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Abstract—In this paper, we consider a multihop wireless sensor
network (WSN) with multiple relay nodes for each hop where the
amplify-and-forward (AF) scheme is employed. Our strategy is
to jointly design the linear receiver and the power allocation
parameters via an alternating optimization approach subject
to global, local and individual power constraints. We derive
constrained minimum mean-square error (MMSE) expressions
for the linear receiver and the power allocation parameters that
contain the optimal complex amplification coefficients for each
relay node. Computer simulations show good performance of our
proposed methods in terms of bit error rate (BER) compared to
the method with equal power allocation.

I. INTRODUCTION

Recently, there has been a growing research interest in
wireless sensor networks (WSNs) as their unique features
allow a wide range of applications in the areas of defence,
environment, health and home [1]. They are usually composed
of a large number of densely deployed sensing devices which
can transmit their data to the desired user through multihop
relays [2]. Low complexity and high energy efficiency are the
most important design characteristics of communication pro-
tocols [3] and physical layer techniques employed for WSNs.
The performance and capacity of WSNs can be significantly
enhanced through exploitation of spatial diversity with coop-
eration between the nodes [2]. In a cooperative WSN, nodes
relay signals to each other in order to propagate redundant
copies of the same signals to the destination nodes. Among the
existing relaying schemes, the amplify-and-forward (AF) and
the decode-and-forward (DF) are the most popular approaches
[4].

Due to limitations in sensor node power, computational
capacity and memory [1], some power allocation methods have
been proposed for WSNs to obtain the best possible SNR or
best possible quality of service (QoS) [5] at the destinations.
The majority of the previous literature considers a source
and destination pair, with one or more randomly placed relay
nodes. These relay nodes are usually placed with uniform
distribution [6], equal distance, or in line with the source and
destination. The reason of these simple considerations is that
they can simplify complex problems and obtain closed-form
solutions. A single relay AF system using mean channel gain
channel state information (CSI) is analyzed in [7], where the
outage probability is the criterion used for optimization. For
DF systems, a near-optimal power allocation strategy called
the Fixed-Sum-Power with Equal-Ratio (FSP-ER) scheme

based on partial CSI has been developed in [6]. This near-
optimal scheme allocates one half of the total power to the
source node and splits the remaining half equally among
selected relay nodes. A node is selected for relay if its mean
channel gain to the destination is above a threshold. Simulation
results show that this scheme significantly outperforms two
traditional power allocation schemes. One is the ’Constant-
Power scheme’ where all nodes serve as relay nodes and all
nodes including the source node and relay nodes transmit with
the same power. The other one is the ’Best-Select scheme’
where only one node with the largest mean channel gain to
the destination is chosen as the relay node.

In this paper, we consider a general multihop wireless
sensor network where the AF relaying scheme is employed.
Our strategy is to jointly design the linear receiver (W) and
the power allocation parameter (a) that contains the optimal
complex amplification coefficients for each relay node via
an alternating optimization approach. It can be considered
as a constrained optimization problem where the objective
function is the mean-square error (MSE) and the constraint
is a bound on the power levels among the relay nodes. Then
the constrained MMSE expressions for the linear receiver and
the power allocation parameter can be derived. In this work,
we present three strategies where the allocation of power level
across the relay nodes is subject to global, local and individual
power constraints. The major novelty in these strategies pre-
sented here is that they are applicable to general multihop
WSNs with multi source nodes and destination nodes, as
opposed to the simple 2-hop WSNs with one pair of source-
destination nodes [5], [7], [8]. Further novelty in this work is
that a closed form solution for the Lagrangian multiplier (λ)
that arises in the expressions of the power allocation parameter
can be achieved.

This paper is organized as follows. Section II describes the
general multihop WSN system model. Section III develops
three joint receiver design and power allocation strategies sub-
ject to three different power constraints. Section IV presents
and discusses the simulation results, while Section V provides
some concluding remarks.

II. COOPERATIVE WSN SYSTEM MODEL

Consider a general m-hop wireless sensor network (WSN)
with multiple parallel relay nodes for each hop, as shown in
Fig. 1. The WSN consists of N0 source nodes, Nm destination
nodes and Nr relay nodes which are separated into m − 1
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groups: N1,N2, ... ,Nm−1. We will concentrate on a time
division scheme with perfect synchronization, for which all
signals are transmitted and received in separate time slots.
The sources first broadcast the N0 × 1 signal vector s to
the first group of relay nodes. We consider an amplify-and-
forward (AF) cooperation protocol in this paper. Each group
of relay nodes receives the signal, amplifies and rebroadcasts
them to the next group of relay nodes (or the destination
nodes). In practice, we need to consider the constraints on
the transmission policy. For example, each transmitting node
would transmit during only one phase. In our WSN system,
we assume that each group of relay nodes transmits the signal
to the nearest group of relay nodes (or the destination nodes)
directly. We can use a block diagram to indicate the multihop
WSN system as shown in Fig. 2.

Source

nodes

Destination

nodes
Cooperative

relay nodes

N0 N1 NmN2 Nm-1

Feedback

Channel

Fig. 1. m-hop WSN with N0 sources, Nm destinations and Nr relays.
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Fig. 2. Block diagram of the multihop WSN system.

Let Hs denote the N1 × N0 channel matrix between the
source nodes and the first group of relay nodes, Hd denote
the Nm×Nm−1 channel matrix between the (m−1)th group
of relay nodes and destination nodes, and Hi−1,i denote the
Ni×Ni−1 channel matrix between two groups of relay nodes
as described by

Hs =

⎡
⎢⎢⎣

hs,1

hs,2

...
hs,N1

⎤
⎥⎥⎦ , Hd =

⎡
⎢⎢⎣

hm−1,1

hm−1,2

...
hm−1,Nm

⎤
⎥⎥⎦ , Hi−1,i =

⎡
⎢⎢⎣

hi−1,1

hi−1,2

...
hi−1,Ni

⎤
⎥⎥⎦ ,

where hs,j = [hs,j,1, hs,j,2, ..., hs,j,N0 ] for j = 1, 2, ..., N1

is a row vector between source nodes and the jth
relay of the first group of relay nodes, hm−1,j =
[hm−1,j,1, hm−1,j,2, ..., hm−1,j,Nm−1 ] for j = 1, 2, ..., Nm

is a row vector between the (m − 1)th group of re-
lay nodes and the jth destination node and hi−1,j =
[hi−1,j,1, hi−1,j,2, ..., hi−1,j,Ni−1 ] for j = 1, 2, ..., Ni is a row
vector between the (i− 1)th group of relay nodes and the jth
relay of the ith group of relay nodes. The received signal at the
ith group of relay nodes (xi) for each phase can be expressed
as:

Phase 1:
x1 = Hss + v1,

y1 = F1x1,

Phase 2:
x2 = H1,2A1y1 + v2,

y2 = F2x2,
...

Phase i: (i = 2, 3, ...,m− 1)

xi = Hi−1,iAi−1yi−1 + vi,

yi = Fixi,

At the destination nodes, the received signal can be ex-
pressed as

d = HdAm−1ym−1 + vd,

where v is a zero-mean circularly symmetric complex ad-
ditive white Gaussian noise (AWGN) vector with covari-
ance matrix σ2I. Ai = diag{ai,1, ai,2, ..., ai,Ni} is a
diagonal matrix whose elements represent the amplifica-
tion coefficient of each relay of the ith group. Fi =
diag{E(|xi,1|2), E(|xi,2|2), ..., E(|xi,Ni |2)}−

1
2 denotes the

normalization matrix which can normalize the power of the
received signal for each relay of the ith group of relays. Please
note that the property of the matrix vector multiplication
Ay = Ya will be used in the next section, where Y is the
diagonal matrix form of the vector y and a is the vector
from of the diagonal matrix A. In the receiver, a linear
MMSE detector is considered where the optimal filter and
optimal amplification coefficients are calculated. The optimal
amplification coefficients are transmitted to the relays through
the feedback channel. And the block marked with a Q[·]
represents a decision device.

III. PROPOSED JOINT MMSE DESIGN OF THE RECEIVER

AND POWER ALLOCATION

In this section, three constrained optimization problems are
proposed to describe the joint design of the linear receiver (W)
and power allocation parameter (a) subject to a global, local
and individual power constraints.

A. MMSE Design with a Global Power Constraint
We first consider the case where the total power of all the

relay nodes is limited to PT . The proposed method can be
considered as the following optimization problem

[Wopt, a1,opt, ..., am−1,opt] = arg min
W,a1,...,am−1

E[‖s − WHd‖2],

subject to

m−1∑
i=1

Pi = PT
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where (·)H denotes the complex-conjugate (Hermitian) trans-
pose, Pi is the transmitted power of the ith group of relay
nodes, and Pi = Ni+1aHi ai.

To solve this constrained optimization problem, we can
modify the MSE cost function using the method of Lagrange
multipliers [9] which yields the following Lagrangian function

L =E[‖s − WHd‖2] + λ(
m−1∑
i=1

Ni+1aH
i ai − PT )

=E(sHs)− E(dHWs)− E(sHWHd) + E(dHWWHd)

+ λ(
m−1∑
i=1

Ni+1aHi ai − PT )

(1)

By fixing a1, ..., am−1 and setting the gradient of L in (1) with
respect to the filter W equal to zero, we can get

Wopt =[E(ddH)]−1E(dsH)

=
[
HdAm−1E(ym−1yHm−1)A

H
m−1HH

d + σ2
nI
]−1

· HdAm−1E(ym−1sH).

(2)

The optimal expression for am−1 is obtained by equating the
partial derivative of L with respect to am−1 to zero

∂L
∂am−1

=− 2E(
∂d

∂am−1
Ws) + 2E(

∂d
∂am−1

WWHd)

+ 2Nmλam−1

=− 2E(YH
m−1HH

d Ws) + 2Nmλam−1

+ 2E[YH
m−1HH

d WWH(HdYm−1am−1 + vd)]
=0.

Therefore, we obtain

am−1,opt =[E(YH
m−1HH

d WWHHdYm−1) +NmλI]−1

· E(YH
m−1HH

d Ws)
=[HH

d WWHHd ◦ E(ym−1yHm−1)
∗ +NmλI]−1

· [HH
d W ◦ E(ym−1sH)∗u]

(3)

where ◦ denotes the Hadamard (element-wise) product, (·)∗
denotes the complex-conjugate and u = [1, 1, ..., 1]T .

Similarly, for i = 2, 3, ...m− 1, we have

∂L
∂ai−1

= −2E(
∂d

∂ai−1
Ws) + 2(

∂d
∂ai−1

WWHd) + 2Niλai−1

= 0

where

∂d
∂ai−1

= YH
i−1

(
m−1∏
k=i

HH
k−1,kFH

k AH
k

)
HH

d .

Let

Bi−1 =
m−1∏
k=i

HH
k−1,kFH

k AH
k .

Then, we get

ai−1,opt =[E(YH
i−1Bi−1HH

d WWHHdBH
i−1Yi−1) +NiλI]−1

· E(YH
i−1Bi−1HH

d Ws)
=[Bi−1HH

d WWHHdBH
i−1 ◦ E(yi−1yHi−1)

∗ +NiλI]−1

· [Bi−1HH
d W ◦ E(yi−1sH)∗u].

(4)

From (3) and (4), we conclude that

ai,opt =[E(YH
i BiHH

d WWHHdBH
i Yi) +Ni+1λI]−1

· E(YH
i BiHH

d Ws)
=[BiHH

d WWHHdBH
i ◦ E(yiy

H
i )∗ +Ni+1λI]−1

· [BiHH
d W ◦ E(yis

H)∗u]

(5)

where

Bi =

{ ∏m−1
k=i+1 HH

k−1,kFH
k AH

k , for i = 1, 2, ...,m− 2,

I, for i = m− 1.

Please see the appendix to find the expressions of Fi, E(yiyHi ),
and E(yisH). The expressions in (2) and (5) depend on each
other. Therefore it is necessary to iterate them with an initial
value of ai (i = 1, 2, ...,m− 1) to obtain the solutions.

The Lagrange multiplier λ can be determined by solving

m−1∑
i=1

Ni+1aHi optai opt = PT . (6)

Let
φi = E(YH

i BiHH
d WWHHdBH

i Yi) (7)

and
zi = E(YH

i BiHH
d Ws) (8)

Then, we get
ai = (φi +Ni+1λI)−1zi

When λ is a real value,

[(φi+Ni+1λI)−1]H = [(φi+Ni+1λI)H ]−1 = (φi+Ni+1λI)−1.

Equation (6) becomes

m−1∑
i=1

Ni+1zHi (φi+Ni+1λI)−1(φi+Ni+1λI)−1zi = PT . (9)

Using an eigendecomposition,

φi = QiΛiQ−1
i

where Λi = diag{αi,1, αi,2, ..., αi,Mi , 0, ..., 0} consists of
eigenvalues of φi and Mi = min{N0, Ni, Nm}. Then, we
get

φi +Ni+1λI = Qi(Λi +Ni+1λI)Q−1
i .

Therefore, (9) can be expressed as

m−1∑
i=1

Ni+1zHi Qi(Λi +Ni+1λI)−2Q−1
i zi = PT . (10)
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Using the properties of the trace operation, (10) can be written
as

m−1∑
i=1

Ni+1tr
(
(Λi +Ni+1λI)−2Q−1

i zizHi Qi

)
= PT . (11)

Defining Ci = Q−1
i zizHi Qi, (11) becomes

m−1∑
i=1

Ni∑
j=1

Ni+1(αi,j +Ni+1λ)
−2Ci(j, j) = PT .

Since φi is a matrix with at most rank Mi, only the first Mi

columns of Qi span the column space of E(YH
i BiHH

d Ws)H
which causes that the last (Ni − Mi) columns of zHi Qi are
zero vectors and the last (Ni −Mi) diagonal elements of Ci

are zero. Therefore, we can obtain the {∑m−1
i=1 2Mi}th-order

polynomial

m−1∑
i=1

Mi∑
j=1

Ni+1(αi,j +Ni+1λ)
−2Ci(j, j) = PT .

B. MMSE Design with Local Power Constraints
Secondly, we consider the case where the total power of

the relay nodes in each group is limited to some value PT,i.
The proposed method can be considered as the following
optimization problem

[Wopt, a1,opt, ..., am−1,opt] = arg min
W,a1,...,am−1

E[‖s − WHd‖2],
subject to Pi = PT,i, i = 1, 2, ...,m− 1.

where Pi as defined above is the transmitted power of the
ith group of relays, and Pi = Ni+1aHi ai. Using the method
of Lagrange multipliers, we obtain the following Lagrangian
function

L = E[‖s − WHd‖2] +
m−1∑
i=1

λi(Ni+1aHi ai − PT,i).

Following the same steps described in Section III.A, we get the
same optimal expression for the W as in (2), and the optimal
expression for the power allocation vector ai

ai,opt =[BiHH
d WWHHdBH

i ◦ E(yiy
H
i )∗ +Ni+1λiI]−1

· [BiHH
d W ◦ E(yis

H)∗u],

where

Bi =

{ ∏m−1
k=i+1 HH

k−1,kFH
k AH

k , for i = 1, 2, ...,m− 2,

I, for i = m− 1.

The Lagrange multiplier λi can be determined by solving

Ni+1aHi,optai,opt = PT,i i = 1, 2, ...,m− 1.

Following the same steps in Section III.A, we obtain (m− 1)
{2Mi}th-order polynomials

Mi∑
j=1

Ni+1(αi,j+Ni+1λi)
−2Ci(j, j) = PT,i, i = 1, 2, ...,m−1.

C. MMSE Design with Individual Power Constraints
Thirdly, we consider the case where the power of each relay

node is limited to some value PT,i,j . The proposed method can

be considered as the following optimization problem

[Wopt, a1,opt, ..., am−1,opt] = arg min
W,a1,...,am−1

E[‖s − WHd‖2],
subject to Pi,j = PT,i,j , i = 1, 2, ...,m− 1, j = 1, 2, ..., Ni.

where Pi,j is the transmitted power of the jth relay node in
the ith group, and Pi,j = Ni+1a

∗
i,jai,j . Using the method

of Lagrange multipliers, we have the following Lagrangian
function

L = E[‖s − WHd‖2] +
m−1∑
i=1

Ni∑
j=1

λi,j(Ni+1a
∗
i,jai,j − PT,i,j).

Following the same steps described in Section III.A, we get the
same optimal expression for the W as in (2), and the optimal
expression for the ai,j

ai,j,opt = [φi(j, j) +Ni+1λi,j ]
−1[zi(j)−

∑
l∈I,l �=j

φi(j, l)ai,l]

where I = {1, 2, ..., Ni}, φi and zi have the same expres-
sion as in (7) and (8). The Lagrange multiplier λi,j can be
determined by solving

Ni+1a
∗
i,j,optai,j,opt = PT,i,j i = 1, 2, ...,m−1, j = 1, 2, ...Ni

IV. SIMULATIONS

In this section, we numerically study the BER performance
of our three proposed joint MMSE design of the receiver
and power allocation methods and compare them with the
equal power allocation method [6] which allocates the same
power level equally for all links from the relay nodes. For
the purpose of fairness, we assume that the total power
for all relay nodes in the network is the same which can

be indicated as
∑m−1

i=1 PT,i =
∑m−1

i=1

∑Ni

j=1 PT,i,j = PT .
We consider a 3-hop (m=3) wireless sensor network. The
number of source nodes (N0), two groups of relay nodes
(N1, N2) and destination nodes (N3) are 1, 4, 4, 2 respectively.
We consider an AF cooperation protocol. The quasi-static
fading channel (block fading channel) is considered in our
simulations whose elements are Rayleigh random variables
(with zero mean and unit variance) and assumed to be invariant
during the transmission of each packet. In our simulations,
the channel is assumed to be known at the destination nodes.
For channel estimation algorithms for WSNs and other low-
complexity parameter estimation algorithms, one can refer
to [10] and [11]. During each phase, the sources transmit
the QPSK modulated packets with 1500 symbols. The noise
at the destination nodes is modeled as circularly symmetric
complex Gaussian random variables with zero mean. When
perfect (error free) feedback channel between destination
nodes and relay nodes is assumed to transmit the amplification
coefficients, it can be seen from Fig. 3 that our three proposed
methods can achieve a better performance than the equal
power allocation method. The method with global constraint
has the best performance whereas the method with individual
constraints has the worst performance. This result is what we
expect because a global constraint provides the most freedom
for allocating the power among the relay nodes whereas
an individual constraint provides the least. In practice, the
feedback channel can not be error free. In order to study the

89



impact of feedback channel errors on the performance, we
employ the binary symmetric channel (BSC) as the model for
the feedback channel and quantize each complex amplification
coefficient to an 8-bit binary value (4 bits for the real part, 4
bits for the imaginary part). Vector quantization methods [12]
can also be employed on increased spectral efficiency. The
error probability (Pe) of BSC is fixed at 10−3. The dashed
curves in Fig. 3 show the performance degradation compared
with the performance when using a perfect feedback channel.
To show the performance tendency of the BSC for other values
of Pe, we fix the SNR at 10 dB and choose Pe ranging
form 0 to 10−2. The performance curves are shown in Fig. 4,
which indicates the BER performance versus Pe of our three
proposed methods. It can be seen that along with the increase
in Pe, their performance becomes worse.

0 1 2 3 4 5 6 7 8 9 10
10−3

10−2

10−1

100

SNR

B
E

R

Equal Power Allocation
Individual Constraints (Perfect Feedback Channel)
Local Constraints (Perfect Feedback Channel)
Global Constraint (Perfect Feedback Channel)
Individual Constraints (BSC 8Bits Pe=10e−3)
Local Constraints (BSC 8Bits Pe=10e−3) 
Global Constraint (BSC 8Bits Pe=10e−3)

Fig. 3. BER performance versus SNR of our proposed joint strategies,
compared with equal power allocation method.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
10−3

10−2

10−1

Pe

B
E

R

Individual Constraints (BSC 8Bits)
Local Constraints (BSC 8Bits)
Global Constraint (BSC 8Bits)

Fig. 4. BER performance versus Pe of our proposed joint strategies when
employing BSC as the model for the feedback channel.

V. CONCLUSIONS

Three joint receiver design and power allocation strate-
gies have been proposed for general multihop WSNs. It has
been shown that our proposed strategies achieve a better
performance than the equal power allocation method. Possible
extensions to this work may include the design of non-
linear receivers [13] and the study of the complexity and the
requirement for the feedback channel.

APPENDIX

Here, we derive the the expressions of Fi, E(yiyH
i ), and

E(yisH) that are used in Section III.

Fi = diag{E(|xi,1|2), E(|xi,2|2), ..., E(|xi,Ni
|2)}− 1

2

where

E(|xi,j |2 =

⎧⎨
⎩

σ2
s |hs,j |2 + σ2

n, for i = 1,

hi−1,jAi−1E(yi−1yH
i−1)A

H
i−1hH

i−1,j + σ2
n,

for i = 2, 3, ...,m.

E(yiy
H
i ) =

⎧⎨
⎩

Fi(σ
2
sHsHH

s + σ2
nI)FH

i , for i = 1,

Fi[Hi−1,iAi−1E(yi−1yHi−1)A
H
i−1HH

i−1,i + σ2
nI]FH

i

for i = 2, 3, ...,m.

E(yis
H) =

{
σ2
sFiHs, for i = 1,

FiHi−1,iAi−1E(yi−1sH), for i = 2, 3, ...,m.
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