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Abstract— General channels with arbitrary noise distributions
and a finite set of signaling points are considered in this paper.
We aim at finding the capacity-achieving input distribution. As a
structural result we first demonstrate that mutual information is
a concave function of the input distribution and a convex function
of the channel transfer densities. Using the Karush-Kuhn-Tucker
theory, capacity achieving distributions are then characterized
by constant Kullback-Leibler divergence between each channel
transfer density and the mixture hereof built by using the proba-
bilities as weights. If, as a special case, the noise distribution and
the signaling points are rotationally symmetric, then the uniform
input distribution is optimal. For 2-PAM modulation and certain
types of asymmetric noise distributions, including exponential,
gamma and Rayleigh, we present extensive numerical evaluations
of the optimal input. Furthermore, for 4-QAM we determine the
optimal input from a restricted symmetric class of distributions
for correlated Gaussian noise.

I. INTRODUCTION AND MOTIVATION

It is a classical result of Shannon that the scalar additive
Gaussian noise channel subject to average power constraints
achieves capacity if the input distribution is Gaussian as well.
The survey paper [1] summarizes the extension of this result
to complex circularly symmetric Gaussian vector channels,
particularly MIMO channels. However, due to its unbounded
support this distribution is not realizable in practice. Further
research has focused on bounded signaling sets by introducing
peak power constraints of different types. Interestingly, the
capacity-achieving distribution becomes discrete with finite
support in this case, as was shown in [2]. The work [3]
gives an overview of previous research on the topic, including
Poisson, quadrature Gaussian and additive vector Gaussian
noise distributions under average and peak power constraints.
This paper also generalizes the problem by considering con-
ditionally Gaussian vector channels subject to bounded-input
constraints by some bounded set S . Under certain conditions
on S capacity is achieved for a discrete distribution with
finitely many signaling points. In the recent paper [4], a
Rayleigh fading channel and average power constraints are
considered. It is shown that the support of the capacity-
achieving distribution is bounded. However, it is also pointed
out that proofs of the important communication-theoretic prob-
lem of finite or bounded support by using the identity theorem
for holomorphic functions are not rigorous and need further
consideration.

A related question of optimal signaling is raised in [5]: what
is the optimum constellation of M equiprobably used signaling
points for an additive Gaussian channel with average power
constraints such that the error probability attains its minimum.

Summarizing the above, for practical purposes it is sufficient
to determine a finite signaling constellation of M points
x1, . . . ,xM and the corresponding capacity-achieving input
distribution p = (p1, . . . , pM ). In this paper, we confine
ourselves to a fixed given constellation set and merely search
for the optimum input distribution. This approach is motivated
by practical requirements on the simplicity of the receiver
structure. Standard MPAM and MPSK modulation schemes
are covered by our model.

Results evolve along the following lines. We first provide
some structural results on mutual information, the objective
function used in this paper. Concavity as a function of the input
distribution, and convexity as a function of arbitrary channel
transfer densities is demonstrated in Section II. The optimal
input distribution is then characterized by use of the Karush-
Kuhn-Tucker (KKT) conditions, see Section III. Finally, in
Sections IV and V, this characterization is used to obtain
explicit and numerical results for symmetric and arbitrary
noise densities for 2-PAM, respectively. Section VI concludes
with numerical evaluations of 4-QAM with correlated noise.

II. STRUCTURAL RESULTS

Consider a channel with M signaling points x1, . . . ,xM ∈
Rn which are used by the transmitter according to a certain
input distribution p = (p1, . . . , pM ) ∈ DM , where the set of
all probability distributions with M support points is denoted
by

DM =
{
p = (p1, . . . , pM ) | pi ≥ 0,

∑M
i=1pi = 1

}
.

Let random variable X denote the discrete channel input
with distribution p. The channel output Y is randomly dis-
torted by noise. Throughout the paper we assume that the
distribution of Y given input X = xi has (Lebesgue) density

f(y | xi) = fi(y), y ∈ Rn.

The AWGN channel Y = X + n is a special case hereof
with fi(y) = ϕ(y − xi). Here, ϕ denotes the density of a
Gaussian distribution Nn(0,Σ).



Mutual information between channel input and output as a
function of p = (p1, . . . , pM ) and f1, . . . , fM may be written
as

I(X;Y ) = I
(
p; (f1, . . . , fM )

)
= H(Y )−H(Y |X)

= H
( M∑
i=1

pifi

)
−

M∑
i=1

piH(fi)

=
M∑
i=1

piD
(
fi

∥∥∥ M∑
j=1

pjfj

)
,

(1)

where D(f‖g) =
∫
f log f

g denotes the Kullback-Leibler
divergence between densities f and g.

Let F denote the set of all Lebesgue densities f : Rn →
R+. From the convexity of t log t, t ≥ 0, it is easily concluded
that

H
( M∑
i=1

pifi

)
is a concave function of p ∈ DM . (2)

By applying the log-sum inequality (cf. [6]) we also obtain

αf1 log
f1

g1
+ (1− α)f2 log

f2

g2

≥
(
αf1 + (1− α)f2

)
log

αf1 + (1− α)f2

αg1 + (1− α)g2
,

pointwise for any pairs of densities (f1, g1), (f2, g2) ∈ F2.
Integrating both sides of the above inequality shows that

D(f‖g) is a convex function of the pair (f, g) ∈ F2. (3)

Applying (2) and (3) to the third and forth line of represen-
tation (1), respectively, gives the following.

Proposition 1: Mutual information I
(
p; (f1, . . . , fM )

)
is a

concave function of p ∈ DM and a convex function of
(f1, . . . , fM ) ∈ FM .

Hence, determining the capacity of the channel for fixed
channel transfer densities f1, . . . , fM leads to a concave
optimization problem, namely

C = max
p∈DM

I(p; f1, . . . , fM ).

This problem will be considered in detail in the following
section.

III. CAPACITY-ACHIEVING INPUT

The capacity-achieving input distribution is the solution of
a convex optimization problem. Hence, the solution may be
characterized by the Karush-Kuhn-Tucker (KKT) theory.

Distribution p∗ = (p∗1, . . . , p
∗
M ) achieves capacity, i.e.,

maximizes mutual information, if and only if I(X;Y ) is
maximized by p∗ in the set of all stochastic vectors. By

representation (1), we need to solve

maximize
{
−
∫ ( M∑

i=1

pi fi(y)
)

log
( M∑
i=1

pi fi(y)
)
dy

+
M∑
i=1

pi

∫
fi(y) log fi(y)dy

}
subject to

pi ≥ 0, i = 1, · · · ,M,
M∑
i=1

pi = 1.

The above is a convex problem since by Proposition 1 the
objective function g(p1, . . . , pM ) is concave and the constraint
set is convex. The Lagrangian is given by

L(p,λ, ν) = −
∫ ( M∑

i=1

pi fi(y)
)

log
( M∑
i=1

pi fi(y)
)
dy

−
M∑
i=1

pi

∫
fi(y) log fi(y)dy

+
M∑
i=1

λipi + ν(
M∑
i=1

pi − 1).

with the notation λ = (λ1, · · · , λM ). The optimality condi-
tions are (cf. [7, Ch. 5.5.3])

∂L(p,λ, ν)
∂pi

= 0,

pi, λi ≥ 0, (4)
λipi = 0,

for all i = 1, . . . ,M . Partial derivatives of the Lagrangian
w.r.t. pi are easily obtained as

∂L(p,λ, ν)
∂pi

= −(log e)−
∫
fi(y) log

( M∑
j=1

pjfj(y)
)
dy

+
∫
fi(y) log fi(y)dy + λi + ν,

for i = 1, . . . ,M . Hence, (4) leads to the conditions pi = 0
or∫

fi(y)
(

log fi(y)− log
( M∑
j=1

pjfj(y)
))
dy = log e− ν.

for all i = 1, . . . ,M . In summary, we have demonstrated the
following result.

Proposition 2: Input distribution p∗ is capacity-achieving if
and only if

D
(
fi

∥∥∥ M∑
j=1

p∗jfj

)
= const (5)

for all i such that pi > 0. Furthermore, if H(fi) is independent
of i, then p∗ is capacity-achieving iff∫

fi(y) log
( M∑
j=1

p∗jfj(y)
)
dy = const (6)



Fig. 1. 8-PSK with contour lines of rotated Gaussian noise distributions,
initially with expectation (1, 0)′, variances σ2

1 = 2 and σ2
2 = 1, and

correlation ρ = 0.8.

for all i such that pi > 0.

IV. SYMMETRIC NOISE DISTRIBUTIONS

Assume that the channel noise distribution when transmit-
ting symbol xi is symmetric in the sense that

fi(y) = f0(T iy), i = 1, . . . ,M,

for some fixed density f0 and orthogonal matrix T satisfying

TM = I, (7)

the identity matrix. In this case, the uniform distribution p =
( 1
M , . . . , 1

M ) is capacity achieving, as may be seen by the
following. For any i ∈ {1, . . . ,M} it holds that∫

fi(y) log
( 1
M

M∑
j=1

fj(y)
)
dy

=
∫
f0(T iy) log

( 1
M

M∑
j=1

f0(T jy)
)
dy

=
∫
f0(y) log

( 1
M

M∑
j=1

f0(T j−iy)
)
dy

=
∫
f0(y) log

( 1
M

M∑
j=1

f0(T jy)
)
dy,

independent of i. By condition (6) this proves optimality of
the uniform distribution.

As an example, let f0 ∼ N(x0,Σ0) be the density of the
n-dimensional Gaussian distribution with expectation x0 and
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Fig. 2. Optimum probability for selecting signaling point −d with 2-PAM.
The noise distribution is Γ(α, λ) with parameters λ = 1 and α ∈ {1, 2, 4}.

covariance matrix Σ0. If some orthogonal matrix T satisfies
(7), then fi may be chosen as

fi(y) ∼ N
(
T ix0,T

iΣT i
′)
, i = 1, . . . ,M.

Obviously, circularly symmetric additive noise, i.e.,

fi(y) = f0(y − xi), i = 1, . . . ,M,

with f0 ∼ N(0, σ2I), and signaling points generated as
xi = T i

′
x0, i = 1, . . . ,m, is an example hereof. Complex

MPSK signaling with circularly symmetric noise distribution
is a special case, see [8].

The present result shows that correlated noise is also admit-
ted, still having the uniform distribution as capacity-achieving.
However, the noise distribution has to be accordingly rotated
for each signaling point xi = T i

′
x0.

8-PSK with the signaling constellation depicted in Fig. 1
is an example hereof. x0 = x8 = (1, 0)′ is the initial point

and T =
(

cosπ/4 sinπ/4
− sinπ/4 cosπ/4

)
the orthogonal rotation with

T 8 = I . Fig. 1 also shows the contour lines of the Gaussian

noise distribution with covariance matrix
(

2 1.6
1.6 1

)
.

V. 2-PAM WITH SKEW NOISE DISTRIBUTIONS

Pulse amplitude modulation with two signaling points (2-
PAM) x1 = −d and x2 = d, d > 0, is considered in
this section. If the noise distribution is symmetric, then from
Section IV the uniform distribution p1 = p2 = 1/2 follows
to be capacity-achieving. Simply choose M = 2 and T =
(−1) ∈ R.

We now assume additive noise in the form that

f1(y) = f(y − d) and f2(y) = f(y + d)

for some fixed noise density f . Optimality condition (6) for
p1 = p and p2 = (1−p), 0 ≤ p ≤ 1 then leads to the problem
of finding p such that∫

f1 log
(
pf1 +(1−p)f2

)
=
∫
f2 log

(
pf1 +(1−p)f2

)
(8)
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Fig. 3. Optimum probability for selecting signaling point −d with 2-PAM.
The noise distribution is Rayleigh with parameter σ ∈ {0.5, 1, 2, 4}.

holds. If f(y) = λe−λy , y ≥ 0, the density of the exponential
distribution, the optimal input distribution (p1, p2) is explicitly
determined in [8] through

β =
2λd

1− e−2λd
and α =

eβ − 1
e2λd

as

p1 =
1

1 + α
and p2 =

1
1 + α

.

The probability p1(d) of using signaling point −d is de-
picted as a function of d in Fig. 2 (solid line). It can be seen
that the further the signaling points are apart the closer the
optimum distribution approaches the uniform, i.e., p1 = 0.5.
For signaling points nearby there is a significant deviation from
the uniform distribution in that the x2 = +d is selected with
higher probability, in the limit limd→0 p1(d) = 1/e, as can be
easily seen.

Explicit results for other noise distributions seem to be
hard to achieve. Numerically, however, equation (8) can be
solved by using according Matlab subroutines. Two classes of
distributions were investigated that way, gamma and Rayleigh
distributions. The according densities are

fΓ(y) =
λα

Γ(α)
yα−1e−λy, y > 0 (α, λ > 0),

fRay(y) =
y

σ2
e−

y2

2σ2 , y > 0 (σ2 > 0).

The values p1(d) for parameters λ = 1 and α = 1, 2, 4
are shown in Fig. 2. Parameter α = 1 represents the above
mentioned exponential distribution. Interestingly, the behavior
is non-monotonic for the cases α = 2 and α = 4.

A non-monotonic behavior of p1(d) is also observed in
the case of Rayleigh distributions, as is depicted in Fig. 3.
Again, with signaling points far apart, the uniform distribution
is optimum, while signaling points close by show a remarkable
deviation from uniformity.

d

Fig. 4. 4-QAM, signaling points (black circles) and contour lines of the two-
dimensional Gaussian noise distribution with unit variances and correlation
ρ = 0.8.

VI. 4-QAM WITH CORRELATED GAUSSIAN NOISE

Four signaling points x1,x2,x3,x4 are given as
(d, d)′, (−d, d)′, (−d,−d)′, (d,−d)′, d > 0, see Fig. 4.
Contour lines of the two-dimensional Gaussian noise
distribution with unit variances and correlation ρ = 0.8 are
also shown in this graph.

To allow for explicit numerical solutions we only consider
the class

(
p/2, (1 − p)/2, p/2, (1 − p)/2

)
, 0 ≤ p ≤ 1,

of diagonally symmetric input distributions. The problem is
hence reduced to one dimension. Channel densities fi(y)
are assumed to correspond to Gaussian N(xi,Σ)-distributions

with some fixed covariance matrix Σ =
(

1 ρ
ρ 1

)
. In this case,

optimality condition (6) reads as∫ (
(f1+f3)−(f2+f4)

)
ln
(p

2
(f1+f3)− 1− p

2
(f2+f4)

)
= 0

for 0 < p < 1. It is satisfied whenever∫ (
fi − fj

)
ln
(p

2
(f1 + f3)− 1− p

2
(f2 + f4)

)
= 0

holds for (i, j) ∈ {(1, 2), (3, 4)} and the same p ∈ (0, 1).
The last equation is numerically evaluated and the according

values of p are represented as a function of d in Fig. 5.
The case ρ = 0 corresponds to stochastically independent
symmetric noise which yields a uniform distribution indepen-
dent of d, as demonstrated in Section IV. As d increases,
the uniform distribution is asymptotically optimum for any
correlation ρ. Interestingly, for small values of d the deviation
from uniformity reverts if ρ passes approximately the value
|ρ| ≈ 0.5.

This phenomenon is closer investigated in Fig. 6, where the
behavior of the input distribution is depicted as a function of
ρ for fixed d ∈ {0.7, 1, 1.5, 3} and unit variances of the noise
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Fig. 5. The probability p of selecting signaling point x1 as a function
of d for two-dimensional Gaussian noise with unit variances and correlation
ρ ∈ {0, 0.1, 0.2, 0.5, 0.8, 0.9}. Uncorrelatedness (ρ = 0) yields a uniform
distribution independent of d.
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Fig. 6. The probability p of selecting signaling point x1 as a function of ρ
for different values of d = 0.7, 1.0, 1.5, 3.0.

distribution. Deviation from uniformity attains its maximum
and minimum, respectively, at |ρ| = 0.526 for d = 0.7 and
|ρ| = 0.554 for d = 1. Monotone behavior is observed for
d ∈ {1.5, 3.0}. The value d = 3 corresponds to the case
that the signaling points are far apart. The nearly constant
value p = 0.25 points to the fact that despite correlations
in the noise the uniform distribution is capacity-achieving.
Significant deviations from the uniform distribution may be
observed if the signaling points are close-by, e.g., the case
d = 0.7. The behavior of the optimum distribution is extremely
interesting. For negative correlations the signaling points x1

and x3 (first and third quadrant) are selected with higher
probability, positive correlations induce more emphasis on x2

and x4.

VII. CONCLUSIONS AND OUTLOOK

We have investigated the optimal input distribution for finite
given sets of signaling points when the channel is subject to
arbitrary noise distributions. Mutual information serves as the
objective function. Convexity of the basic problem has been
shown, and based on this, a general optimality condition in
terms of the Kullback-Leibler divergence has been given. It
has been demonstrated that for asymmetric noise distributions
the optimal input is significantly different from being uniform,
which should be exploited by the bitmapper in real systems.
Important issues for subsequent research are numeric stability
of algorithms to determine the optimum and, furthermore,
including the position of the signaling points into the objective
function.
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