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Abstract—In this paper, the rate region of the two user MIMO
broadcast channel (BC) with linear filtering at high signal-to-
noise ratio (SNR) is studied when time sharing is not available
and the transmitter has fewer antennas than the sum of the
receiving antennas. To reach the boundary of the rate region,
the sum rate is maximized subject to a rate ratio constraint.
Furthermore, the sum rate is approximated as an affine function
of the logarithm of the SNR and the two parameters of this
approximation, which are the multiplexing gain (MG) and the
rate offset (RO), are derived. This leads directly to the asymptotic
rate region, particularly interesting because it is obtained in
simple analytical form and offers a good approximation at high
but finite SNR. We then consider the rate region boundary
at finite SNR and derive algorithmic bounds for it, which are
accurate even at intermediate SNR.

I. INTRODUCTION

We consider a two user broadcast channel (BC) where
both users have several antennas and the base station (BS)
is assumed to have fewer antennas than the sum of the
receiving antennas. The transmitter and the receivers have
perfect channel state information and the power available at
the transmitter is very large. Moreover, time sharing is not
available.

At arbitrary SNR, the capacity region is then known to be
achievable with dirty paper coding (DPC) [1], [2] and globally
optimum algorithms are available to maximize the weighted
sum rate [3]. Still, DPC requires a very demanding implemen-
tation [4], while linear precoding is a suboptimal alternative
with good performance and low complexity. Thus, we assume
in the following that the BS applies linear precoding, in which
case only lower bounds for the convex hull have been obtained
algorithmically [5], [6].

At high-SNR, a common approximation is to let the SNR
tend to infinity and to write the sum rate 𝑅 as

𝑅 = MG (log(SNR)− RO) ,

where MG and RO are the multiplexing gain (MG) and the
rate offset (RO), respectively.

With more transmitting antennas than the sum of the receiv-
ing antennas, analytical expressions have been derived for the
optimal weighted sum rate of linear precoding [7], [8]. The
maximization of the sum rate subject to a rate ratio constraint
is also studied in [9], [10], and leads to the high-SNR rate
region when time sharing is not available.

However, no result exists at high-SNR when the transmitter
has fewer antennas than the sum of the receiving antennas,
and the aim of this work is to fill this gap.

The main contributions read as follows. First, the asymptot-
ically optimal stream allocation, which leads to the MG and
the RO, is derived at every point of the boundary of the rate
region. Second, it is shown that the precoding matrices derived
are very close to optimal and can be used to derive inner and
outer bounds for the rate region boundary.

In the sequel, the calculations are based on the rate duality
between the MIMO BC and a dual MIMO Multiple Access
Channel (MAC) with the same sum power constraint [11],
which allows us to study the rate region in the dual MAC.

In Section II, we introduce the system model and the
optimization problem. The MG is then studied in Section III
and the RO in Section IV. Finally, the results are applied
to describe the rate region at finite SNR in Section V, and
graphical illustrations are given in Section VI.

Notation: The operators ∥⋅∥F, ∣⋅∣, (⋅)H, log(⋅), and ⌈⋅⌉ denote
the Frobenius norm, the determinant operator, the Hermitian
transposition, the logarithm base 2 and the ceiling operator,
respectively. We also write streams instead of independent data
streams and w.l.o.g. for without loss of generality.

II. SYSTEM MODEL

A. Rate Expressions

We consider a BC with two users, denoted as user 1 and
user 2, having 𝑟1 and 𝑟2 antennas, respectively, while the BS
is equipped with 𝑡 antennas and 𝑡 < 𝑟1 + 𝑟2. We denote the
antenna configuration of the users by 𝒓 = (𝑟1, 𝑟2) and the
stream allocation by 𝒃 = (𝑏1, 𝑏2), where 𝑏𝑖 is the number
of streams allocated to user 𝑖. The stream allocation always
verifies 𝑏1+𝑏2 ≤ 𝑡, 𝑏1 ≤ 𝑟1, and 𝑏2 ≤ 𝑟2. The power available
at the BS is given by 𝑃 and is normalized to the variance of the
noise, such that it is assimilated to the SNR. Using the duality
between the rate region of the BC channel and the dual MAC
[11], we consider the transmission in the dual MAC in which
the two users transmit to the BS with the sum power constraint
of the original BC channel. It means that 𝑃 has to be split into
𝑃1 and 𝑃2, which correspond to the power allocated to user
1 and 2, respectively. The channel seen by user 𝑖 is given by
H𝑖 ∈ ℂ

𝑡×𝑟𝑖 and is assumed to be full rank and perfectly
known at the BS and at both users. Each element of the
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channel is generated randomly from an independent identically
distributed standard Gaussian distribution, and the same holds
for every element of the noise vector at the receiver. When
user 𝑖 applies the full rank precoding matrix T𝑖 ∈ ℂ

𝑟𝑖×𝑏𝑖 , the
rates of user 1 and 2 are given by [11]
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We now decompose the precoding matrices T𝑖 =

√
𝑃𝑖/𝑏𝑖T̄𝑖,

where T̄𝑖 is the normalized precoding matrix (NP matrix),
such that ∥T̄𝑖∥2F = 𝑏𝑖. Since we consider the high-SNR regime,
every non-zero eigenvalue of the transmit covariance matrix
can be assumed to be very large. Thus, the identity in the
inverse term in (1) can be neglected, and we get
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The high-SNR assumption is now further used to neglect the
offset identities inside the determinants. With this approxima-
tion, the high-SNR approximated rates read as
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In the sequel, we consider only the rates 𝑅′′
1 and 𝑅′′

2 from (2)
instead of the exact ones from (1). The error due to the high-
SNR approximation is discussed in [12], [13], and it is shown
that the approximation is already very accurate at 𝑃 = 30 dB.

We now define the projected channels as
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and the rate shifts as
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We can also rewrite the rate shift as
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The approximated rates from (2) are then given by
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B. Optimization Problem

We consider the maximization of the sum rate subject to a
rate ratio constraint, i.e., to maximize the sum rates 𝑅′′ :=
𝑅′′

1 + 𝑅′′
2 subject to a given ratio between the rates 𝑅′′

1 and
𝑅′′

2 . This constraint is expressed by means of the nonnegative
rate coefficients 𝜸 := (𝛾1, 𝛾2) such that 𝑅′′

1/𝛾1 = 𝑅′′
2/𝛾2. The

rates coefficients are normalized as 𝛾1+𝛾2 = 1, which implies
𝑅′′

1 = 𝛾1𝑅
′′ and 𝑅′′

2 = 𝛾2𝑅
′′. Note that the knowledge of 𝛾1,

𝛾2 or 𝜸 is equivalent. Similarly, once the rate ratio constraint
is fulfilled, the knowledge of 𝑅′′

1 , 𝑅′′
2 or 𝑅′′ is also equivalent.

Using these definitions, the optimization problem is

maximize
T̄1,T̄2,𝑃1,𝑃2,𝑏1,𝑏2

𝑅′′ subject to:
𝑅′′

1

𝛾1
=

𝑅′′
2

𝛾2
, 𝑃1+𝑃2=𝑃,

𝑃𝑖 ≥ 0, ∥T̄𝑖∥2F = 𝑏𝑖, 𝑖 = 1, 2. (6)

In this work, we will mainly consider that 𝑃 tends to infinity
and use the following approximation for the sum rate as a
function of the available power:

𝑅′′(𝜸) ≈ 𝑅∞(𝜸) = MG(𝜸) (log(𝑃 )− RO(𝜸)) , (7)

where MG(𝜸) and RO(𝜸) are the multiplexing gain (MG) and
the rate offset (RO), respectively. We start by computing the
maximal MG and focus then on the RO.

III. MULTIPLEXING GAIN STUDY

To achieve the optimal MG, the stream allocation has to be
optimized. We start by recalling some results from [10] for a
given stream allocation 𝒃 and then use these results to obtain
the MG region with optimal stream allocation.

A. Multiplexing Gain for a Fixed Stream Allocation 𝒃.

Theorem 1. [10] For given rate coefficients 𝜸 and stream
allocation 𝒃, only one user has a power allocation scaling
linearly in 𝑃 . He is called the limiting user and denoted as
user ℓ, while the other one, called the non-limiting user and
denoted as user 𝑛ℓ, has a sub-linear power allocation scaling
with 𝑃 raised to the exponent 𝑏ℓ𝛾𝑛ℓ/(𝑏𝑛ℓ𝛾ℓ) < 1. The limiting
user is the user with the largest quotient 𝛾𝑖/𝑏𝑖 and is hence
user 2 if 𝛾1 < 𝑏1/(𝑏1 + 𝑏2), and user 1 if 𝛾1 > 𝑏1/(𝑏1 + 𝑏2).
The rate coefficients corresponding to the equality are called
the transition coefficients of the stream allocation 𝒃 and are
denoted by 𝜸tr(𝒃) = (𝛾1,tr(𝒃), 𝛾2,tr(𝒃)). The maximal MG of
the stream allocation 𝒃 is achieved only at 𝜸tr(𝒃). The MG
for arbitrary 𝜸 reads as follows.

If 𝛾1 < 𝛾1,tr(𝒃) =
𝑏1

𝑏1 + 𝑏2
: MG(𝜸) =

𝑏2
𝛾2

,

If 𝛾1 = 𝛾1,tr(𝒃) =
𝑏1

𝑏1 + 𝑏2
: MG(𝜸) = 𝑏1 + 𝑏2,

If 𝛾1 > 𝛾1,tr(𝒃) =
𝑏1

𝑏1 + 𝑏2
: MG(𝜸) =

𝑏1
𝛾1

.

(8)

Proof: The MG does not depend on the rate shifts, which
we thus denote for the proof with the simplified notation 𝑐1
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and 𝑐2. We now rewrite the rate ratio constraint using (5) as
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Inserting (9) in the power constraint gives

𝑃1 + 𝑃2 = 𝑃1 + 𝑏2𝑐2𝑃

𝑏1𝛾2

𝛾1𝑏2
1 (𝑏1𝑐1)

− 𝑏1𝛾2

𝛾1𝑏2 = 𝑃 (10)

Considering w.l.o.g. that 𝛾1 > 𝛾1,tr(𝒃), it implies that 𝑏1𝛾2

𝛾1𝑏2
<

1. Letting 𝑃 tend to infinity in (10), 𝑃1 tends also to infinity
such that the term with 𝑃1 raised to the largest exponent is
dominant and 𝑃1 scales linearly with 𝑃 . The scaling of 𝑃2 is
then derived from (9) and the MG follows directly.

The MG region is easily seen to be a rectangle of dimension
𝑏1 × 𝑏2. The vertex corresponds to the transition coefficients
𝜸tr(𝒃) and is the only point at which both users have a power
allocation scaling linearly in 𝑃 . If the ray starting from the
origin associated with a given 𝜸 intersects the rectangle on
the vertical part, user 1 is the limiting user (and has hence
a power allocation scaling linearly in 𝑃 ), and if it is on the
horizontal part, user 2 is the limiting user.

B. Multiplexing Gain for Particular Antenna Configurations

To derive results for the general antenna configuration, we
start by studying two particular antenna configurations: 𝑡 ≥
𝑟1 + 𝑟2 and 𝑡 ≤ min(𝑟1, 𝑟2). The configuration where 𝑡 ≥
𝑟1 + 𝑟2 has been studied in [10] and one of the theorems is
recalled here.

Theorem 2. [10] Let 𝑡 ≥ 𝑟1 + 𝑟2. The maximal MG(𝜸) and
the stream allocation 𝒃 to achieve it read as follows.

For 𝛾1 ≤ 𝛾1,tr(𝒓), MG(𝜸) =
𝑟2
𝛾2

, if: 𝑏1 ≥
⌈
𝛾1𝑟2
𝛾2

⌉
, 𝑏2 = 𝑟2.

For 𝛾1 ≥ 𝛾1,tr(𝒓), MG(𝜸) =
𝑟1
𝛾1

, if: 𝑏2 ≥
⌈
𝛾2𝑟1
𝛾1

⌉
, 𝑏1 = 𝑟1.

We now consider the particular case 𝑡 ≤ min(𝑟1, 𝑟2).

Theorem 3. Let 𝑡 ≤ min(𝑟1, 𝑟2). The maximal MG is 𝑡 and
is achieved only at the rate coefficients 𝛾1,max(𝑖) := 𝑖/𝑡, 𝑖 ∈
{0, . . . , 𝑡}. The minimal MG is 𝑡−1 and is achieved only at the
rate coefficients 𝛾1,min(𝑖) := (𝑖−1)/(𝑡−1), 𝑖 ∈ {2, . . . , 𝑡−2}
with the stream allocation 𝒃 = (𝑖 − 1, 𝑡 − 𝑖). For all 𝑖 ∈
{1, . . . , 𝑡− 1}, the MG reads otherwise as follows.

If 𝛾1 ∈]𝛾1,min(𝑖), 𝛾1,max(𝑖)], MG(𝜸) = 𝑏2/𝛾2.

If 𝛾1 ∈ [𝛾1,max(𝑖), 𝛾1,min(𝑖+ 1)[, MG(𝜸) = 𝑏1/𝛾1.
(11)

The asymptotically optimal stream allocation is then 𝒃 =
(𝑖, 𝑡− 𝑖) for 𝛾1 ∈]𝛾1,min(𝑖), 𝛾1,min(𝑖+1)[, 𝑖 ∈ {1, . . . , 𝑡− 1}.

Proof: Since only the limiting user has a power allocation
scaling linearly in 𝑃 , see Theorem 1, the MG is given by

MG(𝜸) = min
𝑏1

(
𝑏1
𝛾1
, 𝑏2
𝛾2

)
,with 𝑏1 ∈ {0, . . . , 𝑡}, 𝑏2 = 𝑡− 𝑏1.

If we relax the constraint of 𝑏1 being an integer and let it be
a real number, the optimal solution is obtained when the two

terms in the min(⋅) are equal and the solution is 𝑏1 = 𝛾1𝑡
(and 𝑏2 = 𝛾2𝑡) with a MG achieved always equal to 𝑡.

The rate coefficients corresponding to integer values are the
rate coefficients 𝛾1,max(𝑖) =

𝑖
𝑡 , ∀𝑖 ∈ {0, . . . , 𝑡}, at which the

number of streams transmitted by user 1 is 𝑖 and the maximum
MG is achieved. For the other values of 𝛾1, we need to choose
the integer value for the number of transmitted streams which
leads to the largest MG.

Let 𝛾1 ∈]𝛾1,max(𝑖 − 1), 𝛾1,max(𝑖)[, 𝑖 ∈ {1, . . . , 𝑡}. The
number of streams transmitted by user 1 has to be chosen
between the number of streams transmitted by user 1 at
𝛾1,max(𝑖− 1) and at 𝛾1,max(𝑖), i.e., 𝑖− 1 and 𝑖, respectively,
while user 2 always transmits 𝑡 − 𝑏1 streams. When user
1 transmits 𝑖 − 1 streams, the MG is (𝑖 − 1)/𝛾1, because
user 1 is then the limiting user. When user 1 transmits 𝑖
streams, the MG is (𝑡 − 𝑖)/(1 − 𝛾1) because user 2 is then
the limiting user. There is a unique intersection, since the first
expression decreases monotonically in 𝛾1 and the second one
increases monotonically in 𝛾1, which occurs at 𝛾1,min(𝑖). The
MG achieved there is the smallest and equal to 𝑡 − 1. This
holds for every 𝑖 ∈ {1, . . . , 𝑡} and concludes the proof.

C. Multiplexing Gain for Arbitrary Antenna Configurations

Theorem 4. Let 𝑡, 𝑟1, and 𝑟2 be arbitrarily given.
If 𝛾1 < 𝜙1 := 𝑟1/𝑡 or 𝛾1 > 𝜙2 := (𝑡 − 𝑟2)/𝑡, the MG

and 𝒃 are then the same as if 𝑡 ≥ 𝑟1 + 𝑟2 and are given by
Theorem 2. If 𝛾1 ∈ [𝜙1, 𝜙2], the MG and 𝒃 are then the same
as if 𝑡 ≤ min(𝑟1, 𝑟2) and are given by Theorem 3.

Proof: A detailed proof is given in [13] but the idea be-
hind the proof is very simple. It comes simply from observing
which of the three constraints 𝑏1 ≤ 𝑟1, 𝑏2 ≤ 𝑟2, and 𝑏1+𝑏2 ≤ 𝑡
is active. This will be clear after the following discussion.

Geometrical insight: In Fig. 1, the MG region is plotted for
all the stream allocations in the system setting 𝒓 = (6, 6) and
𝑡 = 6. Since 𝑡 ≤ min(𝑟1, 𝑟2), only the constraint 𝑏1 + 𝑏2 = 𝑡
is active and Theorem 3 can be applied. We can also observe
the dashed lines which represent the MG with a real number
of transmitted streams. The common points between this line
and the rectangles correspond to the rate coefficients 𝛾1,max(⋅).
Each rectangle is associated with a stream allocation and we
only need to find the intersection points to obtain the rate
region and all the results of Theorem 3.

We have marked the MG region for the antenna configura-
tion 𝒓 = (2, 4), in which case 𝑡 ≥ 𝑟1 + 𝑟2 and the constraint
𝑏1 + 𝑏2 ≤ 𝑡 is not active, such that Theorem 2 holds.

Finally, if 𝒓 = (4, 4), it can be observed in Fig. 1 that each
constraint is active on some part of the rate region. We have
indicated the rate coefficients 𝜙1 and 𝜙2 from Theorem 4 and
emphasized the boundary of the MG region. It becomes then
clear how Theorem 3 can be applied between 𝜙1 and 𝜙2, while
it is otherwise Theorem 2 which holds.

IV. RATE OFFSET OPTIMIZATION

The case where at least one user applies FM is studied in
[10], such that we now focus on the case when no user applies
FM and the constraint 𝑏1+𝑏2 = 𝑡 is active. The results are then
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Fig. 1. Rate region divided by log(𝑃 ) when 𝑃 tends to infinity with 𝑡 = 6
for the different number of streams transmitted.

dependent on whether 𝑏1+𝑏2 ≤ 𝑟𝑖 or not for each user. We will
consider for simplicity the two cases 𝑏1+𝑏2 ≤ min(𝑟1, 𝑟2) and
𝑏1 + 𝑏2 ≥ max(𝑟1, 𝑟2), from which the general configuration
follows trivially. Since we consider the domain of the rate
region where 𝑏1 + 𝑏2 = 𝑡, the differentiation of the two cases
depends only on the antenna configuration.

A. When 𝑏1 + 𝑏2 ≤ min(𝑟1, 𝑟2)

Theorem 5. Let 𝑏1 + 𝑏2 ≤ min(𝑟1, 𝑟2).
If 𝛾1 ∈]𝛾1,min(𝑖 − 1), 𝛾1,max(𝑖)[, 𝑖 ∈ {1, . . . , 𝑡 − 1}, the

asymptotically optimal NP matrices are the ones maximizing
the rate of user 2, denoted as (T̄1,ø2 , T̄2,ø2), and given as the
𝑏2 eigenvectors of the matrix HH

2 H2, and the 𝑏1 eigenvectors
of the matrix P⊥,1H

H
1 H1P⊥,1, respectively, where

P⊥,1:=I−HH
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−1T̄H
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The asymptotic sum rate then reads as

𝑅∞(𝜸) =
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(
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(
𝑃
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1
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H
2 H2))

)
,

with 𝜆ℓ(H
H
2H2) the ℓ-th largest eigenvalue of the Gramian

HH
2H2 of the channel of user 2.
If 𝛾1 ∈]𝛾1,max(𝑖), 𝛾1,min(𝑖 + 1)[, 𝑖 ∈ {1, . . . , 𝑡 − 1}, the

asymptotically optimal NP matrices are the ones maximizing
the rate of user 1, denoted as (T̄1,ø1 , T̄2,ø1), and defined as the
𝑏1 eigenvectors of the matrix HH

1H1, and the 𝑏2 eigenvectors
of the matrix P⊥,2H

H
2 H2P⊥,2, respectively, where

P⊥,2:=I−HH
2H1T̄1,ø1(T̄

H
1,ø1H

H
1H2H

H
2H1T̄1,ø1)

−1T̄H
1,ø1H

H
1H2.

The asymptotic sum rate then reads as

𝑅∞(𝜸) =
𝑏1
𝛾1

(
log

(
𝑃

𝑏1

)
+

1

𝑏1

𝑏1∑
ℓ=1

log(𝜆ℓ(H
H
1 H1))

)
,

with 𝜆ℓ(H
H
1H1) the ℓ-th largest eigenvalue of the Gramian

HH
1H1 of the channel of user 1.

Proof: We denote the limiting user as user ℓ and the other
user as user 𝑛ℓ. The approximated rate of user ℓ then reads as

𝑅′′
ℓ = 𝑏ℓ

(
log(𝑃 − 𝑃𝑛ℓ)− log(𝑏ℓ)− log(𝑐ℓ(T̄1, T̄2))

)
.

From the scaling in 𝑃 of the power allocation of the two
users in Theorem 1, we can deduce that the non-limiting user
is allocated with a negligible fraction of 𝑃 when 𝑃 tends to
infinity. Thus, the term 1−𝑃𝑛ℓ/𝑃 tends to 1, and since the rate
ratio constraint is already fulfilled by the power allocation, it
is only necessary to optimize 𝑐ℓ(T̄1, T̄2). This means that the
asymptotically optimal NP matrices are the ones maximizing
the rate of the limiting user.

The NP matrix T̄𝑛ℓ has to be chosen in order to maximize
the quotient of determinants in the expression of 𝑐ℓ in (4).
Decomposing the Gramian of the projected channel shows that
the maximal value of the ratio of determinants in (4) is 1 and
that this value is achieved if and only if the two users emit
orthogonally to each other, i.e., T̄H

1 H̄
H
1 H̄2T̄2 = 0𝑏1×𝑏2 . T̄𝑛ℓ

has to be in the orthogonal complement of T̄H
ℓ H̄

H
ℓ H̄𝑛ℓ of size

𝑏ℓ× 𝑟𝑛ℓ, thus of dimension 𝑟𝑛ℓ− 𝑏ℓ. Since 𝑏1+ 𝑏2 ≤ 𝑟𝑛ℓ, this
condition can be fullfilled. Thus, T̄𝑛ℓ is set as in the theorem
and the expressions for T̄ℓ follows trivially.

B. When 𝑏1 + 𝑏2 > max(𝑟1, 𝑟2)

We can observe from the proof of Theorem 5 that the
condition to be able to apply the theorem over the domain
where user 1 is the limiting user is 𝑏1 + 𝑏2 ≤ 𝑟2, and
𝑏1 + 𝑏2 ≤ 𝑟1 when user 2 is the limiting user. We now study
for clarity the case where 𝑏1 + 𝑏2 > max(𝑟1, 𝑟2), but it is
straightforward that if we have 𝑟1 < 𝑡 < 𝑟2, for example, then
Theorem 5 will apply when user 1 is the limiting user, and
otherwise Theorem 6, proven in the following.

The intuitive explanation for the differences between the
two cases is that when 𝑏1 + 𝑏2 > 𝑟𝑛ℓ, it is in general not
possible to let the non-limiting user transmit without creating
any interference to the limiting user such that the NP matrices
depend on each other and an iterative algorithm is needed.

Lemma 1. Let
(
T̄

(𝑛)
1 , T̄

(𝑛)
2

)
be given at step 𝑛. Choos-

ing T̄
(𝑛+1)
2 as the 𝑏2 principal eigenvectors of the gen-

eralized eigenvalue problem
(
HH

2 H2, H̄
H
2 (T̄

(𝑛)
1 )H̄2(T̄

(𝑛)
1 )
)

,

and then T̄
(𝑛+1)
1 as the 𝑏1 principal eigenvectors of

H̄H
1 (T̄

(𝑛+1)
2 )H̄1(T̄

(𝑛+1)
2 ), yields a sequence of matrices con-

verging almost surely to local maximizers of the rate shift of
user 1, denoted as (T̄1,alg1

, T̄2,alg1
).

Similarly, choosing T̄
(𝑛+1)
1 as the 𝑏1 principal

eigenvectors of the generalized eigenvalue problem(
HH

1 H1, H̄
H
1 (T̄

(𝑛)
2 )H̄1(T̄

(𝑛)
2 )
)

, and then T̄
(𝑛+1)
2 as the

𝑏2 principal eigenvectors of H̄H
2 (T̄

(𝑛+1)
1 )H̄2(T̄

(𝑛+1)
1 ),

yields a sequence of matrices converging almost surely to
local maximizers of the rate shift of user 2, denoted as
(T̄1,alg2

, T̄2,alg2
).

Proof: We now consider w.l.o.g. the first part of the
lemma corresponding to the maximization of the rate shift
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of user 1. Two formulations for the rate shift of user 1 are:

𝑐1(T̄1, T̄2)=
∣∣T̄H

1H
H
1H1T̄1

∣∣− 1
𝑏1

∣∣T̄H
2 H̄

H
2 (T̄1)H̄2(T̄1)T̄2

∣∣− 1
𝑏1∣∣T̄H

2H
H
2H2T̄2

∣∣− 1
𝑏1

,

(12)

𝑐1(T̄1, T̄2)=
∣∣T̄H

1 H̄
H
1 (T̄2)H̄1(T̄2)T̄1

∣∣− 1
𝑏1 . (13)

From (12), we observe that the update of T̄2 leads to the global
maximum for given T̄

(𝑛)
1 , and from (13), the same holds when

updating T̄1 for given T̄
(𝑛+1)
2 . Since we obtain at every step

the global maximum, the objective increases monotonically. It
is clearly upper bounded, and hence converges monotonically
to an optimum, which is almost surely a local maximum.

Theorem 6. Let 𝑏1 + 𝑏2 > max(𝑟1, 𝑟2), and denote as
(T̄1,Ø1

, T̄2,Ø1
) and (T̄1,Ø2

, T̄2,Ø2
), the NP matrices, a priori

unknown, maximizing the rate shift of user 1 and 2, respec-
tively. For 𝑖 ∈ {1, . . . , 𝑡− 1}, it holds:

If 𝛾1 ∈]𝛾1,max(𝑖), 𝛾1,min(𝑖+ 1)[, 𝑅∞(𝜸) then reads as

𝑅∞(𝜸) =
𝑏1
𝛾1

(
log

(
𝑃

𝑏1

)
− log(𝑐1(T̄1,Ø1

, T̄2,Ø1
))

)
,

If 𝛾1 ∈]𝛾1,min(𝑖), 𝛾1,max(𝑖)[, 𝑅∞(𝜸) then reads as

𝑅∞(𝜸) =
𝑏2
𝛾2

(
log

(
𝑃

𝑏2

)
− log(𝑐2(T̄1,Ø2

, T̄2,Ø2
))

)
,

Proof: The proof follows exactly the same steps as the
proof of Theorem 5.

The optimal NP matrices used in Theorem 6 are not known,
but Lemma 1 gives NP matrices maximizing locally 𝑅∞(𝜸).
If these NP matrices are also global maximizer, they can be
used directly in Theorem 6. Otherwise, only a lower bound
for the asymptotic sum rate is obtained.

V. RATE REGION AT FINITE SNR

In section IV, we have derived the asymptotic sum rate and
we now want to obtain results valid at finite SNR. The optimal
NP matrices are much more difficult to derive at finite SNR
due to the dependency between the power allocation and the
NP matrices. However, once the NP matrices are fixed, finding
the power allocation fulfilling the rate ratio constraint (9) can
be done very easily via convex algorithms or by solving only
approximately the rate ratio constraint [12], [13].

It is then possible by fixing the rate shifts first and then
calculating the power allocation to derive lower and upper
bounds for the sum rate, or equivalently inner and outer bounds
for the rate region boundary, at high but finite SNR. Indeed, in
Section IV, we have derived NP matrices optimizing the rate of
only one of the users which will clearly lead to lower bounds.
Furthermore, when 𝑏1 + 𝑏2 ≤ min(𝑟1, 𝑟2), the optimal NP
matrices for one user are reached. It means that by using the
rate shifts (𝑐1,v, 𝑐2,v) := (𝑐1(T̄1,ø2, T̄2,ø2), 𝑐2(T̄1,ø2, T̄2,ø2))
we obtain an outer bound for the rate region boundary when
𝑏1 + 𝑏2 ≤ 𝑡, since both users use their optimal rate shifts.

When 𝑏1 + 𝑏2 > 𝑡, two inner bounds can also be obtained
by using (T̄1,alg1

, T̄2,alg1
) and (T̄1,alg2

, T̄2,alg2
), respectively.

However, the lower bounds are not in closed form but obtained
with an algorithm and the outer bound cannot be derived
following the same method, since these NP matrices are only
local maximizer and not global maximizer. Nevertheless, it is
easy to derive some other suboptimal NP matrices in closed
form (by choosing the NP matrix of one user arbitrarily, for
example) and a loser closed form outer bound can also be
obtained by assuming that the two users do not interfere with
each other. These bounds are not further presented here due
to space constraint, but the derivations are straightforward.

Finally, when both users transmit only one stream, which is
called beamforming (BF), it is possible to derive an algorithm
converging this time not to a bound but to a local maximum
of the sum rate. The method used is the fixed coordinate (FC)
approach from [9], which consists in fixing the rate of user 1
to the constant log(𝑐), and then maximizing the rate of user
2. The constraint 𝑅′′

1 = log(𝑐) clearly leads to

𝑃1 =
𝑐

𝒕H
1 H̄

H
1 (𝒕2)H̄1(𝒕2)𝒕1

, (14)

where 𝒕1 and 𝒕2 are the NP matrices of user 1 and 2,
respectively, when they both apply BF. The power allocation
(14) can then be inserted in the rate of user 2 to yield

𝑅′′
2 =log

((̄
𝒕H
1

(
𝑃 H̄H

1 (𝒕2)H̄1(𝒕2)− 𝑐I𝑟1
)
𝒕1

𝒕H
1H

H
1H1𝒕1

)
𝒕H
2H

H
2H2𝒕2

)
,

(15)

𝑅′′
2 =log

(
𝒕H
2

(
𝑃 H̄H

2 (𝒕1)H̄2(𝒕1)− 𝑐

𝒕H
1 H̄

H
1 H̄1𝒕1

I𝑟2

)
𝒕2

)
.

(16)

Theorem 7. Let (𝒕(𝑛)1 , 𝒕
(𝑛)
2 ) be given at step 𝑛, setting 𝒕

(𝑛+1)
1

as the principal eigenvector of the generalized eigenvalue
problem (HH

1 H1, 𝑃 H̄H
1 (𝒕2)H̄1(𝒕2) − 𝑐I𝑟1), and then 𝒕

(𝑛+1)
2

as the principal eigenvector of 𝑃 H̄H
2 (𝒕

(𝑛+1)
1 )H̄2(𝒕

(𝑛+1)
1 ) −

𝑐/(𝒕
(𝑛+1)H
1 H̄H

1 H̄1𝒕
(𝑛+1)
1 )I𝑟2 yields a sequence of BF vectors

converging almost surely to local maximizers of the sum rate,
denoted as (𝒕1,alg, 𝒕2,alg).

Proof: The proof follows the same method as the proof
of Theorem 5 using the two expressions (15) and (16).

VI. SIMULATIONS

In Fig. 2, we consider the antenna configuration 𝒓 = (4, 4),
with 𝑡 = 4 and 𝑃 = 40 dB, when both users apply BF.
We consider this stream allocation because it behaves like
any other stream allocations fulfilling 𝑏1 + 𝑏2 ≤ min(𝑟1, 𝑟2).
The only difference is that the algorithmic solution from
Theorem 7 can be used and gives a verification of the accuracy
of the bounds. We have also plotted with the dashed line the
asymptotic rate region derived in Section IV.

First, the high-SNR approximated rate region at finite SNR
is similar to the asymptotic rate region, only with the corner
“rounded-down”. Second, the lower bound, in which the rate
shift of the limiting user is optimized, is very close to the
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Fig. 2. Approximate rate region with 𝒓 = (4, 4), 𝑡 = 4, and 𝑃 = 40 dB
when both users apply BF.
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Fig. 3. Outer bounds of the approximate rate region with 𝒓 = (4, 4), 𝑡 = 4,
and 𝑃 = 40 dB for different number of transmitted streams.

outer bound, and both are tight over large domains of the rate
region. Finally, the algorithmic solution is always between the
two bounds and hence converges to the global optimum at
least in the region where the bounds are tight.

In Fig. 3, the outer bound is plotted for all stream allocations
when 𝒓 = (4, 4), 𝑡 = 4 and 𝑃 = 40 dB. For clarity, we have
kept only the outer bound because it is tight over a large part
of the rate region and the behavior of the inner bounds is
clear from Fig. 2. We have also plotted the asymptotic rate
region derived in Section IV. We can observe the good fit
between the asymptotic rate region and the outer bound at
finite SNR. Moreover, the intersections between the different
stream allocations occur at practically the same points for
the outer bound and the asymptotic rate region. Since the
asymptotic rate region is known in closed form, we can
obtain closed form expressions approximating accurately the
intersection points between the different stream allocations.

We have plotted in Fig. 2 and Fig. 3 the high-SNR ap-
proximated rate region obtained using the rate expressions (2).
Since the approximation from (1) to (2) consists in neglecting
the identities, the inner bound is also valid for the exact rate
region boundary. However, the outer bound is valid only when
the high-SNR approximation error is negligible. The error has
been shown in [13] to be significant only close to the axes,
where it is optimal to let one user apply BF. An improvement
of the high-SNR approximation when one user applies BF is
given in [12], [13] and leads to a very accurate approximation
of the integrality of the rate region, for 𝑃 as low as 30 dB.

VII. CONCLUSION

We have studied the rate region at high-SNR with linear
precoding when the transmitter has fewer antennas than the
sum of the antennas at the receivers. The asymptotic rate
region has been derived in closed form and we have shown that
the precoding matrices derived can be used to obtain accurate
inner and outer bounds for the rate region at finite SNR.

Our asymptotic results are given in closed forms as func-
tions of the eigenvalues of the Gramian of the channels, and
can thus be easily evaluated in common fading scenarios
(uncorrelated Rician, correlated Rayleigh). The approach is
geometric and intuitive such that it gives a good insight into
the rate region at finite SNR. Finally, the approach presented
has a very good potential to be extended to the 𝐾 user case.
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