI is still valid at high SNRs with uncertain channel
coefficients. Nevertheless, if all channel coefficients are
exactly known, the summation of several interfering
BPSK symbols will be far away from a Gaussian
distribution.

6 Conclusions
In this paper, we proposed a graph-based iterative
Gaussian detection and soft channel estimation
algorithm. This algorithm treats channel coefficients as
variables as well as data symbols. Data detection and
channel estimation are performed over a general factor
graph. Channel coefficients are estimated element-wise
with the help of a Gaussian approximation. The
feasibility of this algorithm is verified by various
numerical results both in channel estimation mean
squared error and bit error ratio.

APPENDIX

p(y|xm) =

∫
p(y|hm, xm) p(hm) dhm

=

∫
1

πσ2
vm

e
−

|y−hmxm−μvm |2

σ2
vm

·
1

πσ2
hm

e
−

|hm−μhm
|2

σ2

hm dhm

=
1

π(σ2
hm

|xm|2 + σ2
vm

)
e
−

|y−μhm
xm−μvm |2

σ2

hm
|xm|2+σ2

vm .

For BPSK symbols, |xm|2 ≡ 1. We have

⇒ LLR(xm) = 4 Re{μ∗
hm

(y − μvm
)}/(σ2

hm
+ σ2

vm
) .
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