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Abstract—Allpass transformed filter banks provide a non-
uniform frequency resolution and can be used in mobile speech
processing systems, e.g., cellular phones or digital hearing aids.
The nominal design of such an allpass transformed analysis-
synthesis filter bank (AS FB) with near perfect reconstruction
(NPR) is achieved by numerical optimization of finite-impulse
response (FIR) equalizers in each subchannel. The underlying
nominal optimization problem is an equality constrained least-
squares problem. In a robust design, we take into account
coefficient uncertainty in a possible implementation of such a
filter bank. We will describe this uncertainty by the choice of two
simple set-based worst-case uncertainty models, namely a norm
bound error model and a coefficient bound error model. When
including these error models, both robust designs can be recast
as second-order cone programs (SOCP) and solved efficiently
by standard numerical optimization methods. Furthermore, we
will provide design examples to show that both robust designs
maintain a good overall performance with respect to NPR while
offering less sensitivity to quantization errors.

I. INTRODUCTION

Consider a digital filter bank which approximates the non-

uniform frequency resolution of the human auditory system.

This can be used for different applications in mobile speech

processing systems such as subband coding [1] or speech

enhancement algorithms [2]–[5]. Using an allpass transformed

filter bank is one possibility to achieve this goal [6], [7]. When

compared to a tree-structured approaches, allpass transformed

filter banks offer a significant lower signal delay, which is

crucial for speech processing systems.

Given a prescribed filter bank structure, the design goal is to

find a set of equalizer coefficients such that the output signal

is a delayed version of the input signal. Thus, the overall

performance of the filter bank should be characterized as a

perfect reconstruction (PR) system. Several authors proposed

an analytical framework for an allpass transformed PR filter

bank design, e.g., [1], [8]. One major drawback of this

analytical solution is the missing bandpass characteristic at

the synthesis filters.

To overcome this problem, the design goal can be relaxed to

a near perfect reconstruction (NPR) design based on numerical

optimization methods [9]–[11]. An advantage of these methods

is that several design criteria can be incorporated easily in
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the objective and constraints of a mathematical optimization

problem, e.g., stop band attenuation, amount of linear and

nonlinear distortion. In addition, if it is possible to express the

filter bank design problem as a tractable convex optimization

problem, this problem can be solved via efficient numerical

methods [12], [13].

In this contribution, we will consider the optimal solution of

the numerical allpass transformed filter bank design in [11].

We call this solution the nominal solution. The underlying

optimization problem consists of an equality constrained least-

squares problem. However, when there is at least partial

uncertainty in the problem structure, the nominal solution will

suffer in a practical hardware implementation. For this reason,

we will involve robust optimization methods for the numerical

design of allpass transformed filter banks. This leads to so

called robust designs. It will be shown that these designs are

less sensitive to parameter variations while still offering a good

overall performance. In particular, we will use ideas from

worst-case robust optimization [14]–[16] in order formulate

two robust allpass transformed filter bank designs.

The following notation will be used frequently. The complex

modulation factor is denoted by WM = e−j2π/M . Boldface

upper-case letters denote matrices, boldface lower-case letters

denote vectors. ‖·‖p denotes the p-norm of a matrix or vector,

respectively. IM is the identity matrix of dimension M×M .

0M stands for the null vector of dimension M × 1. The

componentwise inequality between two vectors is given by

x � y. The Kronecker product operator is represented as ⊗.

II. NOMINAL FILTER BANK DESIGN

The allpass transformed DFT analysis-synthesis filter bank

(AS FB) with M channels and a subsampling factor R is

considered according to Fig. 1 and Fig. 2. In this efficient

polyphase network implementation, the analysis and synthesis

FIR prototype filters of length M are denoted as h[n] and

g[n], respectively. We will now develop several relations for

such an allpass transformed DFT AS FB following [11]. It

should be noted, that a generalization of this concept including

longer prototype filters was introduced in [10]. However, this

generalization leads to essentially the same mathematical opti-

mization problem and is not considered to ease the treatment.

The input-output relation is given in the z-domain as
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Fig. 1. Allpass transformed DFT analysis filter bank.
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Fig. 2. Allpass transformed DFT synthesis filter bank.

Y (z) =
1

R

R−1∑

r=0

X(zW r
R)

M−1∑

m=0

H̃m(zW r
R)Gm(z) . (1)

It consists of two filter sections, the analysis and synthesis

subband filters, respectively.

The allpass transformed analysis filters read as

H̃m(zW r
R) =

M−1∑

n=0

h[n]Wmn
M HA(zW r

R)n (2)

where HA(z) = (1 − αz)/(z − α) is a stable allpass filter

with |z| > |α|, |α| < 1 and α ∈ R. Depending on the choice

of the allpass coefficient α, we get a frequency warped filter

bank with a non-uniform frequency resolution. Note that the

uniform DFT filter bank is included as a special case for α=0.

The FIR synthesis subband filters are given by

Gm(z) =

M−1∑

k=0

g[M − 1 − k]W−mk
M

Np−1∑

s=0

pk[s]z−s (3)

=

M−1∑

k=0

g[M − 1 − k]W−mk
M Pk(z) . (4)

We will now design the M FIR equalizer filter functions Pk(z)
at the end of each channel. In order to get an NPR system,

we have to combat two kinds of distortions.

Firstly, we have to minimize the linear distortion. For the

considered allpass transformed DFT AS FB, this is equivalent

to the conditions

R

M

M−1∑

k=0

h[k]g[M − 1 − k]
!
= 1 and (5)

HA(z)kPk(z) ≈ z−d0 , k = 0, 1, . . . , M−1. (6)

The first condition can easily be met by an appropriate choice

of the prototype filter pair, e.g., two rectangular window func-

tions. The second condition can only be fulfilled approximately

as it is an equalization of an IIR frequency response by an FIR

filter. How to incorporate this condition will be discussed in

the next subsection.

Secondly, we have to cancel out the nonlinear distortion,

i.e., the alias components. The presence of alias components

is caused by subsampling by R > 1, which is performed

to obtain an efficient implementation of the filter bank. Let

Xl(z) = z−l, l = 0, . . . , R − 1 be a sequence of time-shifted

unit pulses. The transfer function Tl(z) = Y (z)/Xl(z) of the

filter bank can now be written as

Tl(z) =
1

R

R−1∑

r=0

W−rl
R

M−1∑

m=0

H̃m(zW r
R) · vT

m · DT (z) · p

= tT
l (z)p (7)

with

vT
m =

(
g[M − 1]W−m0

M , . . . , g[0]W
−m(M−1)
M

)

D(z) = IM ⊗
(
1, z−1, . . . , z−(Np−1)

)

p = (p0[0], . . . , p0[Np − 1], p1[0], . . . , pM−1[Np − 1]) .

In order to get an aliasing-free system, it is sufficient to ensure

a linear time-invariant (LTI) system. This property can be

expressed as [11]

Tl(z) = T0(z) for l = 0, . . . R − 1 . (8)

In what follows now, we will show that (6) and (8) can

be modeled approximately in terms of a norm approximation

problem with equality constraints. Evaluating these expres-

sions on the unit circle with z = ejω leads to

HA(ejω)k

Np−1∑

s=0

pk[s]e−jωs = HA(ejω)kwT
Np

pk ≈ e−jωd0

(9)

where k = 0, 1, . . . , M − 1. This can be reformulated as




HA(ejω)0wT
Np

0T
(M−1)Np

. . .

0T
(M−1)Np

HA(ejω)M−1wT
Np


 · p ≈




e−jωd0

...

e−jωd0




(10)

or equivalently as V ·p ≈ b. Considering the LTI condition, it

follows from (7) and (8) that these conditions can be expressed
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as



t1(e
jω) − t0(e

jω)

...

tR−1(e
jω) − t0(e

jω)


 · p = T · p = 0R−1 . (11)

With the above expressions, the nominal optimization prob-

lem for the considered allpass transformed AS FB can be

stated as
minimize

p
‖Vp− b‖p

subject to Tp = 0R−1 ,
(12)

with the equalizer design vector p ∈ RMNp , V ∈ CM×MNp ,

b ∈ C
M and T ∈ C

(R−1)×MNp . After a discretization of ω
over K frequency points, the above problem eventually leads

to a norm approximation with equality constraints. This is a

tractable convex problem which can be solved efficiently [12].

In the following, we will assume the Euclidean vector norm,

i.e., p = 2.

III. ROBUST FILTER BANK DESIGN

The implementation of an allpass transformed filter bank

in polyphase network structure contains coefficient multipli-

cations in the analysis and synthesis stages. However, due to

finite precision, it is possible that rounding errors will cause a

deviation between the nominal filter bank and its implemented

version. As a consequence, the nominal matrix V – which

reflects the filter bank structure – is supposed to be subject

to uncertainty. In this section we will introduce two robust

designs for the nominal optimimization problem (12).

Formulating an exact uncertainty model for the multiplica-

tive effect of several coefficient errors might be a futile

task. For example, it has been reported in [17] that even

the simple case of a multiplicative ellipsoidal uncertainty of

two quantities involves some advanced concepts of ellipsoidal

calculus. For this reason, we will resort to a simple set-based

worst-case uncertainty model V , such that V ∈ V . The robust

worst-case design can be reformulated as the following bi-

criterion problem

minimize
p,ε

sup
V∈V

‖Vp− b‖2

subject to ‖Tp‖2 ≤ ε .
(13)

It is reasonable to model uncertain equality constraints within

a prescibed range [18]. Therefore, we have introduced a new

epigraph variable ε ∈ R and replaced the equality constraints

by a second-order cone constraint. In order to get a computa-

tionally tractable optimization problem, we have to get rid of

the sup(·). We will now introduce two common choices for

the uncertainty set V [12], [15], such that a tractable problem

can be found more easily.

A. Norm bound error

The first model is the so called norm bound error model.

We describe the uncertainty in V by the set

Vnb = {V + ∆V | ‖∆V‖2 ≤ anb} , (14)

where ‖·‖2 denotes the spectral norm of the matrix ∆V. The

parameter anb controls the worst-case uncertainty about the

nominal matrix V. It can be verified, that the robust worst-

case problem with a norm bound error is equivalent to

minimize
p,ε,t1,t2

t1 + anbt2

subject to ‖Vp− b‖2 ≤ t1 ‖p‖2 ≤ t2

‖Tp‖2 ≤ ε ,

(15)

with the design vector p ∈ RMNp and epigraph variables

t1, t2, ε ∈ R. This optimization problem is a second-order

cone program (SOCP) which can be solved efficiently.

B. Coefficient bound error

The norm bound error model lacks in exploiting the special

matrix structure in the nominal matrix V. In fact, V is a sparse

matrix by definition (10). The coefficient bound error model

accounts for this special structure. It enables us to adjust every

entry in the nominal matrix, which also allows to preserve the

sparsity pattern in V. The coefficient bound error model is

explicitly given by

Vcb={V̂ ∈ R
m×n | lij ≤ v̂ij ≤uij , i = 1, . . . , m, j = 1, . . . , n},

(16)

where each coefficient v̂ij is lower bounded by lij and upper

bounded by uij . We will now use the following equivalent real

formulation for complex matrices and vectors

V̂ =

[
Re(V) −Im(V)

Im(V) Re(V)

]
, b̂ =

[
Re(b)

Im(b)

]
. (17)

The dimension of V̂ is given by m = 2M and n = 2MNp. To

find a tractable formulation for the robust worst-case problem

with coefficient bounds, we will follow [12] (exercise 6.8).

Note that

sup
lij≤vij≤uij

|v̂T
i p̂ − b̂i| =

∣∣∣∣∣∣

n∑

j=1

v̂+
ij p̂j − b̂i

∣∣∣∣∣∣
+

n∑

j=1

v̂−ij |p̂j | , (18)

with

v̂+
ij = (uij + lij)/2 , v̂−ij = (uij − lij)/2 . (19)

With the above expression, we can eliminate the supremum in

the objective, that is

sup
V∈Vcb

‖V̂p̂− b̂‖2 =

m∑

i=1




∣∣∣∣∣∣

n∑

j=1

v̂+
ij p̂j − b̂i

∣∣∣∣∣∣
+

n∑

j=1

v̂−ij |p̂j |




2

(20)

The robust worst-case problem with coefficient bounds can

now be recast as

minimize
p̂,x,y,t,ε

t

subject to ‖V̂−x + y‖2 ≤ t , ‖T̂p̂‖2 ≤ ε ,

−y � V̂+p̂ − b̂ � y , −x � p̂ � x .

(21)

The variables are p̂,x ∈ Rn, y ∈ Rm and t, ε ∈ R. Each

entry in V̂+ and V̂− is given by (19). Again, this problem is

an SOCP, which in turn can be solved efficiently.
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IV. DESIGN EXAMPLES

In the whole section we will employ the following filter

bank specification: M = 16 channels, Np = 36 coefficients

for each Pk(z), subsampling by R = 4, allpass coefficient

α = 0.4 and K = 256 discrete frequency points. Furthermore,

every optimization problem is solved by CVX, a package for

specifying and solving convex programs [13].

Consider first the worst-case problem with a norm bound

error (15). Solving this problem for different values of anb

leads to different design vectors pnb, which depend on anb.

The worst-case objective function value for this problem is

given by

fnb(p) = ‖Vp− b‖2 + anb‖p‖2 (22)

Now insert the design vectors pnom and pnb into the above

expression. Evaluating this yields the plot in Fig. 3a. The

robust design performs always better in the worst-case sense

than the nominal design.

The same can be done for the robust worst-case problem

(21) with coefficient bounds (19). The worst-case objective is

given by

fcb(p) =
m∑

i=1




∣∣∣∣∣∣

n∑

j=1

v̂+
ij p̂j − b̂i

∣∣∣∣∣∣
+

n∑

j=1

v̂−ij |p̂j |




2

. (23)

We will use the following values uij = (1 + acb)vij and

lij = (1 − acb)vij . This leads to v̂+
ij = vij and v̂−ij = acbvij ,

respectively. Note that this simple choice preserves the sparsity

pattern in the nominal matrix. The result is depicted in Fig.

3b. Again, the robust design performs better than the nominal

design.

Consider now a fixed parameter setting anb = 13.125 and

acb = 0.7875 which leads to fixed robust design vectors

pnb and pcb, respectively. Both vectors are inserted into the

adjustable nominal objective

fadj(p) = ‖(V + Vadj)p − b‖2 . (24)

We will now adjust the amount of uncertainty in this

objective by changing the influence of Vadj. In the case of

the norm bound error model, Vadj is an i.i.d. central complex

gaussian random matrix with a spectral norm given by the

values between anb,min = 0 and anb,max = 15. In the case of the

coefficient bound error model, the entries of Vadj are adjusted

by uniformly distributed perturbations within [−acb, +acb] for
acb,min = 0 and acb,max = 0.9. On the one hand, when there is

almost no uncertainty present, i.e., for low values of anb and

acb, the nominal design will outperform both robust designs.

On the other hand, with increasing uncertainty the robust

designs will behave better and better when compared to the

nominal design. These relations can be seen in Fig. 4.

For practical reasons we will consider a 16-bit quantized

version of the matrix V. Compare now the nominal design

and the norm bound error robust design for different values of

anb. The results can be seen in Fig. 5. Notice that the robust

design clearly outperforms the nominal design.
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Fig. 3. Worst-case performance.
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The above analysis showed some qualitative and quantitative

behaviour of the objective function for both robust designs.

However, it gives almost no insight into the overall perfor-

mance of the filter bank. This issue can be addressed by the

analysis of the magnitude of the bifrequency system function

T (ejω1 , ejω2) [7]. It consists of the 2D Fourier transform of the

filter bank system response function. The main design objec-

tives are the minimization of linear distortion and the elimina-

tion of alias components. The former condition corresponds to

849



ω1/π
ω2/π

|T
(e

jω
1
,e

jω
2
)|

[d
B

]

0

0

0

−50

−100

−150

0.5

0.5
11

1.5

1.5

2

2

(a) norm bound error

ω1/π
ω2/π

|T
(e

jω
1
,e

jω
2
)|

[d
B

]

0

0

0

−50

−100

−150

0.5

0.5
11

1.5

1.5

2

2

(b) coefficient bound error

Fig. 6. Bifrequency system function for both robust designs. The parameter
setting is fixed and given by anb = 13.125 and acb = 0.7875.
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Fig. 7. Synthesis filters for both robust designs and a fixed parameter setting.

the main diagonal in the bifrequency system function, which

is constant to 0 dB when there is no linear distortion. The

latter condition can be analyzed by the occurence of parallel

side-diagonals in the bifrequency system function. Both robust

designs yield almost no linear and nonlinear distortion, as can

be seen from Fig. 6. Furthermore, both robust designs offer

a bandpass characteristic with respect to the synthesis filters

(Fig. 7), which is needed for speech enhancement algorithms.

Therefore, the overall performance criteria are fulfilled by both

robust designs.

V. CONCLUSION

We have considered a nominal design of an allpass trans-

formed filter bank with minimized linear and nonlinear dis-

tortion. This design can be formulated as a least-norm ap-

proximation problem with equality constraints. In fact, this

problem has a fairly simple structure from an optimization

point of view. Based on this simple problem structure, we have

introduced two robust design approaches. It has been shown,

that both approaches can be expressed as convex optimization

problems in a reasonable and tractable way. These problems

were solved using CVX. Furthermore, their solutions offered a

good compromise between robustness and overall filter bank

performance with respect to linear and nonlinear distortions.
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