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Abstract—Current methods dealing with the energy efficient
wireless network planning problem require a static model.
However, bit rate requirements vary and rise over time, users
move around and path gain fluctuates. In this paper, robust
optimization is applied to deal with demand uncertainty. We
present a robust optimization model for the energy-efficient
planning of wireless networks and apply cutting planes to reduce
the complexity of the model. Furthermore, a case study is
performed to compare the robust formulation to its deterministic
counterpart and to conventional network planning.

I. INTRODUCTION

Future radio networks are obliged to cope with drasti-
cally increasing user demands. This leads inevitably to a
significantly increasing energy consumption (e. g., the energy
consumption of Vodafone Group already increased about 27 %
from 2006/07 to 2009/10 [20]). The high user demands
(compared to the requirements for ordinary telephony and
short message services) result from, e. g., traffic-intensive
smartphone applications. Even though user demand and re-
source restrictions have been considered in the planning of
third generation (3G) networks [2, 8, 18], these networks
reach the limits of their capacity. High data rates can be
offered, but only for some users and with limited coverage.
Thus, more base stations (BSs) are needed and the energy
consumption rises (not only by signal power but also by
air-conditioning etc. [7]). To tackle the problem of inferior
network performance, future networks utilize a couple of
advanced techniques, e. g., Orthogonal Frequency Division
Multiple Access (OFDMA). Nevertheless, an optimal planning
of wireless networks is of utmost importance to fully utilize
the technological gains and to reduce the energy consumption.

Energy efficient wireless network planning has recently
attracted a great deal of attention: [10, 16, 17] to name
just three. Current wireless network planning [8, 10, 16, 18]
requires a static model of the problem. However, many factors
of wireless networks are non-deterministic. Fluctuating bit rate
requirements and channel conditions are just two of prominent
examples of uncertain parameters.

The robust optimization approach by Bertsimas and Sim [3]
deals with uncertainty by limiting the number of uncertain
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factors by a robustness parameter. The robustness of the
solution can be adapted by varying the parameter.

In this paper, robust optimization is applied to deal with
demand uncertainty. In Section II, we develop a static system
model and formulate the problem as an integer linear program
(ILP) based on [9] for the energy efficient planning of wireless
networks. A simplified inter-cell interference model is used to
unveil the novelty of the robust optimization model presented
in Section III. The robust formulation is enhanced by the
application of three types of cutting planes in Section IV. In
Section V, we perform a case study for a realistic wireless
network scenario to compare the robust ILP to its deterministic
counterpart and to conventional wireless network planning.

II. SYSTEM MODEL AND PROBLEM FORMULATION

First, we introduce the system model considering a future
wireless network and downlink (DL) data transmission based
on the model presented in [9]. Let S be a set of candidate
sites (more precisely, site configurations) for BSs. A deployed
BS s ∈ S consumes power ps and provides a total DL
bandwidth bs. Furthermore, let T be a set of traffic nodes
(TNs) to be assigned to the deployed BSs. Each t ∈ T has a
demand wt and can be assigned to at most one BS (i. e., no
soft handover), which applies, e. g., to 4G networks.

By considering OFDMA as DL transmission technology,
we assume that no intra-cell interference occurs. A simplified
inter-cell interference model is used requiring the selected BSs
to constitute an independent set in a predefined conflict graph
G = (S,E), i. e., a subset of S such that ij /∈ E ∀ i, j ∈ S.
Additionally, for each (s, t) pair a value est called spectral
efficiency is defined to incorporate, e. g., the modulation and
coding scheme that is supported by the associated signal-to-
noise ratio (SNR). To establish a transmission link, it must
exceed a certain threshold emin. (Note that this restriction
implicitly also guarantees a minimum SNR.)

If TN t is assigned to BS s, the established transmission
link from s to t occupies a certain amount of the available
DL bandwidth bs. This amount can be computed by division
of demand wt by spectral efficiency est (provided est ≥ emin).

To model the energy efficient planning problem as an
ILP, we introduce the following auxiliary sets of indices to
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incorporate the constraint on the sprectral efficiency.

S ∗ T := {(s, t) ∈ S × T : est ≥ emin},
St := {s ∈ S : (s, t) ∈ S ∗ T} ∀t ∈ T,
Ts := {t ∈ T : (s, t) ∈ S ∗ T} ∀s ∈ S.

Let xs ∈ {0, 1} denote whether or not BS s ∈ S is deployed
and zst ∈ {0, 1} whether t ∈ Ts is assigned to s. We introduce
a slack variable ut ∈ {0, 1} that denotes whether t is not
assigned to any BS. The main objective is to minimize the
total power consumption of the network while minimizing the
number of TNs not served by any BS, i.e., maximizing the
number of covered TNs (without this part, the optimal solution
would be zero). To combine these conflicting objectives, the
parameter λ is introduced. The optimization model is defined
as follows.

min
∑
s∈S

psxs + λ
∑
t∈T

ut (1a)

s.t.
∑
s∈St

zst + ut = 1 ∀ t ∈ T (1b)

xi + xj ≤ 1 ∀ ij ∈ E (1c)∑
t∈Ts

wt

est
zst ≤ bsxs ∀ s ∈ S (1d)

xs, zst, ut ∈ {0, 1} (1e)

Constraints (1b) ensure that a TN is covered by at most
one BS. To limit inter-cell interference, constraints (1c) guar-
antee an independent set of deployed BSs. The capacity con-
straints (1d) ensure that the total bandwidth allocated does not
exceed the total available DL bandwidth. Furthermore, these
constraints implicitly make sure that a TN can be assigned to
a BS if and only if this BS is deployed.

III. ROBUST FORMULATION

Although many parameters in a wireless network are uncer-
tain, such as channel conditions, interference etc., we only con-
sider demand uncertainty in our model. We apply the robust
optimization approach presented in [3] to formulation (1). The
demand values are now modelled as symmetric and bounded
random variables that take values in [w̄t − ŵt, w̄t + ŵt],
where w̄t denotes a nominal value and ŵt its highest deviation.
We assume that at most Γ ∈ {0, . . . , |T |} demand values
per BS deviate from the default value w̄t simultaneously (in
the worst case towards w̄t + ŵt). Hence, constraints (1d) are
replaced by:

∑
t∈Ts

w̄t

est
zst + max

T ′⊆Ts,|T ′|≤Γ

∑
t∈T ′

ŵt

est
zst ≤ bsxs ∀ s ∈ S (2)

By exploiting LP duality (introducing dual variables µs

and νst), the maximum in (2) can be linearized, resulting in

the following ILP as robust counterpart of (1) (see [3]).

min (1a)
s.t. (1b), (1c), (1e)∑

t∈Ts

w̄t

est
zst + Γµs +

∑
t∈Ts

νst ≤ bsxs ∀ s ∈ S (3a)

µs + νst ≥
ŵt

est
zst ∀(s, t) ∈ S ∗ T (3b)

µs ≥ 0, νst ≥ 0 (3c)

IV. CUTTING PLANES

The performance of the branch-and-bound algorithm for
solving ILPs can significantly be improved by cutting planes,
i. e., inequalities that are valid for all integer points but
not for some linear relaxation solutions. State-of-the-art ILP
solvers like CPLEX [11] generate cutting planes internally
but cannot take advantage of the particular problem structure
known to the user. For the problem at hand, we identified
a number of problem-specific inequalities, partly well-known
for substructures contained in (3). Without these cuts our
computations would have been far less competitive.

A. Variable Upper Bounds [19]

Constraints (3a) implicitly state that a TN can be assigned
to a BS iff this BS is deployed. It is well-known that (3) can
be strengthened by adding these constraints explicitly:

zst ≤ xs ∀(s, t) ∈ S ∗ T (4)

B. Maximal Clique Inequalities [15]

A clique of a graph G = (S,E) is a subset U ⊆ S
for which holds: u, v ∈ U ⇒ uv ∈ E, i. e., a clique is a
complete subgraph. A clique is maximal if it is not included
in a larger clique. We replace constraints (1c) by all maximal
clique inequalities for the independent set polytope:∑
s∈U

xs ≤ 1 ∀U ⊂ S, U is a maximal clique in G = (S,E).

Though NP-complete, all maximal cliques can be computed
by the Bron-Kerbosch algorithm [4] without much effort.

C. Cover Inequalities

Constraints (2) are closely related to the robust knapsack
problem. The general structure of (2) can be written as∑

i∈I
āiyi + max

I′⊆I:|I′|≤Γ

∑
i∈I′

âiyi ≤ bx . (5)

where I denotes the set of items (TNs), āi the default knapsack
weight, âi its deviation, and b the knapsack capacity. If x = 1,
(5) describes a robust knapsack. Since x = 0 implies yi = 0
for all i ∈ I , every valid inequality for the robust knapsack
problem can be adapted to a valid inequality for (5) (and thus
for (3)) by multiplying its right hand side with x.
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In [12] the well-known cover inequalities for the knapsack
problem have been generalized to the robust knapsack prob-
lem. A set (C ∪ J) ⊆ I is a robust cover if

|J | ≤ Γ, |C| ≥ 0 and
∑
i∈C

āi +
∑
i∈J

(āi + âi) > b

For any robust cover C ∪ J , the robust cover inequality∑
i∈C∪J

yi ≤ (|C ∪ J | − 1)x (6)

is valid for (5). Such a cutting plane can be strenghtened by
means of the concept of an extended cover, cf. e. g., [5, 6]:
selecting an item i whose default weight āi is greater than or
equal to the maximum default weight in C and whose peak
weight āi + âi is greater than or equal to the maximum peak
weight in J implies that at most |C∪J |−2 items of the robust
cover can be taken. Hence,∑

i∈E(C,J)

yi ≤ (|C ∪ J | − 1)x (7)

is also valid, with E(C, J) := E ∪ (C ∪ J) defined by

E :=

{
i ∈ I : āi ≥ max

j∈C
āj , āi + âi ≥ max

j∈J
(āj + âj)

}
(8)

Since there exist (exponentially) many robust cover inequal-
ities, these are not added to (3) in advance, but are separated on
the fly. The separation problem is NP-hard in itself. Therefore,
we adapt the separation heuristic given in [12] for robust
cover inequalities. The main steps of this heuristic can be
summarized as follows.

The items are sorted according to the smallest ratios of
profit (i.e., in the objective of the separation problem) to peak
demand in the first step. Then the set J , consisting of all
TNs considered with their peak demands, is determined. If the
capacity is already exceeded, we stop. Otherwise, the set C is
filled with TNs, for which the nominal demand is considered,
until the capacity is exceeded. Finally, the constructed robust
cover is extended by means of (8), if possible.

V. CASE STUDY

In this section, we describe a case study to reveal the
added value of the robust optimization approach. After the
description of the scenario, we discuss the optimization results
and propose a way to determine a good choice for Γ. Finally,
we compare the solutions with static network planning.

A. The Scenario

The proposed model is tested for a planning scenario based
on signal propagation data for Munich, available at [1] with 40
BS candidate sites and 450 randomly distributed TNs. The
signal prediction is done by a cube oriented ray launching
algorithm [13]. Two BSs are adjacent in the conflict graph
iff the distance between them is at most 500 m. The resulting
graph is illustrated in Fig. 1. Furthermore, we use the following
scenario parameters: bs = 10 MHz, ps = 4000 W ∀s ∈ S
(based on [7]), emin = 0.5 bps/Hz.

0 500 1000 1500 2000 2500 3000 3500
0

500

1000

1500

2000

2500

[m]

[m
]

Fig. 1. The scenario. BSs are denoted by (blue) crosses. Each line is an
edge in the conflict graph. (Black) dots stand for TNs.

TABLE I
PROFILES FOR TNS

service percentage [%] bit rate [kbps]

data [10,20] [512,2000]
web [20,40] [128,512]

For each t ∈ T , w̄t is computed by randomly generating
user profiles from Table I: for both data and web services a
percentage and bit rate is uniformly drawn from the intervals.
The remaining percentage is used for Voice-over-IP (VoIP)
with a bit rate of 64 kbps. The value ŵt is computed such
that w̄t + ŵt = 643.2 kbps, simulating a worst case demand.

Since the solution depends on the choice of λ, we tested
three values: 1000, 2000, 4000. Hence, based on the value of
the total power consumption of a BS, it becomes beneficial to
deploy an additional BS if more than four, two, or one TN(s)
cannot be covered.

We used a Linux machine with a 2.93 GHz Intel Xeon
W3540 processor, 12 GB RAM, and CPLEX 12.2 [11]. A
CPU time limit of 4 h is set. Note, without the cutting planes
described in Section IV the computations would have been far
less competitive.

B. Γ-Robust Wireless Network Planning

For Γ ∈ {0, 1, . . . , 40} and λ ∈ {1000, 2000, 4000}, Fig. 2
shows the best solution value (primal bound) and a lower
bound on the optimal solution value (dual bound) found within
the given time limit. In about 59% of the cases both bounds
match, hence an optimal solution is found. We observe that
the optimality gap increases with increasing Γ (the course of
the bounds is similar, independent of λ). The increase in the
objective value is the price of robustness, i. e., more robust
solutions come at a price.

Figure 3 shows for all λ the number of deployed BSs as
well as the number of served TNs per BS. As expected, with
increasing Γ the number of deployed BSs increases stepwise,
whereas the TNs per BS decreases. Deviations from this rule
can be explained by the non-optimality of the solutions.
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(a) λ = 1000.
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(b) λ = 2000.
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(c) λ = 4000.

Fig. 3. Number of covered TNs averaged over the number of BSs and deployed BSs.
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Fig. 2. Primal and dual bounds.

C. Evaluation of Robust Planning

To evaluate the robustness of the different solutions, we
computed 1000 snapshots to simulate various traffic demand
scenarios. In each snapshot, the demand of the TNs is bino-
mially distributed between w̄t and w̄t + ŵt with a probability
of 0.5 (this value is chosen rather high to increase the
exploratory power of the evaluation). From this, we compute
the (over)load for each deployed BS in a solution: the allocated
bandwidth divided by the DL bandwidth. Fig. 4 shows the
maximum load of the BSs for each λ and Γ averaged over the
snapshots. A value less than 1 means that there is no overload;
the TNs can be served at their required bit rates and it is even
possible to serve more than the assigned TNs.

With increasing Γ the average overload decreases. Since the
snapshots are representative for our model, Fig. 4 suggests to
set Γ = 16 for a robust solution, independent of λ.

D. Conventional Wireless Network Planning

In conventional wireless network planning any uncertainties
of parameters are ignored; all parameters are assumed to
be static. To be able to compensate demand fluctuations, a
network operator should plan with values equal or close to

the peak demand values [14]. To compare our results with
such a conventional planning approach, we run model (1) with
wt = w̄t + ŵt for all t ∈ T . The best/optimal solution value
ranges from 66, 000 (λ = 1000) to 96, 000 (λ = 4000). By
definition of the demand values, no overload can occur in these
solutions.

In comparison to the solutions for Γ = 16, the conventional
solutions for λ = 1000, 2000 require one more BS (13, 14 in
total). For λ = 4000, the same number of BSs is deployed
(15), but less TNs can be covered (441 compared to 443).
Stated otherwise, in all cases, a solution with higher energy
efficiency could be found by the robust optimization approach,
either by deploying less BSs, or serving more TNs with the
same amount of energy.

VI. CONCLUDING REMARKS

We have introduced an optimization model for the energy
efficient planning of future wireless networks which considers
technical system characteristics such as OFDMA. Applying Γ-
robustness, we incorporated demand uncertainty. Network op-
erators can assess the trade-off between robustness and energy
consumption by varying the robustness parameter and the λ. In
our case study, we observed energy savings either by deploying
less BSs or serving more TNs with the same number of BSs.

The above results naturally depend on the probability of
high traffic volumes. If deviations in the snapshots simulated
in Section V-C are less likely to happen, lower Γ values
will suffice for planning a wireless network without overload
situations. Ideally, snapshots based on real-traffic data are used
to determine the value of Γ and the corresponding design.

ACKNOWLEDGEMENT

The authors would like to thank Alexander Engels for
providing us with realistic network data and Manuel Kutschka
for assisting in algorithmic implementations.

REFERENCES

[1] COST 231. Urban micro cell measurements and
building data. [Online]. Available: http://www2.ihe.uni-
karlsruhe.de/forschung/cost231/cost231.en.html

[2] E. Amaldi, A. Capone, and F. Malucelli, “Radio planning
and coverage optimization of 3G cellular networks,”
Wirel. Netw., vol. 14, pp. 435–447, 2008.

ha
l-0

06
43

68
7,

 v
er

si
on

 1
 - 

22
 N

ov
 2

01
1



Fig. 4. Overload for robust wireless network planning.

[3] D. Bertsimas and M. Sim, “The price of robustness,”
Operations Research, vol. 52, no. 1, pp. 35–53, 2004.

[4] C. Bron and J. Kerbosch, “Algorithm 457: finding all
cliques of an undirected graph,” Commun. ACM, vol. 16,
pp. 575–577, 1973.
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