
Short Huffman Codes Producing 1s Half of the Time
Fabian Altenbach, Georg Böcherer, and Rudolf Mathar

Institute for Theoretical Information Technology
RWTH Aachen University, 52056 Aachen, Germany

Email: {altenbach,boecherer,mathar}@ti.rwth-aachen.de

Abstract—The design of the channel part of a digital communi-
cation system (e.g., error correction, modulation) is heavily based
on the assumption that the data to be transmitted forms a fair bit
stream. However, simple source encoders such as short Huffman
codes generate bit streams that poorly match this assumption.
As a result, the channel input distribution does not match the
original design criteria. In this work, a simple method called half
Huffman coding (HALFHC) is developed. HALFHC transforms a
Huffman code into a source code whose output is more similar to
a fair bit stream. This is achieved by permuting the codewords
such that the frequency of 1s at the output is close to 0.5. The
permutations are such that the optimality in terms of achieved
compression ratio is preserved. HALFHC is applied in a practical
example, and the resulting overall system performs better than
when conventional Huffman coding is used.

I. INTRODUCTION

The key part of a digital communication system is the
binary interface between source coding and channel coding
[1, p. 1–3]. The ultimate objective of source coding is to

transform the data into a sequence of 0s and 1s that is
indistinguishable from a fair bit stream, i.e., a sequence of
independent and identically distributed (iid) equiprobable bits.
Accordingly, most work on channel coding starts with the
assumption that the data to be transmitted comes as a fair
bit stream.

In [2], we have shown that the capacity achieving input
probability mass function (pmf) of a channel can be approxi-
mated arbitrarily well by parsing a fair bit stream by a matcher
code and by doing so, capacity achieving modulation can
be established [3]. However, this result is heavily based on
the assumption that the binary interface is a fair bit stream.
Asymptotically in terms of source encoder complexity, the
binary interface can indeed be turned into a fair bit stream
[4]. In practice, however, we are often restricted to simple
encoders, and the resulting binary output differs significantly
from a fair bit stream. As a simple measure to evaluate
how close the generated bit stream is to a fair bit stream,
the frequency of generated 1s can be considered. For a fair
bit stream, this frequency should be 0.5. One possibility to
achieve this goal is to pass the source encoder output through
a scrambler [5]. The drawback of this approach is that the
corresponding descrambler has to be known and implemented
at the receiver [6].

This work has been supported by the UMIC Research Center, RWTH
Aachen University.

In this work we propose an algorithm called half Huffman
coding (HALFHC) that constructs prefix-free source codes.
HALFHC achieves the optimal compression ratio (i.e., the same
as Huffman coding (HC)), and the frequency of 1s of HALFHC
is closer to 0.5 than the frequency of 1s of HC. As in the case
of conventional HC, no additional descrambler at the receiver
is required. We apply HALFHC to the shaping problem in [7].
We show that the resulting channel input pmf is closer to
the one predicted by the fair bit stream assumption than the
channel input pmf resulting from conventional HC. A complete
implementation of HALFHC in Matlab can be found at our
website [8].

The remainder of this paper is organized as follows. In
Section II, we state the main problem. The idea of our solution
is formulated in Section III. We then formulate in Section IV
our idea as a mathematical optimization problem, propose
methods for solving it, and formulate our new algorithm
HALFHC. Finally, in Section V we apply HALFHC to a
practical example.

II. PROBLEM STATEMENT

A. Motivating example

In [7], we consider a channel with three input symbols
r,l,m with the associated costs

w = (0.18, 0.18, 0.31)T , (1)

where (·)T is the transpose. The channel input pmf p is subject
to the cost constraint

wTp ≤ S = 0.2063. (2)

The optimal channel input probability mass function (pmf)
was calculated as

p∗ = (0.3988, 0.3988, 0.2023)T . (3)

Note that p∗ fulfills the cost constraint with equality. The class
of pmfs that can be generated at the channel input by parsing
a fair bit stream by a matcher code are the dyadic pmfs [2].
A pmf is dyadic if each entry pi can be written in the form

pi = 2−`, ` ∈ N (4)

i.e., each entry is a positive integer power of 1/2. The
optimization problem in [2] of finding an optimal matcher

ar
X

iv
:1

10
7.

45
00

v1
 [

cs
.I

T
]

 2
2

Ju
l 2

01
1

shannon... HC
111000... matcher rllmrm...

Fig. 1. We first compress the text to a binary sequence by HC and then
match the binary sequence to the design criteria by a matcher code. At the
output of the matcher, a sequence of the symbols r,l,m is generated.

code can be stated as

minimize D(d‖p∗)
subject to wTd ≤ S

d is a dyadic pmf,

(5)

where D(·‖·) is the Kullback-Leibler (KL) distance, which is
defined as

D(p‖q) =
∑
i

pi log
pi
qi
, (6)

with log denoting the natural logarithm. In [7], the algorithm
cost constrained geometric Huffman coding (CCGHC) is de-
veloped, and it is shown that for a fair bit stream at the
binary interface, the resulting matcher code optimally solves
Problem (5). The solution d achieves

D(d‖p∗) = 0.0048392 (7)

wTd = 0.20607 ≤ S. (8)

However, the bit stream at the binary interface is generated
by compressing the English text [9] by a simple HC, and
this bit stream is then parsed by the matcher code, see
Fig. 1. By HC we refer to Huffman coding as implemented
by huffmandict.m in the Matlab Communications System
Toolbox. The effective pmf, the effective KL-distance, and
the effective cost at the output of the matcher are respectively
given by

dHC = (0.40663, 0.35761, 0.23576)T (9)
D(dHC‖p∗) = 0.0050066 (10)

wTdHC = 0.21065 > S (11)

i.e., what is actually observed significantly differs from what
we would expect under the fair bit stream assumption.

B. Approach

While observations (9)–(11) may occur since the effectively
observed values are a realization of a random process, which
can always diverge from the expected values, the reason can
also be that the assumption of a fair bit stream is false. To
evaluate the quality of the binary interface, we calculate the
effective relative number of 1s. For a fair bit stream, this
number should be close to q = 0.5. However, the effective
frequency that we observe after applying HC to the English
text [9] is

qHC = 0.45821. (12)

A maximum likelihood estimator (MLE) of q yields for the
bit stream at the output of HC the 95% confidence interval
(0.4464, 0.47006). Since the corresponding value of q = 0.5

TABLE I
HC FOR THE ENGLISH TEXT [9]

i pi ci l(i) j
1 0.1699 000 3 1

e 2 0.0964 110 3 1
t 3 0.0777 0010 4 2
a 4 0.0717 0100 4 2
i 5 0.0663 0101 4 2
o 6 0.0645 0111 4 2
n 7 0.0614 1000 4 2
r 8 0.0530 1010 4 2
s 9 0.0500 1110 4 2
h 10 0.0373 00110 5 3
c 11 0.0325 01101 5 3
l 12 0.0325 01100 5 3

m 13 0.0277 10110 5 3
u 14 0.0277 10011 5 3
d 15 0.0235 11110 5 3
f 16 0.0199 11111 5 3
g 17 0.0181 001110 6 4
y 18 0.0145 100100 6 4
p 19 0.0139 100101 6 4
b 20 0.0133 101110 6 4
w 21 0.0114 101111 6 4
v 22 0.0054 00111100 8 5
k 23 0.0042 00111101 8 5
x 24 0.0024 001111100 9 6
q 25 0.0018 001111110 9 6
z 26 0.0018 001111101 9 6
j 27 0.0012 001111111 9 6

is not contained in this interval, the MLE rejects the hypothesis
of having a fair bit stream after applying HC. Our approach
is therefore to look for optimal prefix-free source codes that
yield a q close to 0.5.

III. MAIN IDEA

As stated in [10, Sec. 5.8], optimal prefix-free source codes
are not unique and for a given pmf, HC constructs one optimal
code. All other optimal codes can be obtained by applying
appropriate permutations of the code generated by HC. In
this section we will show how the frequency of 1s can be
influenced by specific permutations.

A. Frequency of 1s

Denote the number of symbols of the considered source
by n. Without loss of generality, we assume that the pmf p
describing the source is ordered with decreasing probabilities,
i.e,

p1 ≥ p2 ≥ · · · ≥ pn. (13)

Denote by C the ordered set of codewords generated by HC,
i.e.,

C = (c1, . . . , cn). (14)

Denote by 1T ci the number of 1s in the ith codeword. We
write the length of codeword ci as l(i). Denote by m the
number of distinct codeword lengths and order and index the
set of distinct codeword lengths {`j}mj=1. For the English text
[9] we have i, pi, ci, l(i) and j displayed in Table I. Denote

the pmf of the codeword lengths by r, i.e.,

rj =
∑

i:l(i)=`j

pi, j = 1, . . . ,m. (15)

Denote by pi|j the probability that symbol i is generated given
that the codeword length is `j , i.e., if pi|j > 0, then

pi|j =
pi
rj
. (16)

Denote by Nj the expected number of 1s conditioned on
codeword length `j , i.e.,

Nj =
∑

i:l(i)=`j

pi|j1
T ci. (17)

Thus the expected frequency q of 1s given by the expected
number of 1s N per average length L can be written as

q =
N

L
(18)

=

m∑
j=1

rjNj

m∑
j=1

∑
i:l(i)=`j

pi|jrj`j

. (19)

B. Permutations of C
Any permutation of codewords of the same length again

gives an optimal code. However, while the achieved compres-
sion rate is invariant under these permutation, the mean num-
ber of 1s is not. This is because in general, there are codewords
of the same length that occur with different probabilities. A
naive approach consists of searching through all permutations,
and choose the one with the mean number of 1s being
closest to 0, 5. However, the number of such permutations
becomes very fast prohibitively large. For instance, for the
code displayed in Table I, this number is approximately

2!7!7!5!2!4! ≈ 3 · 1011. (20)

Consider now the set of codewords Cj of codewords of length
`j . We consider two special permutations of Cj . First, the one
that maximizes the expected number of 1s and second, the one
that minimizes the expected number of 1s. The first is obtained
by ordering the codewords in Cj with decreasing number of
1s, and the second one is obtained by ordering the codewords
in Cj with increasing number of 1s. Denote the corresponding
permutations by π+

j and π−j , respectively. For example, for the
code in Table I, the corresponding permutations for codeword
length `1 = 3 are

π+
1 : 1 7→ 2, 2 7→ 1 (21)

π−1 : 1 7→ 1, 2 7→ 2. (22)

The maximum expected number N+
j of 1s in a codeword,

conditioned on the codeword length `j is given by

N+
j =

∑
i:l(i)=`j

pi|j1
T cπ+

j (i) (23)

and the minimum expected number of 1s N−j is given by

N−j =
∑

i:l(i)=`j

pi|j1
T cπ−

j (i). (24)

For example, in case of codeword length 3 (corresponding to
`1), we can see from Table I that

N+
1 =

p1

p1 + p2
· 2 + p2

p1 + p2
· 0 ≈ 1.276

N−1 =
p1

p1 + p2
· 0 + p2

p1 + p2
· 2 ≈ 0.724

The idea is now to choose for each codeword length `j
between N+

j and N−j , with the objective to get the overall
expected number of 1s divided by the expected codeword
length as close to q = 0.5 as possible. This means, we would
like to solve

q =

m∑
j=1

rjN
zj
j

L

!≈ 0.5 (25)

where each zj takes values in {+,−}. The corresponding
optimization problem is discussed in the next section.

IV. HALF HUFFMAN CODING

We will express goal (25) in terms of a mathematical
optimization problem. For each index j corresponding to a
specific codeword length `j , we can either take the maximiz-
ing permutation π+

j or the minimizing permutation π−j . We
introduce a binary vector x ∈ {0, 1}m, which serves as a
selection variable between both permutations. By using (25),
the expected frequency of 1s can be expressed in terms of xj
as

q =

m∑
j=1

rjN
zj
j

L
(26)

=
1

L

m∑
j=1

rj
[
xj(N

−
j −N+

j) +N+
j

]
. (27)

For xj = 0, we choose N+
j , and for xj = 1, we choose N−j .

We measure the quality of our selection x by the absolute
deviation between q and 0.5. Hence, in vector notation, the
objective we want to minimize has the form

|q − 0.5| =
∣∣∣∣ 1L [r ◦ (n− − n+)]

T
x+

1

L
nT+r − 0.5

∣∣∣∣ , (28)

where ◦ denotes the elementwise Hadamard vector product,
and n− and n+ are defined as

n− = (N−1 , . . . , N
−
m)T (29)

n+ = (N+
1 , . . . , N

+
m)T . (30)

For notational convenience, we further substitute

a =
1

L
[r ◦ (n− − n+)] (31)

b =
1

L
nT+r − 0.5. (32)

We can now state the optimization problem

minimize
x

|aTx+ b|
subject to xj ∈ {0, 1}, j = 1, . . . ,m.

(33)

Introducing the epigraph variable t ∈ R+ [11], we can directly
see that the problem (33) is equivalent to

minimize
x,t

t

subject to −t ≤ aTx+ b ≤ t
xj ∈ {0, 1}, j = 1, . . . ,m.

(34)

This problem is a mixed integer linear program (MILP) in
its canonical form [12], and is generally hard to solve. Since
we are focusing on short-length Huffman codes, the number
of different codeword lengths m will not be too large. As
discussed below, we can use standard methods for solving this
problem globally.

A. Optimization methods

1) Naive exhaustive search: In order to find the global
solution to problem (33), we can simply try all possible vectors
x ∈ {0, 1}m. In our example from Table I, m = 6, that
is, we have to choose between 26 = 64 possible vectors x.
Thus, in our example we have overcome the huge number
of possible permutations (20), but in general, we still might
be constrained by the combinatorial nature of problem (34),
since the complexity of exhaustive search grows exponentially
in the number of distinct codeword lengths m. This problem
can be overcome by considering smarter search algorithms, as
discussed next.

2) Combinatorial feasibility method via bisection: We can
also exploit some structure in the MILP formulation (34) by
using a bisection method [11, p. 146]. Suppose we set the
epigraph variable to a fixed value t. We can now try to find
a feasible solution to the remaining combinatorial feasibility
problem

find x
subject to −t ≤ aTx+ b ≤ t

xj ∈ {0, 1}, j = 1, . . . ,m.
(35)

There are two possible cases that can occur:
1) If we find a feasible solution, the particular choice of

t is greater or equal than the smallest possible value.
Hence the value of t can be further decreased.

2) When there is no feasible solution, the choice of t was
too small and we have to increase it.

After checking both cases we can solve the feasibility problem
with an updated version of t, and repeat until convergence.
This approach is summarized in Algorithm 1.

3) Specific branch and bound method: Formulation (33)
falls into the class of problems discussed in [13, Sec. 2].
Thus, if none of the methods proposed in Subsection IV-A1
and Subsection IV-A2 can solve the problem in acceptable
time, a specific branch and bound solver for problem (33) can
easily be implemented and still finds the optimal solution in
hopefully reasonable time.

Algorithm 1.

set l, u, tolerance ε > 0
repeat

1. t := (l + u)/2
2. Solve the combinatorial feasibility problem (35)
3. if (35) is feasible

decrease u := t;
else

increase l := t;
until u− l ≤ ε
return x

B. Half Huffman coding

We can now state HALFHC, see Algorithm 2 for a sum-
mary. In detail, we are given a pmf with entries sorted in
descending order. First, we calculate the conventional Huffman
code C = HC(p). Then, for each codeword length `j , we
determine the maximum and minimum permutations π+

j and
π−j , respectively. We use these permutations to calculate the
vectors n+,n− of maximum and minimum expected numbers
of 1s. For the resulting vectors, we solve Problem (33) by any
method from IV.A in order to find an optimal selection vector
x. The selection vector now determines which permutation has
to be applied for each codeword length `j , i.e.,

πj =

{
π+
j , if xj = 0

π−j , if xj = 1
, j = 1, . . . ,m. (36)

Finally, the resulting permutation π = (π1, . . . , πm) is applied
to get the final code, i.e., HALFHC(p) = π(C). A complete
implementation of HALFHC in Matlab can be found at our
website [8].

Algorithm 2. (HALFHC)

p1 ≥ · · · ≥ pn
1. C = HC(p)
2. find n+,n− via (23), (24)
3. x = solution of (33) via any method from IV.A
4 . π = (π1, . . . , πm) according to (36)
return π(C)

V. NUMERICAL RESULTS

We apply HALFHC to the English text [9]. We exe-
cute HALFHC twice. First, we use in step 3 exhaustive
search IV-A1. Second, we use the combinatorial feasibility
method IV-A2. Both methods find the same selection vector
x, which is given by

x = (1, 0, 0, 0, 0, 0)T . (37)

The generated code is displayed in Table II. As can be seen,
for `1 = 3, the codewords are sorted with decreasing number
of 1s, while for remaining codeword lengths, the codewords
with increasing number of 1s. Notice the differences to the

TABLE II
HALFHC FOR THE ENGLISH TEXT [9]

i pi ci j `j
1 0.1699 000 3 1

e 2 0.0964 110 3 1
t 3 0.0777 1110 4 2
a 4 0.0717 0111 4 2
i 5 0.0663 1010 4 2
o 6 0.0645 0101 4 2
n 7 0.0614 1000 4 2
r 8 0.0530 0100 4 2
s 9 0.0500 0010 4 2
h 10 0.0373 11111 5 3
c 11 0.0325 10011 5 3
l 12 0.0325 11110 5 3

m 13 0.0277 01101 5 3
u 14 0.0277 10110 5 3
d 15 0.0235 01100 5 3
f 16 0.0199 00110 5 3
g 17 0.0181 101111 6 4
y 18 0.0145 101110 6 4
p 19 0.0139 100101 6 4
b 20 0.0133 001110 6 4
w 21 0.0114 100100 6 4
v 22 0.0054 00111101 8 5
k 23 0.0042 00111100 8 5
x 24 0.0024 001111111 9 6
q 25 0.0018 001111110 9 6
z 26 0.0018 001111101 9 6
j 27 0.0012 001111100 9 6

code obtained by conventional HC as displayed in Table I.
The resulting effective frequency of 1s of HALFHC is

qHALFHC = 0.49985. (38)

This is much closer to 0.5 than the value 0.45821 that resulted
from conventional HC. Thus, HALFHC achieved the first
objective given in (25), namely to get the frequency of 1s
closer to 0.5.

Let’s consider now if this has the desired effect on the
effective distributions that are generated by a matcher code.
For the English text [9], the resulting effective pmf deff is

dHALFHC = (0.38627, 0.41107, 0.20266)T , (39)

The resulting KL-distance and average cost are respectively
given by

D(dHALFHC‖p∗) = 0.00048629 (40)

wTd = 0.20635. (41)

Compared to HC, the KL-distance is reduced. Thus, by using
HALFHC instead of conventional HC, the effective output
of a matcher code is closer to the output expected under
the fair bit stream assumption. The effective cost of HC
exceeds the cost constraint by 2.11%, HALFHC exceeds the
cost constraint S = 0.2063 by only 0.02%. Although both HC
and HALFHC formally violate the cost constraint, the value
achieved by HALFHC was adopted as a practical solution by
the collaborating architects in [7], who originally formulated
the cost constraint S. We can conclude that our approach of
minimizing |q − 0.5| leads to the desired result.

wTp
S

D
(p
||p

∗)

achieved by halfHc, qhalfHc = 0.49985

achieved by Hc, qHc = 0.45821

0.205 0.207 0.209 0.211
0

1

2

3

4

5

×10−3

Fig. 2. Comparison between HC and HALFHC for the English text [9]. The
horizontal axis corresponds to the average cost wTp while the vertical axis
corresponds to the KL-distance D(p‖p∗). For HC, p = dHC , see (9), and
for HALFHC, p = dHALFHC , see (39). The blue line marks the average cost
constraint S = 0.2063 of the original design problem (5).

REFERENCES

[1] R. G. Gallager, Principles of Digital Communication. Cambridge
University Press, 2008.

[2] G. Böcherer and R. Mathar, “Matching dyadic distributions to channels,”
in Proc. Data Compression Conf., 2011.

[3] G. Böcherer, F. Altenbach, and R. Mathar, “Capacity achieving modu-
lation for fixed constellations with average power constraint,” in Proc.
IEEE Int. Conf. Commun. (ICC), 2011.

[4] T. S. Han, “Folklore in source coding: information-spectrum approach,”
IEEE Trans. Inf. Theory, vol. 51, no. 2, pp. 747–753, 2005.

[5] G. Ungerboeck, “Huffman shaping,” in Codes, Graphs, and Systems,
R. Blahut and R. Koetter, Eds. Springer, 2002, ch. 17, pp. 299–313.

[6] G. Ungerboeck and A. J. Carlson, “System and method for Huffman
shaping in a data communication system,” U.S. Patent US 7,460,595
B2, Dec. 2, 2008.

[7] G. Böcherer, F. Altenbach, M. Malsbender, and R. Mathar, “Writing on
the facade of RWTH ICT Cubes: Cost constrained geometric Huffman
coding,” in IEEE Int. Symp. Wireless Commun. Syst. (ISWCS), 2011.
[Online]. Available: http://arxiv.org/abs/1106.5675

[8] “half Huffman coding,” Jul. 2011. [Online]. Available: http://www.
georg-boecherer.de/halfhc

[9] “Quotes from ingenious researchers.” [Online]. Available: http:
//www.georg-boecherer.de/quotes.txt

[10] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
John Wiley & Sons, Inc., 2006.

[11] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[12] L. A. Wolsey and G. L. Nemhauser, Integer and Combinatorial Opti-
mization, 1st ed. Wiley-Interscience, Nov. 1999.

[13] S. Boyd and J. Mattingley, “Branch and bound methods,” Mar. 2007,
notes for EE364b, Stanford University, Winter 2006-07.

http://arxiv.org/abs/1106.5675
http://www.georg-boecherer.de/halfhc
http://www.georg-boecherer.de/halfhc
http://www.georg-boecherer.de/quotes.txt
http://www.georg-boecherer.de/quotes.txt

	I Introduction
	II Problem Statement
	II-A Motivating example
	II-B Approach

	III Main Idea
	III-A Frequency of 1s
	III-B Permutations of C

	IV Half Huffman Coding
	IV-A Optimization methods
	IV-A1 Naive exhaustive search
	IV-A2 Combinatorial feasibility method via bisection
	IV-A3 Specific branch and bound method

	IV-B Half Huffman coding

	V Numerical Results
	References

