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1 Introduction
Recent technological discoveries in distributed systems, clustering and networking pro-
tocols, and new smart sensors, enable more intelligent sensor solutions for which we
expect a growing global demand and a new range of superior applications. To open new
ways of sensing for monitoring and surveilling the real world, intelligent proactive de-
vices are produced at low cost and deployed on a large scale as so-called wireless sensor
networks. Competing applications of wireless sensor networks encompass environmental
and infrastructural monitoring, industrial and medical sensing and diagnostics, multi-
target tracking, detecting as well as classifying. Although all leading applications are
differently used, their common ground is based on the ‘capability of sensing ’. Individual
sensor nodes are in general mostly cheap and thus have limited abilities. In contrast,
the collaboration of a large number of distributed sensor nodes allows to perform com-
plex and novel sensing tasks. Since one of the most crucial constraints on sensor nodes
is the low power consumption requirement, the aim for energy-aware design and oper-
ation results naturally. Wireless sensors are often powered by irreplaceable batteries
or even batteryless and thus have to operate on limited energy budgets. Consequently,
power consumption and overall system performance are general trade-off objectives. It
is a major challenge to balance the resource consumption within the system and to
achieve a good system performance at the same time. For this purpose, it is essential
to find a suitable mathematical description of objectives and related constraints. In
the scope of energy-efficient system design, most of the relevant optimization problems
are solved by numerical methods. Since the underlying mathematical structure is often
very complicated and thus does not allow an analytical or algebraic solution, the appli-
cation of heuristics is a common approach. Generally, the complexity of finding energy
minimal solutions increases drastically with the number of sensors in the network. Even
sophisticated numerical methods fail to compute optimal solutions in real-time. Hence,
closed-form analytical and algebraic solutions are the key to achieve maximum overall
performance of wireless sensor networks. The last conclusion is the main motivation
for this dissertation.

In the present work, we derive mathematical methods and algorithms for optimizing
the power allocation in distributed wireless sensor networks that perform both target
detection and classification. Our goal is to find analytical solutions in closed-form in-
stead of numerical results. Since closed-form solutions are very difficult to obtain and
only achievable in particular cases, this work presents first novel results for dealing
with power allocation in distributed radar systems. Passive and active radar systems
are investigated under sum-power and individual power constraints per sensor node.
In addition, we determine the corresponding classification performance exemplarily for
the active radar system. This leads to an investigation of certain classes of integrals
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1 Introduction

concerning the evaluation of the average classification probability in communication
over fading channels. Since the evaluation of average classification probability and av-
erage symbol-error probability over fading channels are closely related, we scrutinize
corresponding mathematical integrals thoroughly. As main results, we present equiv-
alent equations and mathematical expressions as well as accurate analytical bounds
in closed-form for which all corresponding relative errors are explicitly specified and
analytically determined.

1.1 Outline
First, mathematical preliminaries and important fundamentals are outlined in Chap-
ter 2. Furthermore, Gautschi’s double inequality, which is very important for the
statements in Chapter 6, is considered and improved.

In Chapter 3, power allocation in passive radar systems is motivated and optimized.
Beginning with an overview of the underlying system model, the corresponding op-
timization problem is developed. Under sum-power and individual power constraints
the optimization problem is solved and discussed. In the case that both types of con-
straints shall be satisfied simultaneously, an efficient algorithm is given to select the
most reliable sensor nodes.

Analogously, the optimization of power allocation in active radar systems is inves-
tigated in Chapter 4. First, the system model and the corresponding optimization
problem are introduced. Then, the optimization problem subject to sum-power and
individual power constraints is solved. In between, selected results are compared and
interpreted.

In order to point out an extensive problem, which emerges in evaluating the average
classification probability, we first derive the instantaneous classification probability for
some particular cases in Chapter 5. Subsequently, the average classification probabil-
ity is shortly discussed and its relationship to the average symbol-error probability is
established.

Finally, the average symbol-error probability is treated in Chapter 6. In particular,
we consider the average symbol-error probability in communication over Nakagami fad-
ing channels and start with its representation in integral form. In order to gain deep
insight, the integral form is converted and in turn described by certain classes of special
functions. As main results new representations of the average symbol-error probability
are found, which help to deduce accurate approximations and bounds. Hence, two
new accurate bounds are derived in closed-form with an explicit specification of corre-
sponding relative errors. In between, selected results are visualized by corresponding
curves.

In the conclusions, the content of this thesis is summarized and main contributions
are highlighted. Furthermore, an outline for future works is presented.

Parts of this thesis and related topics have been published in [1–13]. Other parts are
submitted to journals and proceedings, but are still under revision, e.g., [14].
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2 Mathematical Preliminaries

Throughout this work we denote the sets of positive integers (natural numbers), inte-
gers, real numbers and complex numbers byN, Z, R and C, respectively. The imaginary
unit is denoted by j . Furthermore, the sets of non-negative integers and non-negative
real numbers are denoted by N0 and R+, respectively. Moreover, we use the subset
FN ⊆ N which is defined as FN := {1, . . . , N} for any given N ∈ N.

We use boldface uppercase letters to denote matrices, while boldface lowercase letters
denote vectors.

The operations |z|, ‖z‖ and |FN | denote the absolute value of some real or complex
number z, the Euclidean norm of some real or complex vector z, and the cardinality
(number of elements) of the set FN , respectively. The notations M̄, M′ and M̄′ repre-
sent the complex conjugate, transpose and complex-conjugate transpose of any matrix
M, respectively. The expected value of a random variable v and a random vector v are
denoted by E [v] and E [v], respectively. Moreover, the notation V ? stands for the value
of an optimization variable V where the optimum is attained. The logical conjunction
is marked as ∧.

A function ϑ(x) is said to be of order O
(
ω(x)

)
as x 7→ x0 whenever for some δ > 0,

ε > 0 and all x with |x− x0| < ε the inequality |ϑ(x)| ≤ δ |ω(x)| holds.
For convenience of referencing, we briefly introduce some important special functions

and summarize their properties, as may be found in the chapters 6, 7, 15 and 26 of [15].

2.1 Special Functions

The Euler’s classical gamma function is defined as

Γ(x) :=

∞∫

0

tx−1 e−t dt , x > 0 . (2.1)

It has the well-known properties

Γ(1
2
) =
√
π , Γ(1) = Γ(2) = 1 and Γ(3

2
) =

√
π

2
. (2.2)

Moreover, for all positive real numbers x, the identity

Γ(x+ n) = Γ(x)
n−1∏

i=0

(x+ i) , n ∈ N , (2.3)

3



2 Mathematical Preliminaries

holds, which especially entails Γ(x+ 1) = xΓ(x). Furthermore, the limit

lim
n7→∞

nb−a
Γ(n+ a)

Γ(n+ b)
= 1 , a, b ∈ R+ , (2.4)

is well-known.
We will also use the digamma function

ψ(x) :=
d

dx
ln Γ(x) =

Γ′(x)

Γ(x)
, x > 0 , (2.5)

where Γ′(x) denotes the first derivative of Γ(x).
Closely related to the gamma function is the incomplete beta function, which is

defined as

B(a, b;x) :=

x∫

0

ta−1(1− t)b−1dt , (2.6)

for all positive real numbers a, b and x with 0 < x < 1. By substitution of t
1+t

for t
in (2.6), we obtain the identity

B(a, b;x) =

x
1−x∫

0

ta−1

(1 + t)a+b
dt . (2.7)

For the limit x 7→ 1, the incomplete beta function tends towards the beta function,
which is then given by

B(a, b) :=
Γ(a) Γ(b)

Γ(a+ b)
= B(b, a) =

∞∫

0

ta−1

(1 + t)a+b
dt . (2.8)

The Gauss error function and its complementary version are of central importance in
communication theory. However, they are difficult to handle analytically. For all real
numbers x, we will hence use the series representation

erfc(x) :=
2√
π

∞∫

x

e−t
2

dt = 1− 2√
π

∞∑

n=0

(−1)n x2n+1

(2n+ 1)n!
. (2.9)

Another special function of importance for this work is the Gauss hypergeometric
function. For all positive real numbers a, b and c, and for all real numbers x, it is
defined as

2F1(a, b; c;x) :=
Γ(c)

Γ(a) Γ(b)

∞∑

n=0

Γ(a+ n) Γ(b+ n)xn

Γ(c+ n) Γ(n+ 1)
. (2.10)

If a > 0, b > 0 and c > b, then for all x > 0 a corresponding integral representation is
known as

2F1(a, b; c;−x) =
Γ(c)

Γ(b) Γ(c− b)

1∫

0

tb−1(1− t)c−b−1

(1 + x t)a
dt . (2.11)

4



2.2 Convexity, Majorization and Inequalities

2.2 Convexity, Majorization and Inequalities
The following geometric properties of functions and sequences are important tools for
dealing with optimization problems. Some basic concepts are briefly summarized, see
for example [16], [17] and [18].

Definition 2.2.1 (Logarithmically convex functions). Suppose f is a positive real-
valued function on D ⊆ Cn. Then f is called a logarithmically convex function on D,
if for all real numbers λ, with 0 < λ < 1, and for all x1,x2 ∈ D the inequality

f
(
λx1 + (1− λ)x2

)
≤ fλ(x1)f 1−λ(x2) (2.12)

holds.

Corollary 2.2.2. If f is a logarithmically convex function on D ⊆ Cn, then it is a
convex function on D, as well.

Definition 2.2.3 (Sorting sequences). For a sequence x = (x1, x2, . . . , xN) ∈ RN , we
denote by x↓ ∈ RN a sequence with the same components as in x, but sorted in a
descending order. Analogously, we denote by x↑ ∈ RN a sequence with the same com-
ponents as in x, but sorted in an ascending order.

Definition 2.2.4 (Majorization). Let x ∈ RN and y ∈ RN be finite sequences. Then
x is majorized by y, or equivalently x � y, if the inequalities

n∑

i=1

x↓i ≤
n∑

i=1

y↓i , for all 1 ≤ n ≤ N , (2.13)

and the equality
N∑

i=1

xi =
N∑

i=1

yi (2.14)

hold.

Corollary 2.2.5. Let x ∈ RN , y ∈ RN and z ∈ RN be finite sequences. If x is ma-
jorized by y, then the inequality

N∑

i=1

x↓i z
↓
i ≤

N∑

i=1

y↓i z
↓
i (2.15)

holds, see [17, p. 133, Proposition H.2.c].

Lemma 2.2.6 (Hölder’s inequality). Suppose both f and g are non-negative real-valued
functions on D ⊆ Cn. Then for all real numbers λ, with 0 ≤ λ ≤ 1, the inequality

∫

D

fλ(x)g1−λ(x)dx ≤

(∫

D

f(x)dx

)λ(∫

D

g(x)dx

)1−λ

(2.16)

holds. Equality holds if and only if fλ and g1−λ are linearly dependent on D, see [18,
p. 140, eq. 6.9.1].

5



2 Mathematical Preliminaries

Proof. See for example [18].

Lemma 2.2.7 (Weighted power mean inequality). Suppose that both x1, x2, . . . , xN and
w1, w2, . . . , wN , with

∑N
n=1wn = 1, are finite sequences, each consisting of N positive

real numbers. Then for all real numbers p and q, with p < q, the inequality

(
N∑

n=1

wnx
p
n

)1/p

≤

(
N∑

n=1

wnx
q
n

)1/q

(2.17)

holds. Equality holds if and only if x1 = x2 = · · · = xN , see [18, p. 13, eq. 2.2.2 and
p. 26, eq. 2.9.1].

Proof. See for example [18].

Corollary 2.2.8. By calculating the limits p 7→ −∞ and q 7→ ∞, we obtain the in-
equality chain

min{xn | 1 ≤ n ≤ N} ≤

(
N∑

n=1

wnx
r
n

)1/r

≤ max{xn | 1 ≤ n ≤ N} , (2.18)

for all r ∈ R, see [18, p. 14, eq. 2.3.1].

Corollary 2.2.9 (Arithmetic and geometric mean inequality). By calculating the limit
p 7→ 0 with q = 1, we obtain the inequality chain

N∏

n=1

xwn
n ≤

N∑

n=1

wnxn , (2.19)

see [18, p. 17, eq. 2.5.1].

2.3 Convex and Signomial Programming
In the present work, we deal with two special types of optimization problems. The first
one is very common and is called a convex program for which the Karush-Kuhn-Tucker
conditions provide both sufficient and necessary conditions for global optimality. The
second one, called a signomial program, is in general more challenging to solve than
geometric programs. They need to be defined in the following.

Definition 2.3.1 (Convex program). A convex optimization problem is one of the form

minimize f(x)

subject to gi(x) ≤ 0 , i = 1, 2, . . . ,m

hi(x) = 0 , i = 1, 2, . . . , p

(2.20)

where the objective f and all inequality constraints gi are convex functions, and all
equality constraints hi are affine, see [19, p. 136].

6



2.3 Convex and Signomial Programming

Lemma 2.3.2 (Karush-Kuhn-Tucker conditions). Let (x?,λ?,ν?) ∈ Rn ×Rm ×Rp be
any globally optimal points of the Lagrangian

L(x,λ,ν) := f(x) +
m∑

i=1

λigi(x) +

p∑

i=1

νihi(x) . (2.21)

Then the Karush-Kuhn-Tucker conditions

gi(x
?) ≤ 0 , i = 1, 2, . . . ,m (2.22a)

hi(x
?) = 0 , i = 1, 2, . . . , p (2.22b)

λ?i ≥ 0 , i = 1, 2, . . . ,m (2.22c)

λ?i gi(x
?) = 0 , i = 1, 2, . . . ,m (2.22d)

and

∇f(x?) +
m∑

i=1

λ?i ∇gi(x?) +

p∑

i=1

ν?i ∇hi(x?) = 0 , (2.22e)

are sufficient and necessary conditions that x? is also a globally optimal point of the
convex optimization problem (2.20). Here, the notation ∇f denotes the gradient of a
function f .

Proof. See for example [19].

Definition 2.3.3 (Posynomial and signomial). Suppose x = (x1, x2, . . . , xM) ∈ RM
+ ,

c = (c1, c2, . . . , cN) ∈ RN and y = (y1,1, y1,2, . . . , yN,M) ∈ RNM are finite sequences. A
function of the form

f(x) :=
N∑

n=1

(
cn

M∏

m=1

xyn,m
m

)
(2.23)

is then called a signomial function. If we restrict all cn to be positive, then the function
f is called a posynomial function, see [20].

Definition 2.3.4 (Signomial program). An optimization problem of the form

minimize f(x)

subject to gi(x) ≤ 0 , i = 1, 2, . . . ,m

hi(x) = 0 , i = 1, 2, . . . , p

(2.24)

where the objective f , the inequality constraints gi, and the equality constraints hi are
signomial functions, is called a signomial program, see [19, p. 200].

It is important to note that in general signomial programs cannot be transformed into
convex optimization problems. Finding sufficient and necessary conditions to ensure
global optimality in signomial programs is still an open problem. Hence, we apply
the general method of Lagrangian multiplier to solve all optimization problems in the
present work, see [21, pp. 321–358] and [22, pp. 275–368].
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2 Mathematical Preliminaries

2.4 Power Series Expansion of Functions
The formal power series expansion is a powerful method for approximation of functions
and their asymptotic behavior. By a formal series we mean any infinite series where
no assumption is made concerning its convergence. The following two definitions are
from [23].

Definition 2.4.1 (Formal series expansion for finite expansion points). Let f(x) be
defined and continuous on D ⊆ R. Let x0 be a finite point in D. The formal power
series

∞∑

n=0

an(x− x0)n (2.25)

is said to be an asymptotic power series expansion of f(x), as x 7→ x0 in D, if the
conditions

lim
x7→x0

(x− x0)−m

(
f(x)−

m∑

n=0

an(x− x0)n

)
= 0 , m ∈ N0 , (2.26)

are satisfied. Then we can write

f(x) =
m∑

n=0

an(x− x0)n +O
(
(x− x0)m+1

)
(2.27)

as x approaches x0.

Note that the well-known Taylor series expansion is a special case of Definition 2.4.1.

Definition 2.4.2 (Formal series expansion for infinite expansion points). Let f(x) be
defined and continuous on a suitable left neighborhood of infinity. The formal power
series

∞∑

n=0

anx
−n (2.28)

is said to be an asymptotic power series expansion of f(x) as x 7→ ∞ if the conditions

lim
x7→∞

xm

(
f(x)−

m∑

n=0

anx
−n

)
= 0 , m ∈ N0 , (2.29)

are satisfied. Then we can write

f(x) =
m∑

n=0

anx
−n +O

(
x−m−1

)
(2.30)

as x approaches infinity.

Note that we can also use Definition 2.4.2 for analyzing certain functions on a suitable
right neighborhood of minus infinity.
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2.5 Ratio of Two Gamma Functions
Definition 2.5.1. For all real numbers x > −2, we define the ratio

τ(x) :=

√
π Γ
(
x+3

2

)

Γ
(
x+2

2

) . (2.31)

Obviously, τ(x) is positive. Furthermore, the identities

τ(−1) = 1 , τ(0) =
π

2
and τ(1) = 2 (2.32)

easily follow from (2.2). According to (2.3) and (2.8), we conclude

τ(x) =
x+ 1

2

∞∫

0

dt

(1 + t)
x+2
2

√
t
. (2.33)

The ratio τ(x) in (2.31) and its properties have been investigated in a series of papers.
In [24], W. Gautschi has proposed a lower and an upper bound for this ratio, which
are together known as Gautschi’s double inequality. This double inequality was later
refined and extended by many scientists, primarily by D. Kershaw [25], M. Merkle [26]
and F. Qi [27]. For the purpose of the present work, Gautschi’s double inequality plays
an important role. However, Gautschi’s bounds and subsequent improvements are too
weak, particularly for the case −1 ≤ x < 1, in order to prove some of the main theorems
of the present work. Thus, a new tighter inequality is given in the following theorem.

Theorem 2.5.2. For all real numbers x ≥ 1, the inequality
√

3x+ 5

2
≤ τ(x) (2.34)

holds. If −1 ≤ x ≤ 1, then the reverse inequality holds.

In Figure 2.1, both sides of inequality (2.34) are depicted. As can be seen from
the graph, lower and upper bound are very close to τ(x) in their respective range and
equality holds for x = −1 and x = 1.

Note that a converse inequality to (2.34) can simply be obtained by applying the so
called β-transformation, see [28] and [26].

The proof of Theorem 2.5.2 is not straightforward since the ratio of gamma functions
in (2.31) is extremely hard to manipulate. Nevertheless, the proof is simpler viable by
a brilliant idea of D. Kershaw, applied in [25]. The main idea behind the proof is to
transform the function τ(x) to obtain two new functions, which do not contain the
gamma function and thus are easier to investigate. Subsequently, by analyzing the
new functions and their interactions, one is able to conclude necessary conditions in
order to prove the assertion in Theorem 2.5.2. Hence, we extend the main idea in the
following and consider three different functions simultaneously. Prior to this, we need
to introduce some definitions and prerequisites.
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Definition 2.5.3. For all positive real numbers x > 1
6
, we define the auxiliary functions

w(x) :=
τ(2x− 2)√

3(2x−2)+5
2

=

√
π Γ
(
x+ 1

2

)

Γ(x)

1√
3x− 1

2

, (2.35)

W (x) :=
w(x)

w(x+ 1)
=

x

x+ 1
2

√
6x+ 5

6x− 1
, (2.36)

and
V (x) := w(x)w(x+ 1

2
) =

πx√
3x− 1

2

√
3x+ 1

. (2.37)

The general behavior of above functions is visualized in Figure 2.2. In the following,
we discuss analytically their important mathematical properties. In particular, we
have to show that the relations w(x) ≤ 1 and 1 ≤ w(x) for 1

2
≤ x ≤ 3

2
and 3

2
≤ x hold,

respectively.

−1 0 1 2 3 4 5 6 7 8 9
1

1.5

2

2.5

3

3.5

4

x
 

 √
3x+5

2

τ (x)

−0.01 0 0.01
1.566

1.5759

1.5859

Figure 2.1: The ratio τ(x) and its associated bounds from Theorem 2.5.2 are visual-
ized for the range of −1 ≤ x ≤ 9. For all x ≥ 1 the inequality

√
(3x+ 5)/2 ≤ τ(x)

holds while for all −1 ≤ x ≤ 1 the reverse inequality holds. The curves are closely
adjacent to one another such that the maximum relative error is less than

√
π/3− 1

or equivalently 2.33%. The relative error approaches its maximum as x approaches
infinity. The curves intersect one another at x = −1 and at x = 1.
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Lemma 2.5.4. For all x > 1
6
,

a) the auxiliary function w is positive,

b) it is continuous,

c) it is monotonic for sufficient large x,

d) for x = 1
2

and x = 3
2
, it holds that

w(1
2
) = w(3

2
) = 1 , (2.38)

e) as x 7→ ∞, its limit is given by

lim
x7→∞

w(x) =

√
π

3
> 1 , (2.39)

f) and as x 7→ ∞, the value of its first derivative is determined by

lim
x7→∞

w′(x) := lim
x7→∞

dw(x)

dx
= 0 . (2.40)

Proof. Positivity and continuity are trivial, because of positivity and continuity of
all incorporated functions and operations. Since both gamma functions and the root
function are monotonic for sufficient large x, w(x) proceeds monotonically, as well. The
identity w(1

2
) = w(3

2
) = 1 simply follows by incorporating (2.2) into (2.35). By using

the limit (2.4), we obtain

lim
x7→∞

w(x) = lim
x7→∞

√
π Γ(x+ 1

2
)

Γ(x)

1√
3x− 1

2

=

√
π√
3

lim
x7→∞

x−
1
2

Γ(x+ 1
2
)

Γ(x)
=

√
π

3
. (2.41)

Since w is continuous, monoton and convergent to a constant as x 7→ ∞, due to (2.39),
its slope vanishes as x approaches infinity1.

Lemma 2.5.5. For all x > 1
6
,

a) the auxiliary function W is continuous,

b) it is strictly decreasing for all 1
6
< x < 5

6
and strictly increasing for all x > 5

6
, and

c) for x = 1
2

and x 7→ ∞, it holds that

W (1
2
) = lim

x7→∞
W (x) = 1 . (2.42)

1That the slope is zero as x approaches infinity can also be proved by analyzing the first derivative
of w(x) near infinity with the aid of [29, p. 906, eq. 8.371] or by using the bound in [27, Theorem 3].
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0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

x
 

 

w(x)
W (x)
V (x)

Figure 2.2: The functions w(x), W (x) and V (x) are visualized for 1
3
≤ x ≤ 5.

Proof. Continuity is trivial, because all incorporated functions are continuous and all
operations preserve continuity. In order to examine monotonicity, we calculate its first
derivative which leads to

W ′(x) :=
dW (x)

dx
=

2(6x− 5)

(2x+ 1)2(6x− 1)
3
2

√
6x+ 5

. (2.43)

This derivative is negative for all 1
6
< x < 5

6
and positive for all x > 5

6
which confirm

the above assertion. By (2.36), we obtain

W (x) = 1 ⇔ x
√

6x+ 5 = (x+ 1
2
)
√

6x− 1 ⇔ x = 1
2

(2.44)

and

lim
x7→∞

W (x) = lim
x7→∞

x

x+ 1
2

√
6x+ 5

6x− 1
= lim

x7→∞

x

x

√
6x

6x
= 1 . (2.45)

Lemma 2.5.6. For all x ≥ 1
2
, the inequality W (x) ≤ 1 holds. If 1

6
< x < 1

2
, then the

inequality W (x) > 1 holds.

Proof. Due to Lemma 2.5.5, the auxiliary function W is strictly decreasing for all
1
6
< x < 5

6
, and due to Lemma 2.5.5 the equality W (1

2
) = 1 holds. Thus, the inequality

12
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W (x) > 1 holds for all 1
6
< x < 1

2
while W (x) ≤ 1 holds for all 1

2
≤ x < 5

6
. Due to

Lemma 2.5.5, the auxiliary function W is strictly increasing for all x > 5
6
, and due to

Lemma 2.5.5 the equality W (x 7→ ∞) = 1 holds. Thus, the inequality W (x) ≤ 1 holds
for all x > 5

6
. Due to the continuity in Lemma 2.5.5, the inequality W (5

6
) ≤ 1 holds, as

well.

Lemma 2.5.7. For all x ≥ 1
2

and for all n ∈ N, the inequality w(x) ≤ w(x+ n) holds.

Proof. The inequality W (x) = w(x)
w(x+1)

≤ 1 holds for all x ≥ 1
2

due to Lemma 2.5.6. For

all x > 1
2

we can iterate this inequality to derive the inequality chain

w(x) ≤ w(x+ 1) ≤ w(x+ 2) ≤ · · · ≤ w(x+ n) , n ∈ N . (2.46)

The above conversion is valid because w is positive based on Lemma 2.5.4.

Lemma 2.5.8. For all x > 5
6
, the auxiliary function w is strictly increasing.

Proof. The function W is strictly increasing for all x > 5
6

according to Lemma 2.5.5.
This leads to a positive slope of W . Thus, we derive from the first derivative of W the
inequality

W ′(x) =
w′(x)w(x+ 1)− w(x)w′(x+ 1)

w2(x+ 1)
> 0 ⇔ w′(x)w(x+ 1) > w(x)w′(x+ 1) .

(2.47)
For all x > 5

6
we can iterate the above relationship to obtain the inequality chain

w′(x) >
w(x)w′(x+ 1)

w(x+ 1)
>

w(x)

w(x+ 1)

w(x+ 1)

w(x+ 2)
w′(x+ 2)

> · · · > w(x)

w(x+ n)
w′(x+ n) , n ∈ N , (2.48)

which is valid because of Lemma 2.5.4. By considering the limit n 7→ ∞, we obtain

w′(x) > lim
n7→∞

w(x)

w(x+ n)
w′(x+ n) = 0 , (2.49)

which is valid due to (2.40) and Lemma 2.5.7.

By analyzing w(x) and its relation to W (x), we have seen thus far that w(x) is strictly
increasing for all x > 5

6
as well as w(3

2
) = 1. Hence, it remains to show w(x) ≤ 1 for all

1
2
≤ x ≤ 5

6
. This is substantiated by the following lemma.

Lemma 2.5.9. For all 1
2
≤ x ≤ 1, the inequality V (x) ≤ w(1) holds.

Proof. By using Definition 2.5.3 and the identity Γ(3
2
) =

√
π

2
, we obtain the equation

V (x)

w(1)
=

πx√
3x− 1

2

√
3x+ 1

√
10

π
=

√
10x√

3x− 1
2

√
3x+ 1

. (2.50)
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Now, we determine for which values of x the right hand ratio is equal to or less than
one. This leads to

x2 − 3

2
x+

1

2
≤ 0 ⇔ 1

2
≤ x ≤ 1 . (2.51)

Corollary 2.5.10. For all x ≥ 3
2
, the inequality w(x) ≥ 1 holds. If 1

2
≤ x < 3

2
, then

w(x) ≤ 1 holds.

Proof. The auxiliary function w is strictly increasing for all x > 5
6

due to Lemma 2.5.8,
and it is equal to one at x = 3

2
due to Lemma 2.5.4. Thus, we obtain w(x) ≥ 1 for

all x ≥ 3
2

as well as w(x) ≤ 1 for all 5
6
< x < 3

2
. Furthermore, according to its in-

creasing property, the inequality w(x+ 1
2
) ≥ w(1) holds for all x ≥ 1

2
. Hence, from

Definition 2.5.3 and Lemma 2.5.9 it follows

w(x) =
V (x)

w(x+ 1
2
)
≤ V (x)

w(1)
≤ 1 ⇔ 1

2
≤ x ≤ 1 . (2.52)

In summary, the inequality w(x) ≤ 1 holds for all 1
2
≤ x < 3

2
.

Proof of Theorem 2.5.2. From Corollary 2.5.10, we deduce that w(x) ≥ 1 for all
x ≥ 3

2
and w(x) ≤ 1 for all 1

2
≤ x < 3

2
. By replacing x in w(x) with x+2

2
we obtain

Theorem 2.5.2.

The function τ(x) and its bounds from Theorem 2.5.2 are used in Chapter 6 in
order to prove and adapt some main theorems concerning the error probability in
communication over Nakagami-distributed fading channels.
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3 Optimum Power Allocation for
Passive Sensor Networks

In the current chapter, we investigate the power allocation problem in distributed sensor
networks that are used for passive radar applications. The signal emitted by a target is
independently observed by the sensor nodes (SNs). Since these local observations are
noisy and thus unreliable, they are fused together as a single reliable observation at a
remotely located fusion center to increase the overall system performance. The fusion
center uses the best linear unbiased estimator in order to accurately estimate the present
target signal. This setup is illustrated in Figure 3.1, whose technical components will
be specified in detail later. We demonstrate that the corresponding optimization of the
power allocation leads to a signomial program which is in general very difficult to solve,
see Definition 2.3.4. Nonetheless, by using the proposed system architecture, fusion rule
and objective function we are able to optimize the power allocation analytically and
can hence present a closed-form solution to the power allocation problem in amplify-
and-forward sensor networks. The key idea is the utilization of the average deviation
between the estimated and the actual signal as a metric for defining the objective
function. Since the power consumption of the entire network may be limited in various
aspects, three different cases of power constraints are discussed and compared with
each other. They lead to explicit policies for the optimal power allocation. This briefly
describes the main contributions of the current chapter.

A potential application of our approach is passive multiple-radar sensing, where
an unknown target signal shall be estimated, detected or classified. Instead of using
a complex single-radar system, this task is carried out by a network of cheap and
energy-efficient SNs; the so called distributed passive multiple-radar system (DPMRS).
To achieve comparable system performance, a fusion center combines a multitude of
local observations into a single reliable quantity. DPMRSs have worthwhile applica-
tions nowadays. Physicists use this type of radar to detect or to determine specific
characteristics of particles, for example, in the neutrino telescope ‘IceCube Neutrino
Observatory ’ at the Amundsen-Scott South Pole Station [30] in Antarctica, where a
network with over 5000 nodes is implemented. They also use such radars for radio
astronomy to study celestial objects, for instance in the ‘Karl G. Jansky Very Large
Array ’ of the National Radio Astronomy Observatory [31] in Socorro County, New
Mexico. Many other applications of DPMRSs are military [32] and some few are also
for civil uses [33]. Because of the significance of DPMRSs it is important to investigate
the power allocation within the sensor network in order to improve the radar accuracy
while the overall energy consumption is kept constant [34]. Especially for comparing
the performance of different power allocation methods in energy-efficient systems, the
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Figure 3.1: Abstract representation of the distributed sensor network.

problem arises how to allocate a given sum-power to the distributed SNs for transmit-
ting the local observations to a fusion center. The problem of finding an optimum power
allocation for a distributed radar system and a closed-form of the objective function is
extremely hard, and it is even harder to determine optimal points under certain con-
straints. The main difficulty is associated with finding an explicit representation of the
objective function as mentioned in [35]. In the more recent past, some methods have
been proposed to solve the power allocation problem. In particular, the authors in [36]
investigated some game-theoretic approaches to solve the power allocation problem not
focussing on DPMRSs. The investigation of the power allocation only for localization
is treated in [37], [38] and [39]. A similar allocation problem is also treated in [40].
The capacity bound and the corresponding power allocation in a single relay system
is considered in [41] and [42]. An optimal solution for the power allocation problem
is given in [4], where an active radar is considered instead of a passive radar system.
Moreover, an optimum power allocation scheme for decode-and-forward parallel relay
networks, instead of amplify-and-forward sensor networks, is investigated in [43].

We start with a description of the underlying technical system in the next section.
Subsequently, the power allocation problem is specified and analytically solved. The
achieved results are then discussed and carefully compared with each other.

3.1 Overview and Technical System Description

At any instance of time, a network of K ∈ N independent and spatially distributed SNs
receives random observations. If a target signal r is present, then the received power
at SN Sk is a part of the emitted power from the jointly observed target source. The
type of the source and its signal need not to be specified in detail; only the quadratic
mean of the emitted target signal should be known by the observation network. The
received signal at each SN is weighted by the corresponding channel coefficient and
disturbed by additive noise. It is obvious that the sensing channel is wireless. All
SNs continuously take samples from the disturbed received signal and amplify them
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Figure 3.2: System model of the distributed passive sensor network.

without any additional data processing. The local observations of the target signal at
each SN are then transmitted to a fusion center which is placed in a remote location.
We assume that SNs have only limited sum-power available for communication to the
fusion center and that each SN is in addition limited in its transmission power-range.
The communication to the fusion center is performed by using distinct waveforms for
each SN so as to distinguish the communication of different SNs. Each waveform has
to be suitably chosen in order to suppress inter-user (inter-node) interference at the
fusion center. Hence, the K received signals at the fusion center are uncorrelated and
are assumed to be conditionally independent. Each received signal at the fusion center
is influenced by the corresponding channel coefficient and additive noise, as well. The
communication channel between the SNs and the fusion center can either be wireless or
wired. The disturbed received signals at the fusion center are weighted and combined
together in order to obtain a single reliable observation r̃ of the actual target signal r.
Note that we disregard time delays within all transmissions and assume synchronized
data communication.

In the following subsections, we mathematically describe the underlying system
model that is depicted in Figure 3.2. The continuous-time system is modeled by its
discrete-time equivalent, where the sampling rate of the corresponding signals is equal
to the target observation rate, for the sake of simplicity.

3.1.1 Target signal

In the following, only limited information about the target signal is assumed. We sup-
pose that only the quadratic mean R := E [|r|2] with 0 < R <∞ of the complex-valued
target signal r is well known. This knowledge is sufficient for subsequent calculations.
Furthermore, the target signal during each observation step is assumed to be static.
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3.1.2 Sensing channel

Each propagation path of the sensing channel is described by a corresponding random
channel coefficient gk. For the investigation of the power allocation problem, the con-
crete realization of the channel coefficients is needed and hence can also be used for
postprocessing of the received signals at the SNs. We assume that the channel coeffi-
cients are complex-valued and static during each target observation step. Furthermore,
the coherence time of sensing channels is assumed to be much longer than the whole
length of the classification process. Thus, the expected value and the quadratic mean
of each coefficient during each observation step can be assumed to be equal to their
instantaneous values, i.e., E [gk] = gk and E [|gk|2] = |gk|2. In practice, it is often dif-
ficult to measure or estimate these coefficients because the network is passive and is
hence not able to sound the channel actively. Thus, the results of the present chapter
are applicable for scenarios where the channel coefficients can somehow be estimated
accurately during each observation process or they are nearly deterministic and thus
can be measured before starting the radar task. This is the case, for example for the
neutrino telescope where the SNs are installed deep in the icecap.

Furthermore, the channel coefficients are assumed to be jointly independent. Note
that the channel coefficients include the radar cross section, the influence of the antenna,
the impact of the filters, as well as all additional attenuation of the target signal.

At the input of each SN, the disturbance is modeled by the complex-valued additive
white Gaussian noise (AWGN) mk with zero mean and finite variance Mk := E [|mk|2]
for all k. Note that the channel coefficient and the noise on the same propagation path
are also jointly independent.

3.1.3 Sensor nodes

We model each SN by an amplify-and-forward unit, where the ratio of the output to
the input signal is described by the non-negative real-valued amplification factor uk
which is assumed to be constant over the whole bandwidth and power-range. Thus,
the output signal and the expected value of its instantaneous power are described by

xk := (rgk +mk)uk , k ∈ FK (3.1)

and

Xk := E [|xk|2] = (R|gk|2 +Mk)u
2
k , k ∈ FK , (3.2)

respectively. The amplification factor is an adjustable parameter and will be determined
later by the power allocation procedure. The average power consumption of each node
is approximately equal to its average output power Xk, if the input signal is negligible
in comparison to the output signal and if the nodes have smart power components with
low-power dissipation loss. Hereon based, we assume that equality between Xk and
the average power consumption of each node is ensured. In the present chapter, we
also assume that the output power-range of each SN is individually limited by Pk and
that the average power consumption of all SNs together is limited by the sum-power
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constraint Ptot. This entails the constraints

Xk ≤ Pk ⇔ (R|gk|2 +Mk)u
2
k ≤ Pk , k ∈ FK (3.3)

and
K∑

k=1

Xk ≤ Ptot ⇔
K∑

k=1

(R|gk|2 +Mk)u
2
k ≤ Ptot . (3.4)

Note that the sum-power constraint Ptot is a reasonable approach to compare energy-
efficient radar systems.

3.1.4 Communication channel
Analogous to the sensing channel, each propagation path of the communication channel
is described by a corresponding random channel coefficient hk. But in contrast to the
sensing channel, the concrete realization of the communication channel coefficients is
measurable by using pilot sequences at each SN. Accordingly, the channel coefficients
can be used for postprocessing of received signals at the fusion center. We assume that
the channel coefficients are complex-valued and static during each target observation
step. Furthermore, the coherence time of communication channels is also assumed to
be much longer than the whole length of the classification process. Thus, the expected
value and the quadratic mean of each channel coefficient can be assumed to be equal
to their instantaneous values, i.e., E [hk] = hk and E [|hk|2] = |hk|2. Furthermore, the
channel coefficients are assumed to be jointly independent. Note that the channel
coefficients include the influence of the antenna, the impact of the filters, as well as all
additional attenuation of the corresponding sensor signal.

At the input of the fusion center, the disturbance on each communication path is mod-
eled by the complex-valued AWGN nk with zero mean and finite variance Nk := E [|nk|2]
for all k. Note that the channel coefficient and the noise on the same propagation path
are also jointly independent.

3.1.5 Fusion center
The fusion center combines the different local observations into a single reliable one by
applying a linear combiner. Thus, the received signals are weighted with the complex-
valued factors vk and summed up to yield an estimate r̃ of the actual target signal r.
In this way, we obtain

yk :=
(
(rgk +mk)ukhk + nk

)
vk , k ∈ FK , (3.5)

and hence,

r̃ :=
K∑

k=1

yk = r

K∑

k=1

gkukhkvk +
K∑

k=1

(mkukhk + nk)vk . (3.6)

Note that each weight can be written as vk = |vk| exp(jϑk), k ∈ FK , where ϑk is a
real-valued number which represents the phase of the corresponding weight.
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Note that the fusion center can separate the input streams because the commu-
nication channel is either wired or the data communication is performed by distinct
waveforms for each SN. Consequently, if the communication channel is wireless then
a matched-filter bank is essential at the input of the fusion center to separate the
data streams of different SNs. In addition, we do not consider inter-user (inter-node)
interferences at the fusion center because of the distinct waveform choices.

In order to obtain a single reliable observation at the fusion center, the value r̃ should
be a good estimate for the present target signal r. Thus, we optimize the amplification
factors uk and the weights vk in order to minimize the average absolute deviation
between r̃ and the true target signal r. This optimization procedure is elaborated in
the next section.

3.1.6 Remarks to the system model

All described assumptions are necessary to obtain a framework suitable for analyzing
the power allocation problem, without studying detection, classification and estimation
problems in specific systems and their settings.

The accurate estimation of all channel coefficients is necessary for both the radar
process and the power allocation. Sometimes it is not possible to estimate the trans-
mission channels; consequently the channel coefficients gk and hk remain unknown. In
such cases, the radar usually fails to perform its task.

Since the channel coefficients gk are in practice difficult to estimate or to determine,
our approach rather shows theoretical aspects of the power allocation than the practical
realization and implementation. Hence, the presented results act as theoretical bounds
and references for comparing real radar systems.

Moreover, since the coherence time of communication channels as well as sensing
channels is assumed to be much longer than the whole length of the classification
process, the proposed power allocation method is applicable only for scenarios with
slow-fading channels.

Note that only the linear fusion rule together with the proposed objective function
enable an optimization of power allocation in closed-form. The optimization of power
allocation is extremely hard for general fusion rules and objective functions.

The introduced system model describes a baseband communication system without
considering time, phase and frequency synchronization problems.

In order to distinguish the current operating mode of each SN in what follows, we
say a SN is inactive or idle if the allocated power is zero. We say the SN is active if
the allocated power is positive. Finally, we say a SN is saturated if the limitation of its
output power-range is equal to the allocated power, i.e., Pk = Xk.

An overview of all notations, that are needed for the description of each observation
process, may be found in the glossary.
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3.2 Power Optimization

In this section, we introduce the power optimization problem and consecutively present
its analytical solutions for different power constraints. First, we investigate the case
where the average transmission power of each SN is limited by the output power-range
limitation Pk ∈ R+, k ∈ FK . Afterwards, we present the analytical solution of the
power allocation problem for the case where only a sum-power constraint Ptot ∈ R+ for
the cumulative sum of the expected power consumption of each SN is given. Finally, we
extend the power allocation problem to the case where both constraints simultaneously
hold and present the corresponding optimal solution.

3.2.1 Optimization problem

As mentioned in the last section, the value r̃ should be a good estimate for the present
target signal r. In particular, we aim at finding estimators r̃ of minimum mean squared
error in the class of unbiased estimators for each r.

The estimate r̃ is unbiased simultaneously for each r, if E [r̃ − r] = 0 holds, i.e., from
equation (3.6) we obtain the identity

K∑

k=1

gkukhkvk = 1 . (3.7)

This identity is our first constraint in what follows. Note that the mean of the second
sum in (3.6) vanishes since the noise is zero-mean. Recall that both random variables
gk and hk are assumed to be known constants, because the coherence time of both
channels is assumed to be much longer than the target observation time. Note that
equation (3.7) is complex-valued and may be separated as

K∑

k=1

uk |vkgkhk| cos(ϑk + φk) = 1 (3.8)

and
K∑

k=1

uk |vkgkhk| sin(ϑk + φk) = 0 , (3.9)

where ϑk and φk are phases of vk and gkhk, respectively.
The objective is to minimize the mean squared error E [|r̃ − r|2]. By using equa-

tion (3.6) and the identity (3.7) we may write the objective function as

V := E
[
|r̃ − r|2

]
=

K∑

k=1

(
Mku

2
k|hk|2 +Nk

)
|vk|2 . (3.10)

Note that (3.10) is only valid if mk and nk are white and jointly independent.
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As mentioned in the last section, each SN has an output power-range limitation and
the expected overall power consumption is also limited. Hence, the objective function is
also subject to (3.3) and (3.4), which are our second and last constraints, respectively.

In summary, the optimization problem is to minimize the mean squared error in (3.10)
with respect to uk and vk, subject to constraints (3.3), (3.4), (3.8) and (3.9), i.e.:

minimize
u,v,ϑ

K∑

k=1

(
Mku

2
k|hk|2 +Nk

)
|vk|2

subject to
K∑

k=1

uk |vkgkhk| cos(ϑk + φk) = 1 ,

K∑

k=1

uk |vkgkhk| sin(ϑk + φk) = 0 ,

K∑

k=1

(R|gk|2 +Mk)u
2
k ≤ Ptot ,

(R|gk|2 +Mk)u
2
k ≤ Pk , k ∈ FK ,

u ∈ RK
+ , v ∈ CK , ϑ ∈ [0, 2π]K .

Note that this optimization problem is a signomial program, which is a generalization
of geometric programming, and is thus non-convex in general, see Definition 2.3.3.

3.2.2 Power allocation subject to individual power constraints
In this subsection, we consider the power allocation problem only subject to individual
power constraints (3.3). In order to solve the optimization problem, we use the method
of Lagrangian multipliers and obtain the corresponding constrained Lagrange function
(relaxation with respect to the range of uk and |vk|) as

L1(uk, |vk|, ϑk; η1, η2, λk; %k) :=
K∑

k=1

(
Mku

2
k|hk|2 +Nk

)
|vk|2

+

(
1−

K∑

k=1

uk |vkgkhk| cos(ϑk + φk)

)
η1

−
K∑

k=1

uk |vkgkhk| sin(ϑk + φk)η2

+
K∑

k=1

(
Pk − %k − (R|gk|2 +Mk)u

2
k

)
λk ,

(3.11)

where η1, η2 and λk are Lagrange multipliers while %k are slack variables.
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Equation (3.9) is only then satisfied, if all phases ϑk + φk are equal to qkπ, qk ∈ Z,
for all k ∈ FK . If there were a better solution for ϑk + φk, then the first partial
derivatives of L1 with respect to ϑk would vanish for that solution, due to the con-
tinuity of trigonometric functions. But the first derivatives would lead to equations
η1 sin(ϑk + φk) = η2 cos(ϑk + φk) which cannot simultaneously satisfy both equations
(3.8) and (3.9) for all η1 and η2. Thus, qkπ is the unique solution. Hence, we may
consequently write a modified Lagrange function as

L̃1(uk, |vk|, qk; η1, λk; %k) :=
K∑

k=1

(
Mku

2
k|hk|2 +Nk

)
|vk|2

+

(
1−

K∑

k=1

uk |vkgkhk| cos(qkπ)

)
η1

+
K∑

k=1

(
Pk − %k − (R|gk|2 +Mk)u

2
k

)
λk .

(3.12)

At any stationary point of L̃1, all first partial derivatives must vanish, if they exist.
This leads to

∂L̃1

∂|vl|
= 2
(
Mlu

2
l |hl|2 +Nl

)
|vl| − η1ul |glhl| cos(qlπ) = 0 , l ∈ FK , (3.13)

∂L̃1

∂η1

= 1−
K∑

k=1

uk |vkgkhk| cos(qkπ) = 0 (3.14)

and
∂L̃1

∂λl
= Pl − %l − (R|gl|2 +Ml)u

2
l = 0 , l ∈ FK . (3.15)

Note that the first partial derivative with respect to ul, l ∈ FK , is not needed because
the optimal point lies on the boundary of the feasible set, as we will see later.

By multiplying (3.13) with |vl|, summing up the outcome over all l, and using the
identities (3.8) and (3.10), we obtain

η1 = 2V (3.16)

which is a positive real number due to definition of V . Because of the last relationship
and according to (3.13), the value of cos(qkπ) must be a positive number and hence
each qk must be an even integer number. Thus, we can choose q?k = 0 for all k ∈ FK
without loss of generality and conclude

ϑ?k = −φk , k ∈ FK . (3.17)

This solution gives the identity cos(q?kπ) = 1 which can be incorporated into (3.13)
and (3.14).

23



3 Optimum Power Allocation for Passive Sensor Networks

From (3.13), we deduce the equation

|vl| =
η1

2

ul|glhl|
Mlu2

l |hl|2 +Nl

. (3.18)

Incorporating (3.18) into (3.14) yields the relationship

η1

2
=

(
K∑

k=1

u2
k|gkhk|2

Mku2
k|hk|2 +Nk

)−1

. (3.19)

In turn, we replace η1
2

in (3.18) with (3.19) and obtain

|vl| =
ul|glhl|

Mlu2
l |hl|2 +Nl

(
K∑

k=1

u2
k|gkhk|2

Mku2
k|hk|2 +Nk

)−1

. (3.20)

Note that for each feasible uk, k ∈ FK , equation (3.20) describes a feasible value for
each |vk|. Since for each uk > 0 the relation |vk| > 0 consequently follows, the feasible
optimal values of each |vk| > 0 are not on the boundary |vk| = 0. Thus, finding optimal
values for each uk, k ∈ FK , leads to optimum values for each |vk|, k ∈ FK , due to the
convexity of (3.11) with respect to each |vk|. Hence, finding a unique global optimum
for uk, k ∈ FK , yields the sufficient condition for the globally optimal solution of the
minimization problem (3.11).

By considering (3.16) and (3.19), we deduce the identity

V =
η1

2
=

(
K∑

k=1

u2
k|gkhk|2

Mku2
k|hk|2 +Nk

)−1

, (3.21)

where the objective and η1 consequently are in terms of uk. For the sake of simplicity
and in order to compare the results later on, we define two new quantities as1

αk :=

√
|gk|2
Mk

⇒ αk ∈ R+ , (3.22)

and

βk :=

√
Nk(R|gk|2 +Mk)

Mk|hk|2
⇒ βk ∈ R+ . (3.23)

By using the new quantities as well as (3.2), the equation (3.21) is equivalent to

V =
η1

2
=

(
K∑

k=1

α2
kXk

Xk + β2
k

)−1

. (3.24)

1We will discuss the physical interpretation of all important parameters and quantities in Subsec-
tion 3.3.1.
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According to (3.2) and (3.15), we calculate the factors

u2
l =

Pl − %l
R|gl|2 +Ml

⇔ Xl = Pl − %l , l ∈ FK , (3.25)

where %l is in the range 0 ≤ %l ≤ Pl. After replacing u2
k in (3.21), or Xk in (3.24),

with (3.25), we obtain

V =

(
K∑

l=1

α2
l

1 +
β2
l

Pl−%l

)−1

, (3.26)

which is strictly increasing with respect to %l and strictly decreasing with respect to K.
Thus, minimizing it leads to

%?k = 0 ⇔ X?
k = Pk , k ∈ FK , (3.27)

u?k =

√
Pk

R|gk|2 +Mk

, k ∈ FK , (3.28)

and hence,

V ? =

(
K∑

k=1

α2
kPk

Pk + β2
k

)−1

. (3.29)

By incorporating (3.28) into (3.20), we infer

|v?k| =
V ?|gkhk|

√
Pk
√
R|gk|2 +Mk

Mk|hk|2Pk +Nk(R|gk|2 +Mk)
, k ∈ FK . (3.30)

Since %?k = 0 for all k ∈ FK , it follows that the optimal point lies on the boundary
of each uk, k ∈ FK , especially on a corner, where the first derivatives of the objective
with respect to uk do not vanish in general.

The equations (3.17) and (3.27)–(3.30) describe the optimal solution of the power
allocation problem only subject to the output power-range limitation per SN and hence
are the main contribution of the present subsection.

Note that the global optimality of the obtained results is trivially reasoned, first
because of the optimization of the relaxed Lagrange function (3.11) with extended
range of all variables, and second since the global optimum point of the relaxed problem
coincides with the original range of all variables.

3.2.3 Interpretation of the solution

The solution of the power allocation problem has the following interpretation: All K
SNs are active and their output power is equal to their output power-range limitation
Pk.
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3 Optimum Power Allocation for Passive Sensor Networks

By using the amplification factors from (3.28) and the weights from (3.17) and (3.30),
the single observation r̃ is an estimator of minimum mean squared error in the class of
unbiased estimators for the target signal r. Hence, we obtain the estimate

r̃ = r +
K∑

k=1

(mku
?
khk + nk)v

?
k (3.31)

from (3.6). The above equation shows that r̃ is equal to r with some additional noise.
Hence, r̃ − r is a zero-mean Gaussian random variable with an absolute variance of V ?,
see (3.10) and (3.29).

Note that r̃ is an unbiased estimator for r due to constraint (3.7). The same method-
ology seems to be applicable to minimize the mean squared error without restricting
ourself to unbiased estimators. Obviously, the optimal value of V will then be smaller
than that in (3.29).

3.2.4 Power allocation subject to the sum-power constraint

In this subsection, we consider the power allocation problem only subject to the sum-
power constraint from (3.4), which yields the constrained Lagrange function (relaxation
with respect to the range of uk and |vk|)

L2(uk, |vk|, ϑk; η1, η2, τ ; ξ) :=
K∑

k=1

(
Mku

2
k|hk|2 +Nk

)
|vk|2

+

(
1−

K∑

k=1

uk |vkgkhk| cos(ϑk + φk)

)
η1

−
K∑

k=1

uk |vkgkhk| sin(ϑk + φk)η2

+

(
Ptot − ξ −

K∑

k=1

(R|gk|2 +Mk)u
2
k

)
τ

(3.32)

with additional Lagrange multiplier τ and slack variable ξ.

The first partial derivatives of (3.32) with respect to |vl| and η1 are identical to those
which are given in (3.13) and (3.14), respectively. Thus, we also obtain the same results
for ϑl, |vl| and V as given in (3.17), (3.20) and (3.24), respectively. Consequently, only
the sum-power constraint remains unused, thus far.

Note that because of the same statement as mentioned in Subsection 3.2.2, finding a
unique global optimum for uk, k ∈ FK , yields the sufficient condition for the globally
optimal solution of the minimization problem (3.32).

Since the minimization of the objective V in (3.24) is equivalent to the minimization
of Ṽ := −V −1, we only consider the objective Ṽ in the following. Initially, we highlight
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three important properties of Ṽ . First, the new objective function is strictly decreasing
with respect to each Xk, k ∈ FK , which can easily be seen from the representation

Ṽ = −
K∑

k=1

α2
k

1 + β2
k/Xk

. (3.33)

Second, the objective function is twice differentiable with respect to each Xk, k ∈ FK ,
because its first and second derivatives exist. Third, the objective function is a jointly
convex function with respect to (Xk)k∈FK

which can be shown by calculating the cor-

responding Hessian H := ( ∂2Ṽ
∂Xk∂Xl

)k,l∈FK
. The Hessian is positive-definite because of

z′Hz =
K∑

k=1

2α2
kβ

2
kz

2
k

(Xk + β2
k)

3
> 0 , ∀ z := (z1, z2, . . . , zK)′ ∈ RK \ {0} . (3.34)

By considering (3.2), we obtain that the remaining sum-power constraint in (3.32)
is linear and thus also jointly convex with respect to (Xk)k∈FK

. Hence, we are able to
define a modified convex minimization problem by the unconstrained Lagrangian

L̃2(Xk;ϕk, τ) := −
K∑

k=1

α2
kXk

Xk + β2
k

−
K∑

k=1

Xkϕk +

(
−Ptot +

K∑

k=1

Xk

)
τ , (3.35)

where ϕk and τ are Lagrange multipliers. Note that the Lagrange multiplier η1 is
positive because of (3.16), and the equality sin(ϑ?k + φk) = 0 holds due to (3.17). Hence,
both constraints (3.8) and (3.9) are discarded in (3.35). Furthermore, the sum-power
constraint can be considered as an equality constraint instead of an inequality constraint
due to monotonicity of the objective, see also complementary slackness theorem [19].

In order to solve the new convex optimization problem in (3.35), we apply the Karush-
Kuhn-Tucker (KKT) conditions which are sufficient for optimality in convex problems,
see Definition 2.3.2. These conditions are as follows for any optimal point (X?

k , ϕ
?
k, τ

?):

X?
l ≥ 0 , l ∈ FK , (3.36a)

ϕ?l ≥ 0 , l ∈ FK , (3.36b)

X?
l ϕ

?
l = 0 , l ∈ FK , (3.36c)

K∑

k=1

X?
k = Ptot , (3.36d)

and

∂L̃2

∂Xl

= − α2
l β

2
l

(X?
l + β2

l )
2
− ϕ?l + τ ? = 0 , l ∈ FK . (3.36e)
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If X?
l = 0 for some l ∈ FK , then from (3.36b) and (3.36e) the inequality 1√

τ?
≤ βl

αl

follows. If X?
l > 0, then from (3.36c) and (3.36e) both the equality X?

l = αlβl
(

1√
τ?
− βl

αl

)

and the inequality 1√
τ?
> βl

αl
follow. In summary, we may write

X?
k = max

{
0, αkβk

(
χ? − βk

αk

)}
, k ∈ FK , (3.37)

where χ is a replacement for 1√
τ

and is called water-level. The water-level is implicitly

determined by equation (3.36d) and gives the subset K of active SNs. By consider-
ing (3.37), we achieve the necessary and sufficient condition to select the right subset
K of SNs for which the inequality X?

k > 0 with k ∈ K holds. Hence, all SNs for which
the inequality χ? > βk

αk
holds are active. In order to determine their corresponding

number K̃ as well as the water-level, we re-index all SNs such that the inequality chain

ck :=
βk
αk

=

√
Nk(R|gk|2 +Mk)

|gkhk|2
≤ ck+1 , k ∈ FK−1 , (3.38)

holds. Then, we can assume that the first K̃ SNs are members of K = FK̃ ⊆ FK . By
inserting (3.37) into (3.36d), we obtain

χ? =

Ptot +
K̃∑
k=1

β2
k

K̃∑
k=1

αkβk

. (3.39)

Due to the increasing order of the sequence βk
αk

for all k ∈ FK , the inequality
βK̃
αK̃

< χ?

must hold for the last active SN. Thus, the number K̃ of active SNs is the largest
integer number for which the inequality

Ptot >
K̃∑

k=1

αkβk

(βK̃
αK̃
− βk
αk

)
(3.40)

holds.
After incorporating X?

k and χ? into (3.2), (3.24) and (3.20), we obtain

u?k =

√√√√ 1

Mk|hk|2

(
χ?

√
|gkhk|2Nk

R|gk|2 +Mk

−Nk

)
, k ∈ K , (3.41)

V ? =

(
K̃∑

k=1

α2
k −

1

χ?

K̃∑

k=1

αkβk

)−1

, (3.42)

|v?k| =
V ?u?k|gkhk|

Mk(u?k)
2|hk|2 +Nk

, k ∈ K , (3.43)
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and
u?k = v?k = 0 , k ∈ FK \K . (3.44)

Note that by using the above results, the corresponding fusion rule is simplified by
discarding the influence of inactive SNs from the fusion rule. The fusion rule (3.6)
becomes

r̃ =
K̃∑

k=1

yk . (3.45)

The equations (3.17), (3.37) and (3.41)–(3.44) together with (3.38)–(3.40) describe
the optimal solution of the power allocation problem only subject to the sum-power
constraint and hence are the main contribution of the present subsection.

As mentioned in Subsection 3.2.2, the global optimality of the obtained results is
also trivially reasoned, first because of the optimization of the relaxed Lagrange func-
tion (3.32) with extended range of all variables, and second since the global optimum
point of the relaxed problem coincides with the original range of all variables.

3.2.5 Comparison of the solutions
In contrast to the case, where each SN has its individual output power-range limitation,
only some of the SNs are active. In this case, the amount of the available sum-power
is inadequate to supply all SNs at their output power-range limitation. Hence, the
available sum-power can only be allocated to those SNs, which are members of the
subset K, while all other SNs remain inactive, since their information reliability is
too poor to be considered for data fusion. The best SNs are those which have the
smallest ratio of ck = βk

αk
that can be interpreted as disturbance-intensity2. This means

that for the identification of the most reliable SNs in a certain network, that can be
modeled as depicted in Figure 3.2, only the quantities ck are important. As one can
see from (3.38), the best SNs have the largest absolute values of channel coefficients as
well as the smallest noise powers. Consequently, SNs which are placed closely to the
target source and fusion center are more reliable than other SNs3.

Note that the obtained results are quite similar but not identical to the well-known
water-filling solution, see [44]. The distinction arises from our definition of the water-
level χ which differs from the general description.

3.2.6 Power allocation subject to both types of power
constraints

In the current subsection, we consider the optimization problem from Subsection 3.2.1
subject to all constraints, i.e., sum-power constraint as well as output power-range

2We give the name disturbance-intensity to ck because it behaves intrinsically like noise. In Sec-
tion 3.3 we will introduce a normalized version of ck and call it reliability-function.

3We will discuss the relationship between the geometrical position of SNs and their disturbance-
intensity in Subsection 4.3 exemplary for an active radar system.
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limitation per SN. Two of three different cases can be singled out and reduced to
preceding instances.

First, if
∑

k∈FK
Pk ≤ Ptot, then the sum-power constraint is irrelevant, because the

feasible set is only limited by the individual output power-range constraints. Hence,
the power allocation problem reduces to the one described in Subsection 3.2.2 with
results given in (3.17) and (3.27)–(3.30). The only difference is that possibly a part of
the available sum-power remains unallocated and cannot be used.

Secondly, if Ptot ≤ min
k∈FK

{Pk}, then the individual output power-range constraints are

irrelevant, because the feasible set is only limited by the sum-power constraint. Hence,
the power allocation problem is equal to the one described in Subsection 3.2.4 with
results given in (3.17), (3.37) and (3.41)–(3.44) with (3.38)–(3.40).

The case of min
k∈FK

{Pk} < Ptot <
∑

k∈FK
Pk is the most challenging one. The amount

of available sum-power is on the one hand inadequate to supply all SNs at their output
power-range limitation. Hence, the available sum-power can only be allocated to some
of the SNs while all others remain inactive, as we will see later. On the other hand,
some of the SNs can attain the limit of their individual output power-range and are
thus saturated. Therefore, we have to separate all active SNs into two groups. The
first group contains all active SNs, which are saturated, and is denoted by the subset
Ksat. The second group contains all other active SNs, which operate within their output
power-range, and is denoted by the subset Klin. Note that both subsets are disjoint
and their union is the subset of all active SNs, i.e., K = Ksat ∪Klin and Ksat ∩Klin = ∅
with K ⊆ FK .

Since the optimization problem under investigation is the same as in Subsection 3.2.4
with additional constraints, Xk ≤ Pk for all k ∈ K, the first few problem-solving steps
are equal to those described in Subsection 3.2.4. Thus, we can start to formulate an
extended convex minimization problem by the unconstrained Lagrangian

L̃3(Xk;ϕk, λk, τ) := −
∑

k∈FK

α2
kXk

Xk + β2
k

−
∑

k∈FK

Xkϕk

+
∑

k∈FK

(−Pk +Xk)λk +

(
−Ptot +

∑

k∈FK

Xk

)
τ .

(3.46)

In order to solve the problem in (3.46), we again apply the KKT conditions which
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are as follows, for any optimal point (X?
k , ϕ

?
k, λ

?
k, τ

?):

X?
l ≥ 0 , l ∈ FK , (3.47a)

X?
l ≤ Pl , l ∈ FK , (3.47b)

ϕ?l ≥ 0 , l ∈ FK , (3.47c)

λ?l ≥ 0 , l ∈ FK , (3.47d)

X?
l ϕ

?
l = 0 , l ∈ FK , (3.47e)

(X?
l − Pl)λ?l = 0 , l ∈ FK , (3.47f)
∑

k∈FK

X?
k = Ptot , (3.47g)

and

∂L̃3

∂Xl

= − α2
l β

2
l

(X?
l + β2

l )
2
− ϕ?l + λ?l + τ ? = 0 , l ∈ FK . (3.47h)

If X?
l = 0 for some l ∈ FK , then from (3.47c), (3.47f) and (3.47h) the inequality

1√
τ?
≤ βl

αl
follows. If X?

l = Pl for some l ∈ FK , then from (3.47d), (3.47e) and (3.47h) the

inequality 1√
τ?
≥ Pl+β

2
l

αlβl
follows. If 0 < X?

l < Pl, then from (3.47e), (3.47f) and (3.47h)

both the equality X?
l = αlβl

(
1√
τ?
− βl

αl

)
and the inequality 1√

τ?
> βl

αl
follow. In summary,

we may write

X?
k = max

{
0,min

{
Pk, αkβk

(
χ?K −

βk
αk

)}}
, k ∈ FK , (3.48)

where χK is again a replacement for 1√
τ
. The water-level χK depends on the subset K of

active SNs and can iteratively be determined by equation (3.47g), as we will show later
on. By considering (3.48), we achieve the necessary and sufficient condition to select
the right subset K of SNs for which the inequality X?

k > 0 with k ∈ K holds. Hence,
all SNs for which the inequality χ?K >

βk
αk

holds are active. In order to determine the

corresponding water-level, we insert (3.48) into (3.47g) and infer

χ?K =

Ptot −
∑

k∈Ksat

Pk +
∑

k∈Klin

β2
k

∑
k∈Klin

αkβk
. (3.49)

As one can see, for calculation of the water-level both subsets Ksat and Klin are needed,
and vice versa, we need the water-level to determine the subset of all active SNs. Thus, if
we are able to determine which SNs are active, and in turn, which of them are saturated,
then we can continue solving the optimization problem in (3.46). Again, it is possible to
sort the SNs by βk

αk
in ascending order and extend the approach from Subsection 3.2.4 by

particular consideration on saturated SNs, as in (3.48). However, we want to present an
efficient algorithm which avoids the sorting of SNs. Note that the proposed algorithm
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can be implemented more efficiently, but for sake of comprehensibility, we have chosen
the given representation. For developing fast and more efficient algorithms we refer
readers to the discussion in Subsection 3.2.8. In the following, we will describe and
show that Algorithm 1 optimally determines both subsets Ksat and Klin of active SNs.

Algorithm 1 Separation of active sensor nodes

Ksat ← ∅
Premain ← Ptot

repeat
Klin ← FK \Ksat

repeat

χK ←
Premain+

∑
k∈Klin

β2
k∑

k∈Klin
αkβk

. see (3.49)

Xk ← αkβk
(
χK − βk

αk

)
, k ∈ Klin . see (3.48)

K− ← {k ∈ Klin | Xk ≤ 0}
Klin ← Klin \K−

until K− = ∅ or Klin = ∅
K+ ← {k ∈ Klin | Xk ≥ Pk}
Ksat ← Ksat ∪K+

Premain ← Premain −
∑

k∈K+
Pk

until K+ = ∅ or Ksat = FK
Klin ← Klin \K+

return (Klin,Ksat)

First, the results from Subsection 3.2.4 are applied in the inner loop to achieve an
optimal solution neglecting the individual output power-range constraints. In the first
repetition, this is performed on all SNs and in each further repetition on all SNs included
in the subset Klin in order to determine all active SNs of the current repetition. At the
end of the inner loop, K+ contains all SNs which operate at their individual output
power-range limitation. They are added to the subset of all saturated SNs Ksat. At
last, the power used by those SNs is subtracted from the available sum-power which
gives the remaining sum-power Premain. With these updated settings, the procedure is
repeated until, for a new set of active SNs, the subset K+ of saturated SNs is empty.
Note thatKsat might be empty. We will show later on, that the water-level, and thereby,
the power for each non-saturated SN is increasing in each repetition of the outer loop.
Thus, it is possible that SNs may become active, and hence, all non-saturated SNs
are potential active candidates. Finally, we get the (optimal) subsets of active SNs to
continue solving the optimization problem in (3.46).

After determination of Ksat and Klin, we use (3.49) to calculate χ?K, and subsequently,
by inserting χ?K into (3.48) we obtain X?

k . In turn, from (3.2), (3.24) and (3.20), we
infer

u?k =

√
Pk

R|gk|2 +Mk

, k ∈ Ksat , (3.50)
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u?k =

√√√√ 1

Mk|hk|2

(
χ?K

√
|gkhk|2Nk

R|gk|2 +Mk

−Nk

)
, k ∈ Klin , (3.51)

V ? =

( ∑

k∈Ksat

α2
kPk

Pk + β2
k

+
∑

k∈Klin

α2
k −

1

χ?K

∑

k∈Klin

αkβk

)−1

, (3.52)

|v?k| =
V ?u?k|gkhk|

Mk(u?k)
2|hk|2 +Nk

, k ∈ K , (3.53)

and
u?k = v?k = 0 , k ∈ FK \K . (3.54)

The equations (3.17), (3.48) and (3.50)–(3.54) together with (3.49) and Algorithm 1
describe the optimal solution of the power allocation problem and hence are the main
contribution of the present subsection. Note that the obtained results are obviously
mixtures of both solutions from Subsection 3.2.2 and 3.2.4.

An example for the described power allocation is depicted in Figure 3.3. Obviously,
Algorithm 1 terminates and gives a feasible solution. Moreover, the final water-level is
as in (3.49) if Ksat is optimally determined. However, Ksat is easily given for all SNs,

because the condition χ?K ≥
Pl+β

2
l

αlβl
is satisfied for all saturated SNs if the water-level is

increasing in each step of the outer loop. Hence, for optimality of Algorithm 1, it only
remains to show that in each repetition the water-level is increasing in the outer loop.
Note that in contrast the water-level is decreasing in the inner loop in each repetition.
These statements are discussed in the following.

Whenever Xl ≥ Pl holds for a specific l ∈ Klin, from (3.48) the inequality

Xl = αlβl

(
χK −

βl
αl

)
≥ Pl ⇒ −Pl − β2

l ≥ −αlβlχK (3.55)

follows. Using K̃ := K̃lin ∪ K̃sat with K̃lin := Klin \ {l} and K̃sat := Ksat ∪ {l}, defini-
tion (3.49), and the inequality (3.55), easily leads to

χK̃ =

Ptot −
∑

k∈K̃sat

Pk +
∑

k∈K̃lin

β2
k

∑
k∈K̃lin

αkβk
=

−Pl − β2
l + Ptot −

∑
k∈Ksat

Pk +
∑

k∈Klin

β2
k

−αlβl +
∑

k∈Klin

αkβk

≥
Ptot −

∑
k∈Ksat

Pk +
∑

k∈Klin

β2
k

∑
k∈Klin

αkβk
= χK .

(3.56)

This means that omitting the power exceeding SN l and recalculating the water-level
leads to an increased water-level and in turn to more transmission power for all re-
maining SNs. It might even turn out that new SNs may be included in the subset Klin

of active candidates. However, this will just slow down, but not stop the increase of
the water-level. In summary, the individual transmission power of each SN, which is
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a member of Klin, will be higher than in the previous loop. The same argumentation
can now be used to show that omitting the SN l with non-positive allocated power and
recalculating the water-level leads to a decreased water-level.

Whenever Xl ≤ 0 holds for a specific l ∈ Klin, from (3.48) the inequality

Xl = αlβl

(
χK −

βl
αl

)
≤ 0 ⇒ −β2

l ≤ −αlβlχK (3.57)

follows. Using the above set definitions, the definition (3.49), and the inequality (3.57),
easily leads to

χK\{l} =

Ptot −
∑

k∈Ksat

Pk +
∑

k∈K̃lin

β2
k

∑
k∈K̃lin

αkβk
=

−β2
l + Ptot −

∑
k∈Ksat

Pk +
∑

k∈Klin

β2
k

−αlβl +
∑

k∈Klin

αkβk

≤
Ptot −

∑
k∈Ksat

Pk +
∑

k∈Klin

β2
k

∑
k∈Klin

αkβk
= χK .

(3.58)

Note that increasing the power of inactive SNs cannot lead to an improvement of our
solution, because this would contradict the results from Subsection 3.2.4.

3.2.7 Discussion of the solutions
The main difficulty and difference between both solutions from Subsection 3.2.4 and 3.2.6
arises from the individual output power-range limitation per SN. In both cases, the op-
erating mode of each SN mainly depends on its corresponding disturbance-intensity
βk
αk

which is easily visible from (3.37) and (3.48). In Subsection 3.2.6, we have given
an efficient algorithm which avoids the sorting of SNs by their disturbance-intensity.
Moreover, the same algorithm might be applied to the problem in Subsection 3.2.4,
as well. In practice, it is hence more complicated to calculate the optimal solution of
the power allocation problem from Subsection 3.2.6 than that from Subsection 3.2.4.
Eventually, the complexity of obtained results is not surprising, because all discussed
optimization problems are signomial programs, as mentioned in Subsection 3.2.1. Nev-
ertheless, they lead to convex optimization problems which are analytically solvable in
closed-form.

3.2.8 Another access for identifying reliable sensor nodes
In order to develop fast algorithms for separating all SNs into one of the subsets Klin,
Ksat or FK \K, we again consider all equations in (3.47) in the following. Furthermore,
if the negative value of the first derivative of the equivalent objective (3.33) is denoted
by

J̃k(Xk) :=
α2
kβ

2
k

(Xk + β2
k)

2
, k ∈ FK , (3.59)
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χ?K

1 2 3 4 5 6 7 k

P1+β2
1

α1β1

β1
α1

Figure 3.3: An example of the power allocation for K = 7 sensor nodes is shown. The
dotted dark area is the allocated power. The sensor nodes are ascendingly ordered
with respect to disturbance-intensities βk/αk. The striped area represents the indi-
vidual disturbance-intensities. The bright shaded area is the remaining part of the
available output power-range for each sensor node. The water-level χ?K is indicated
by the dashed line, where the number of active sensor nodes is equal to K̃ = 5. Sensor
2 and 4 are saturated, while 6 and 7 are inactive.

then the double inequality

J̃k(Pk) < J̃k(Xk) < J̃k(0) , k ∈ FK , (3.60)

follows trivially for all 0 < Xk < Pk. Now, we can highlight three important cases,
which yield new conditions for the current operating mode of each SN:

1. For 0 < X?
k < Pk both equations ϕ?k = 0 and λ?k = 0 result from KKT con-

ditions (3.47e) and (3.47f), respectively. By considering (3.47h), this implies
J̃k(X

?
k) = τ ? for all k ∈ Klin, which means that the slope of the objective (3.33)

with respect to each Xk is equal to τ ? for all SNs included in Klin. We infer

J̃k(Pk) < J̃k(X
?
k) = τ ? < J̃k(0) , k ∈ Klin . (3.61)

2. For X?
k = Pk both relationships ϕ?k = 0 and λ?k ≥ 0 result from KKT condi-

tions (3.47e) and (3.47d), respectively. Again by considering (3.47h), it follows
that J̃k(Pk) ≥ J̃k(Pk) − λ?k = τ ? for all k ∈ Ksat. This means that if a SN is
saturated, then its corresponding slope J̃k(X

?
k) at X?

k = Pk is greater than or
equal to τ ?. We obtain

τ ? ≤ J̃k(Pk) = J̃k(X
?
k) < J̃k(0) , k ∈ Ksat . (3.62)
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3. For X?
k = 0 both relationships ϕ?k ≥ 0 and λ?k = 0 result from KKT condi-

tions (3.47c) and (3.47f), respectively. Again by considering (3.47h), it follows
that J̃k(0) ≤ J̃k(0) + ϕ?k = τ ? for all k ∈ FK \ K. This means that if a SN is
inactive, then its corresponding slope J̃k(X

?
k) at X?

k = 0 is less than or equal to
τ ?. It follows that

J̃k(Pk) < J̃k(X
?
k) = J̃k(0) ≤ τ ? , k ∈ FK \K . (3.63)

From the new conditions (3.61), (3.62) and (3.63), we derive a main region for the value
of τ ? as

max
k∈Klin
l∈FK\K

{
J̃k(Pk), J̃l(0)

}
≤ τ ? ≤ min

k∈Klin
l∈Ksat

{
J̃k(0), J̃l(Pl)

}
. (3.64)

By the aid of condition (3.64), we see that sorting the sequence
(
J̃k(Pk), J̃k(0)

)
k∈FK

monotonically yields a new searching sequence in which each element represents a
boundary for the unknown value τ ?. By applying successively a bisection method, the
new sequence of boundaries can rapidly be searched for a proper region. If τ ? is a
member of the current region, then its value can be verified by the evaluation of (3.49)
and the relationship χ?K = 1√

τ?
. If the evaluated value of τ ? overlaps with the current

region, the search is successful and no more iteration (searching) steps are needed.
Otherwise, the next region is to be tested. The choice of next regions may either be
performed by divide and conquer methods or by stochastic algorithms, which use the
previous evaluated value of τ ? to estimate the next position of a proper region within
the searching sequence. A detailed description and discussion of the divide and conquer
method can be found in [11].

3.3 Technical Interpretation and Visualization of
Results

As derived in Subsection 3.2.6, the power allocation problem in its general form is
analytically solved in closed-form. For achieving these results, we only have focused
on the mathematical analysis, synthesis and methods. However, it is difficult to gain
insight into the technical analysis, synthesis and description, due to the presented form.
In this section, we introduce physical parameters in order to highlight important aspects
of the underlying system and technically interpret the optimal solution of the power
allocation problem. Following this, selected results are visualized by corresponding
curves.

3.3.1 Measurable parameters and technical interpretation of
results

In practice, a common measurable quantity is the signal-to-noise ratio, which is in
principle determinable by simple physical methods and experiments. We denote the
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signal-to-noise ratio at the receiver of each SN and the signal-to-noise ratio at the
receiver of the fusion center respectively by

SNRS
k :=

R|gk|2

Mk

and SNRC
k (X) :=

X|hk|2

Nk

, 0 < X ≤ min{Pk, Ptot} , k ∈ FK .
(3.65)

Since the output power at each SN is adjustable and is determined by the optimal
method of power allocation, the specific value of SNRC

k (X) depends on the setting of
X. Alternatively, the signal-to-noise ratio at the receiver of the fusion center can be
described by both SNRS

k and SNRC
k (X) as

SNRk(X) :=
E [|rgkukhk|2]

E [|mkukhk + nk|2]
=

SNRS
k · SNRC

k (X)

1 + SNRS
k + SNRC

k (X)
, k ∈ FK . (3.66)

The ratio SNRk(X) is the signal-to-noise ratio of the kth path from the target to the
fusion center. By substitution of αk and βk by

αk =

√
SNRS

k

R
and βk =

√
P · 1 + SNRS

k

SNRC
k (P )

, k ∈ FK , (3.67)

and incorporating all these into equation (3.24), we obtain a signal-to-noise ratio at the
output of the fusion center as given by

SNRtot :=
R

V
=
∑

k∈FK

SNRS
k · SNRC

k (Xk)

1 + SNRS
k + SNRC

k (Xk)
=
∑

k∈FK

SNRk(Xk) . (3.68)

This means that after optimization of the variables vk, only the path signal-to-noise
ratios SNRk are important at the fusion center. In this way, the minimization of the
mean square deviation in (3.10) leads to the maximization of the total signal-to-noise
ratio at the output of the fusion center. This is equivalent with

maximize
X

∑

k∈FK

SNRS
k · SNRC

k (Xk)

1 + SNRS
k + SNRC

k (Xk)

subject to
∑

k∈FK

Xk ≤ Ptot , Xk ≤ Pk , k ∈ FK , X ∈ RK
+ .

(3.69)

The role of uk, which is connected with Xk by (3.2), is to optimize the cumulative sum
of all path signal-to-noise ratios SNRk. Since the signal-to-noise ratio of each path is
concave with respect to its SNRC

k (Xk) due to the discussion in Subsection 3.2.6, and in
turn the above maximization problem is a concave problem, we obtain the results

SNR?
tot :=

R

V ?
=
∑

k∈Ksat

SNRS
k · SNRC

k (Pk)

1 + SNRS
k + SNRC

k (Pk)
+
∑

k∈Klin

SNRS
k ·
(

1− c̃k(X)

χ̃?K(X)

)
(3.70)
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and

X?
k = max

{
0,min

{
Pk, X · c̃k(X) · SNRS

k ·
(
χ̃?K(X)− c̃k(X)

)}}
, k ∈ FK , (3.71)

where two new definitions

c̃k(X) :=
ck√
RX

=

√
1 + SNRS

k

SNRS
k · SNRC

k (X)
, k ∈ FK , (3.72)

and

χ̃?K(X) :=
χ?K√
RX

=

Ptot −
∑

k∈Ksat

Pk +X ·
∑

k∈Klin

1+SNRS
k

SNRC
k (X)

X ·
∑

k∈Klin

√
SNRS

k ·(1+SNRS
k)

SNRC
k (X)

, (3.73)

are used. In contrast to previous definitions, both the new reliability-function c̃k(X)
and the new normalized water-level χ̃?K(X) are unitless. In fact, both c̃k(X) and χ̃?K(X)
depend on the particular value of X, however, for any choice of X within the range
0 < X ≤ min{Pk, Ptot}, k ∈ FK , the values in (3.70) and (3.71) will not change. The
best choice for X is to be equal to mink{Pk, Ptot}, because in this case no SN will exceed
its power limitation Pk.

The interpretation behind the optimal power allocation is that at the globally op-
timum the passive sensor network combines independently all signal-to-noise ratios
SNRS

k, SNRC
k (Pk) and SNRC

k (X) of all active SNs, with fixed powers R, Pk and X, as
demonstrated in (3.70). In turn, at the globally optimum only the signal-to-noise ratios
SNRS

k, SNRC
k (Pk) and SNRC

k (X) are needed to determine the total signal-to-noise ratio
SNR?

tot at the fusion center. Hence, one only needs the equation (3.70) with (3.72)
and (3.73) in order to investigate or to discuss the entire sensor network in a simple
manner. In a practical application, the consecutive steps in Table 3.1 are to perform
for an optimal allocation of power.

Since SNR?
tot is the sum of the K̃ largest observations in the sample of K independent

observations SNRk, the distribution of SNR?
tot is amenable by the theory of order statis-

tics. For example, if the samples SNRk are gamma distributed, the density of SNR?
tot is

given as a sum of gamma densities [45]. It is possible to show that the distribution of
SNR?

tot asymptotically tends towards the generalized extreme value distribution. Hence,
for a wide range of continuous distributions of the samples SNRk, the distribution of
SNR?

tot can accurately be fitted by the Fréchet distribution, see [46].

3.3.2 Visualization of results
In order to visualize selected results, we assume that all channel coefficients are complex
normal distributed. The envelope of a complex normal distributed random variable,
with equal variance σ2 for both real and imaginary part, is Rayleigh distributed with
the parameter σ2 ∈ R+. The Rayleigh density of a random variable Z ∼ R(σ2) is given
by

max
{

0,
z

σ2
exp
(
− z2

2σ2

)}
. (3.74)
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Table 3.1: Consecutive steps for an optimal allocation of power in passive sensor net-
works.

Step Number Step Description

1. Choose X = min
k∈FK

{Pk, Ptot} for the communication power of

each SN,

2. measure each signal-to-noise ratio SNRS
k at the input of the

corresponding SN,

3. measure each signal-to-noise ratio SNRC
k (X) at the input of the

fusion center,

4. determine αk and βk by relationships in (3.67),

5. use Algorithm 1 to determine both subsets Ksat and Klin,

6. determine c̃k(X) and χ̃?K(X) by (3.72) and (3.73), respectively,

7. evaluate equation (3.71) to obtain the optimal powers X?
k ,

8. in order to estimate the current quality of data fusion the
signal-to-noise ratio in (3.70) can in addition be calculated.

In turn, the square Z2 := Z2
1 of a Rayleigh distributed random variable Z1 ∼ R(σ2)

is gamma distributed, i.e., Z2 ∼ G(1, 2σ2). The gamma density of a random variable
Z ∼ G(κ, σ) with parameters κ ∈ R+ and σ ∈ R+ is given by

max
{

0,
zκ−1

σκ Γ(κ)
exp
(
− z
σ

)}
, (3.75)

where its expected value is equal to E [Z] = κσ. Hence, the signal-to-noise ratio over
a complex normal distributed channel coefficient is gamma distributed. In this way,
to visualize the total signal-to-noise ratio (3.70), we perform a Monte-Carlo simula-
tion [47] with 100000 iterations per simulation point. All signal-to-noise ratios SNRS

k

and SNRC
k (X) are randomly generated for each simulation step with densities G(1, σ2

s)

and G(1, σ2
c ), respectively. Note that σ2

s and σ2
c are equal to R · E

[ |gk|2
Mk

]
and X · E

[ |hk|2
Nk

]
,

respectively, in which the expectation is performed over all k. By the aid of these signal-
to-noise ratios, we apply consecutively the steps 4. to 8. from Table 3.1 to obtain the
corresponding value of SNR?

tot in each simulation step. In Figures 3.4 and 3.5 the
expected value of SNR?

tot

K
, with expectation over all simulation steps, is depicted. In par-

ticular, for different choices of Ptot

X
= Pk

X
∈ { 1

10
, 1, 10, 100} ∀ k and K ∈ {10, 100, 1000}

the behavior of SNR?
tot

K
with respect to σ2

s and σ2
c is shown. As can be seen, the deviation

of SNR?
tot

K
with respect to σ2

c is in general smaller than the deviation with respect to σ2
s .

This behavior results from the unsymmetric property of SNR?
tot with respect to SNRS

k
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and SNRC
k (X). All figures show that an increment of sensing powers results in a better

performance compared to the same increment in communication powers.
In order to visualize the density of SNR?

tot

K
, we perform the above described Monte-

Carlo simulation with the same parameter setup. At the end of the simulation, all
100000 observations of SNR?

tot

K
are used to generate a corresponding histogram with 30

bins. Note that the last bin contains all tail observations. In addition, all 100000
observations are applied to fit the histogram by both the Fréchet and the gamma den-
sity, where all density parameters are calculated with the maximum likelihood method.
Furthermore, the sample mean of the 100000 observations is calculated for reasons of
comparison. For selected values of involved parameters, some curves are shown in Fig-
ures 3.6 and 3.7. It is in evidence that in some cases the Fréchet density and in other
cases the gamma density is an accurate fit for the density of SNR?

tot

K
.

3.4 Summary
The main contribution of the present chapter is the optimal solution of the power
allocation problem in distributed passive multiple-radar systems. We have introduced
a system model, a linear fusion rule and a simple objective function, which enable
us to solve the power allocation problem analytically. Three different cases of power
constraints have been investigated. For limited transmission power of single sensor
nodes as well as for a sum-power limitation, we have analytically obtained optimal
solutions in closed-form. We have seen that the power allocation problem is harder to
solve if both constraints shall simultaneously be satisfied. Hence, we have developed
an efficient algorithm to solve the last problem optimally. By applying the obtained
solutions, the overall system performance of the sensor network is increased while the
power consumption of the whole network is kept constant. The achieved results enable
us to calculate the optimal power allocation fast and accurately which is essential for
distributed passive multiple-radar systems with a large number of sensor nodes.
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Figure 3.4: Visualization of SNR?
tot

K
for Ptot

X
∈ { 1

10
, 1} and K ∈ {10, 100, 1000} with

Pk

X
= Ptot

X
∀ k over the range 1

10
≤ σ2

s ≤ 100 and 1 ≤ σ2
c ≤ 1000.
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4 Optimum Power Allocation for
Active Sensor Networks

As we have seen in the previous chapter, the power allocation problem in sensor net-
works, that commonly are used as distributed passive multiple-radar systems, can be
determined analytically in closed-form under certain power constraints and system re-
quirements. In the current chapter, we extend our previous optimization method and
apply it to the power allocation problem in sensor networks for active radar applica-
tions. In contrast to passive radar systems, active radar nodes consume electrical power
for emitting radio waves in order to observe target objects. Thus, quite naturally the
problem arises how to allocate an available amount of power for first emitting the radar
signal for sensing and secondly communicating the received message to a remotely lo-
cated fusion center. This fundamental distinction leads to power allocation problems
which are in general more challenging than the allocation problems in the previous
chapter.

In active sensor networks, each SN individually and independently emits a radar
signal and receives the reflected echo from a jointly observed target object. These
observations are used to classify the type of the present target object. Since the local
observations at each SN are noisy and thus unreliable, they are combined into a single
reliable observation at a remotely located fusion center to increase the overall system
performance. In the classification process, the absence, the presence, and the type of the
present target object are distinguished. The fusion center uses the best linear unbiased
estimator in order to accurately estimate the reflection coefficient of a presence target
object, where each object is assumed to be uniquely characterized by its reflection
coefficient. This setup is illustrated in Figure 4.1, whose technical components will
be specified in detail later. We demonstrate that the corresponding optimization of
the power allocation leads to a signomial program which is in general quite hard to
solve. Nonetheless, by using the proposed system architecture, fusion rule and objective
function, again a closed-form solution of the power allocation problem for a network
of amplify-and-forward SNs will analytically be achieved. The key idea is to utilize
the average deviation between the estimated and the actual reflection coefficient as the
objective function. Since the power consumption of the entire network may be limited
in various aspects, three different cases of power constraints are discussed and compared
with each other. Explicit policies for the optimal power allocation are given. These are
the main contributions of the current chapter.

The research on distributed detection was originated from the attempt to combine
signals of different radar devices [48]. Currently, distributed detection is discussed
in the context of wireless sensor networks, where the sensor units may also be radar
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nodes [32, 49, 50]. In [2], the power allocation problem for distributed wireless sensor
networks, which perform object detection and classification, is only treated for ultra-
wide bandwidth (UWB) technology. Other applications, which require or benefit from
detection and classification capabilities, are localization and tracking [38] or through-
wall surveillance [51]. In [3], an approximate solution of the power allocation problem is
proposed, which provides an analytical treatment of output power-range limitation per
sensor node. However, a closed-form optimal solution to the power allocation problem
has not yet been investigated in the context of object classification. The main difficulty
is associated with finding a closed-form equation for the overall classification probabil-
ity. As an example, for the Bayesian hypothesis test criterion the overall classification
probability cannot be analytically evaluated [52]. This limits the usability of this cri-
terion for solving the power allocation problem. Bounds, such as the Bhattacharyya
bound [53], are also difficult to use for optimizing multidimensional problems. Hence,
the best power allocation scheme is still an open problem in order to improve the overall
classification probability.

The present chapter is organized as follows. We start with a description of the
underlying technical system in the next section. Subsequently, the power allocation
problem is specified and analytically solved. The achieved results are then discussed
and carefully compared with each other.

ri

Center

Sensor Nodes

Target

SK
gK

g2

g1

hK

h2

h1

S2

S1

CommunicationSensing

Object
Fusion

ChannelChannel

Figure 4.1: Abstract representation of the distributed sensor network.

4.1 Overview and Technical System Description
At any instance of time, a network of K ∈ N independent and spatially distributed
SNs receives random observations. If a target object is present, then the received
power at the SN Sk is a part of its own emitted power which is back-reflected from
the jointly observed target object and is weighted by its reflection coefficient ri. The
object may be of I different types. It should be noted that sheer detection may be
treated as the special case of I = 2 which corresponds to the decision ‘some object is
present ’ versus ‘there is no object ’. We assume that all different object types and their
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corresponding reflection coefficients are known by the network. Moreover, the received
signal at each SN is weighted by the corresponding channel coefficient and disturbed by
additive noise. It is obvious that the sensing channel is wireless. The sensing task and
its corresponding communication task for a single classification process are performed
in consecutive time slots. All SNs take samples from the disturbed received signal and
amplify them without any additional data processing in each time slot. The amplified
samples remain buffered in the SNs during the current time slot. Simultaneously in
the same time slot, new radio waves are emitted by all SNs for the next observation
and classification process. In addition, the buffered samples of the former classification
process are communicated to the fusion center which is placed in a remote location.
We assume that SNs have only limited sum-power available for sensing the object
and communicating to the fusion center. Furthermore, each SN may be limited in its
transmission power-range due to transmission-power regulation standards or due to the
functional range of its circuit elements. The sensing task as well as the communication
to the fusion center are performed by using distinct waveforms (pulse shapes) for each
SN so as to distinguish sensing and communication of different SNs. Each waveform
has to be suitably chosen in order to suppress inter-user (inter-node) interference at all
SNs and also at the fusion center. Practical examples for waveforms are Gold-code and
Kasami-code sequences [54] for both sensing and communication task. Furthermore, we
assume that in the frequency domain each waveform is orthogonal to all other waveforms
in order to calculate the sensing power of each SN independent from its communication
power. Hence, the K received signals at the fusion center are uncorrelated and assumed
to be conditionally independent. Each received signal at the fusion center is influenced
by the corresponding channel coefficient and additive noise, as well. The communication
channel between the SNs and the fusion center can either be wireless or wired. The
disturbed received signals at the fusion center are weighted and combined together in
order to obtain a single reliable observation r̃ of the actual reflection coefficient ri. Note
that we disregard time delays within all transmissions and assume synchronized data
communication.

In the following subsections, we mathematically describe the underlying system
model that is depicted in Figure 4.2. The continuous-time system is modeled by its
discrete-time equivalent, where the sampling rate of the corresponding signals is equal
to the target observation rate, for the sake of simplicity.

Note that the present system model, and hence its description, coincides in parts with
the system model of the previous chapter. Thus, the commonly shared assumptions and
conditions are recited and the system description is further extended in the following
subsections. As will be shown later on, the extensions lead to significantly different
results.

4.1.1 Target object
We assume that all objects have the same size, shape and alignment, but different
material and, hence, complex-valued reflection coefficients ri ∈ C, i ∈ FI . Thus, the
reflection coefficients are the only recognition features in this chapter. The a-priori
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Figure 4.2: System model of the distributed active sensor network.

probability of occurrence for each object type is denoted by πi ∈ R+, i ∈ FI , with∑I
i=1 πi = 1. The root mean squared value of the reflection coefficients is given as

rrms :=

√∑

i∈FI

πi |ri|2 . (4.1)

Furthermore, the actual target object is assumed to be static during consecutive obser-
vation steps.

4.1.2 Sensing channel
Each propagation path of the sensing channel, from SN to the object and again back
to the SN, is described by a corresponding random channel coefficient gk. For the
investigation of the power allocation problem, the concrete realization of the channel
coefficients is needed and hence can be used for postprocessing of the received signals at
the SNs. We assume that the channel coefficients are complex-valued and static during
each target observation step. Furthermore, the coherence time of sensing channels is
assumed to be much longer than the whole length of the classification process. Thus,
the expected value and the quadratic mean of each coefficient during each observation
step can be assumed to be equal to their instantaneous values, i.e., E [gk] = gk and
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E [|gk|2] = |gk|2. In practice, it is often difficult to measure or estimate these coefficients.
Thus, the results of the present chapter are applicable for scenarios where the channel
coefficients can somehow be accurately estimated during each observation process or
they are nearly deterministic and thus can be measured before starting the radar task.

Furthermore, the channel coefficients are assumed to be jointly independent. Note
that the channel coefficients include the radar cross section, the influence of the antenna,
the impact of the filters, as well as all additional attenuation of the target signal.

At the input of each SN, the disturbance is modeled by the complex-valued AWGN
mk with zero mean and finite variance M0 := E [|mk|2] for all k. Note that the channel
coefficient and the noise on the same propagation path are also jointly independent.

4.1.3 Sensor nodes

We model each SN by an amplify-and-forward unit with extended capabilities, where
both sensing and communication signal are transmitted simultaneously. Without loss
of generality, we suppose that each sensing signal 1k has unit-energy, a matched-filter
for the sensing signal 1k exists at the input of the kth SN, and each sample is taken
at the maximum of the corresponding autocorrelation function of 1k. In this way, we
can omit this signal in the description of all other equations from now on, for the sake
of conciseness. The deterministic sensing signal is amplified by a real-valued and non-
negative factor wk to adjust the sensing power. The expected value of the instantaneous
output power is then described by

Wk := E [|wk|2] = |wk|2 , k ∈ FK . (4.2)

Note that the specific value of wk will be determined later by the power allocation
procedure.

The ratio of the communication signal to the received signal is described by the non-
negative and real-valued amplification factor uk. Thus, the communication signal and
the expected value of its instantaneous power are described by

xk := (rigkwk +mk)uk , k ∈ FK (4.3)

and

Xk := E [|xk|2] = (r2
rms|gk|2Wk +M0)u2

k , k ∈ FK , (4.4)

respectively. The amplification factor is an adjustable parameter and will be determined
later by the power allocation procedure, as well. Note that the instantaneous power
fluctuates from observation to observation depending on the present target object.

If the received signal is negligible in comparison to the output signal and if the nodes
have smart power components with low-power dissipation loss, then the average power
consumption of each node is approximately equal to its average output power Wk +Xk.
The addition of both transmission powers is justified because the corresponding signals
are assumed to be separated by distinct waveforms. We also assume that the output
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power-range of each SN is limited by Pmax and that the average power consumption of
all SNs together is limited by the sum-power constraint Ptot. Hence, the constraints

Wk +Xk ≤ Pmax ⇔
(
1 + r2

rms|gk|2u2
k

)
Wk +M0u

2
k ≤ Pmax , k ∈ FK (4.5)

and

∑

k∈FK

Wk︸︷︷︸
Radar task

+ Xk︸︷︷︸
Data communication︸ ︷︷ ︸

Average transmission power of one sensor for a single observation

≤ Ptot

⇔
∑

k∈FK

(
1 + r2

rms|gk|2u2
k

)
Wk +M0u

2
k ≤ Ptot (4.6)

have to be considered. We remark that the described method can also be extended to
individual output power-range constraints per SN.

Note that the sum-power constraint Ptot is a reasonable approach to compare energy-
efficient radar systems.

4.1.4 Communication channel
Analogous to the sensing channel, each propagation path of the communication channel
is described by a corresponding random channel coefficient hk. But in contrast to the
sensing channel, the concrete realization of the communication channel coefficients is
measurable by using pilot sequences at each SN. Accordingly, the channel coefficients
can be used for postprocessing of received signals at the fusion center. We assume that
the channel coefficients are complex-valued and static during each target observation
step. Furthermore, the coherence time of communication channels is also assumed to
be much longer than the whole length of the classification process. Thus, the expected
value and the quadratic mean of each channel coefficient can be assumed to be equal
to their instantaneous values, i.e., E [hk] = hk and E [|hk|2] = |hk|2. Furthermore, the
channel coefficients are assumed to be jointly independent. Note that the channel
coefficients include the influence of the antenna, the impact of the filters, as well as all
additional attenuation of the corresponding sensor signal.

At the input of the fusion center, the disturbance on each communication path is mod-
eled by the complex-valued AWGN nk with zero mean and finite variance N0 := E [|nk|2]
for all k. Note that the channel coefficient and the noise on the same propagation path
are also jointly independent.

4.1.5 Fusion center
The fusion center combines the different local observations into a single reliable one by
applying a linear combiner. Thus, the received signals are weighted with the complex-
valued factors vk and summed up to yield an estimate r̃ of the actual target signal ri.
In this way, we obtain

yk := (xkhk + nk)vk , k ∈ FK , (4.7)
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and hence,

r̃ :=
∑

k∈FK

yk = ri
∑

k∈FK

wkgkukhkvk +
∑

k∈FK

(mkukhk + nk)vk . (4.8)

Note that each weight can be written as vk = |vk| exp(jϑk), k ∈ FK , where ϑk is a
real-valued number which represents the phase of the corresponding weight.

Note that the fusion center can separate the input streams because the commu-
nication channel is either wired or the data communication is performed by distinct
waveforms for each SN. Consequently, if the communication channel is wireless then
a matched-filter bank is essential at the input of the fusion center to separate the
data streams of different SNs. In addition, we do not consider inter-user (inter-node)
interferences at the fusion center because of the distinct waveform choices.

In order to obtain a single reliable observation at the fusion center, the value r̃ should
be a good estimate for the present reflection coefficient ri. Thus, we optimize the
sensing power Wk, the amplification factors uk, and the weights vk in order to minimize
the average absolute deviation between r̃ and the true reflection coefficient ri. This
optimization procedure is elaborately explained in the next section. After determining
Wk, uk and vk, the fusion center observes a disturbed version of the true reflection
coefficient ri at the input of its decision unit. Hence, by using the present system
model, we are able to separate the power allocation problem from the classification
problem and optimize both independently.

4.1.6 Remarks to the system model

Because of the similarity of the present system model to that of the previous chapter,
we list only the additional remarks in the following.

In general, SNs have only one power amplifier and a single antenna. The antenna
is usually connected to a circulator in order to separate the signal of the transmitter
to the antenna from the signal of the antenna to the receiver, which is not depicted in
Figure 4.2. The power amplifier is also shared for sensing and communication tasks,
but not considered in this work.

In order to increase the available power-range at each SN, time-division multiple-
access (TDMA) can be used to separate the sensing task from the communication task
and perform each task in a different time slot.

The amplification factors uk and wk are in practice frequency and voltage dependent.
This dependency is neglected in this work.

To distinguish the current operating mode of each SN in what follows, we say a
SN is inactive or idle if the allocated power is zero. We say the SN is active if the
allocated power is positive. Finally, we say a SN is saturated if the limitation of its
output power-range is equal to the allocated power, i.e., Pmax = Wk +Xk.

An overview of all notations that we will use hereinafter and are needed for the
description of each observation process is summarized in the glossary.
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4.2 Power Optimization

In this section, we introduce the power optimization problem and consecutively present
its analytical solutions for different power constraints. First, we investigate the case
where only a sum-power constraint Ptot ∈ R+ for the cumulative sum of the expected
power consumption of each SN is given. Afterwards, we present the analytical solution
of the power allocation problem for the case where the average transmission power of
each SN is limited by the output power-range limitation Pmax ∈ R+. Finally, we extend
the power allocation problem to the case where both constraints hold simultaneously
and present the corresponding optimal solution.

In general, the objective is to maximize the overall classification probability, however,
a direct solution to the allocation problem does not exist, since no analytical expression
for the overall classification probability is available. Instead, we minimize the average
deviation between r̃ and ri, in order to determine the power allocation. The motivation
for this method is the separation of the power allocation problem from the object clas-
sification procedure, as described in the last section. The corresponding optimization
problem is elaborately described in the next subsection.

4.2.1 Optimization problem

As mentioned in the last section, the value r̃ should be a good estimate for the actual
reflection coefficient rk of the present target object. In particular, we aim at finding
estimators r̃ of minimum mean squared error in the class of unbiased estimators for
each i.

The estimate r̃ is unbiased simultaneously for each i, if E [r̃ − ri] = 0 holds, i.e., from
equation (4.8) with (4.2) we obtain the identity

∑

k∈FK

√
Wk gkukhkvk = 1 . (4.9)

This identity is our first constraint in what follows. Note that the mean of the second
sum in (4.8) vanishes since the noise is zero-mean. Recall that both random variables
gk and hk are assumed to be known constants, because the coherence time of both
channels is assumed to be much longer than the target observation time. Note that
equation (4.9) is complex-valued and may be separated as

∑

k∈FK

√
Wk uk |vkgkhk| cos(ϑk + φk) = 1 (4.10)

and ∑

k∈FK

√
Wk uk |vkgkhk| sin(ϑk + φk) = 0 , (4.11)

where ϑk and φk are phases of vk and gkhk, respectively.
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The objective is to minimize the mean squared error E [|r̃ − ri|2]. By using equa-
tion (4.8) and the identity (4.9) we may write the objective function as

V := E
[
|r̃ − ri|2

]
=
∑

k∈FK

|vk|2
(
u2
k|hk|2M0 +N0

)
. (4.12)

Note that (4.12) is only valid if mk and nk are white and jointly independent.
As mentioned in the last section, each SN has an output power-range limitation and

the expected overall power consumption is also limited. Hence, the objective function is
also subject to (4.5) and (4.6), which are our second and last constraints, respectively.

In summary, the optimization problem is to minimize the mean squared error in (4.12)
with respect to uk, vk, and Wk, subject to constraints (4.5), (4.6), (4.10) and (4.11),
i.e.:

minimize
u,v,W,ϑ

K∑

k=1

|vk|2
(
u2
k|hk|2M0 +N0

)

subject to
K∑

k=1

√
Wk uk |vkgkhk| cos(ϑk + φk) = 1 ,

K∑

k=1

√
Wk uk |vkgkhk| sin(ϑk + φk) = 0 ,

K∑

k=1

(
1 + r2

rms|gk|2u2
k

)
Wk +M0u

2
k ≤ Ptot ,

(
1 + r2

rms|gk|2u2
k

)
Wk +M0u

2
k ≤ Pmax , k ∈ FK ,

u ∈ RK
+ , v ∈ CK , W ∈ RK

+ , ϑ ∈ [0, 2π]K .

Note that this optimization problem is again a signomial program, see Definition 2.3.3.
Thus, we apply the general method of Lagrangian multiplier with equality constraints
to solve all optimization problems in the present work. In order to ensure the global
optimality of our results, we consecutively show the following four steps during each
solving procedure. First, we relax each problem to an optimization problem with
an extended subspace of all involved variables to ensure an optimization within the
interior-set. Second, all stationary points of the associated Lagrangian are localized
by considering the corresponding derivatives to obtain necessary conditions. Third,
we show that the number of stationary points is equal to one, which indirectly implies
that the considered stationary point is also a regular point for all (active) constraints.
Finally, to obtain a sufficient condition, we then show that the stationary point has
a convex neighborhood which corresponds with a minimum. In summary, the applied
method is based on the regularity of all active constraints as well as first and second
order optimality conditions which together guarantee for global optimality. At this
point, we emphasize that obtaining global optimality is similarly achievable by applying
vector space methods [55], using interval analysis [56], or utilizing a proper constraint
qualification (CQ) together with Karush-Kuhn-Tucker conditions [57].
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4.2.2 Power allocation subject to the sum-power constraint

In this case, the output power-range constraint per SN is assumed to be greater than the
sum-power constraint and thus does not have any effect on the optimization problem,
because the feasible set of the optimization problem is only limited by the sum-power
constraint. This leads to the corresponding constrained Lagrange function (relaxation
with respect to the range of Wk, uk and |vk|)

L1(Wk, uk, vk; η1, η2, τ ; ξ) :=
∑

k∈FK

|vk|2
(
u2
k|hk|2M0 +N0

)

+

(
1−

∑

k∈FK

√
Wkuk |vkgkhk| cos(ϑk + φk)

)
η1

−
( ∑

k∈FK

√
Wkuk |vkgkhk| sin(ϑk + φk)

)
η2

+

(
Ptot − ξ −

∑

k∈FK

(
1 + r2

rms|gk|2u2
k

)
Wk +M0u

2
k

)
τ ,

(4.13)

where η1, η2 and τ are Lagrange multipliers while ξ is a slack variable.

In order to satisfy (4.11), all phases ϑk + φk have to be equal to qkπ, qk ∈ Z, for
all k ∈ FK . If there were a better solution for ϑk + φk, then the first partial deriva-
tives of L1 with respect to ϑk would vanish at that solution, due to the continu-
ity of trigonometric functions. But the first derivatives would lead to the equations
η1 sin(ϑk + φk) = η2 cos(ϑk + φk), k ∈ FK , which cannot simultaneously satisfy both
equations (4.10) and (4.11) for all η1 and η2. Thus, qkπ is the unique solution. Hence,
we may consequently write a modified Lagrange function as

L̃1(Wk, uk, |vk| , qk; η1, τ ; ξ) :=
∑

k∈FK

|vk|2
(
u2
k|hk|2M0 +N0

)

+

(
1−

∑

k∈FK

√
Wkuk |vkgkhk| cos(qkπ)

)
η1

+

(
Ptot − ξ −

∑

k∈FK

(
1 + r2

rms|gk|2u2
k

)
Wk +M0u

2
k

)
τ .

(4.14)

At any stationary point of L̃1 the first partial derivatives of L̃1 with respect to Wk,
uk, |vk|, η1 and τ must vanish, if they exist. This leads to

∂L̃1

∂Wl

= −ul |vlhlgl| cos(qlπ)

2
√
Wl

η1 −
(
1 + r2

rms|gl|2u2
l

)
τ = 0 , l ∈ FK , (4.15)

∂L̃1

∂|vl|
= 2|vl|

(
u2
l |hl|2M0 +N0

)
−
√
Wlul |hlgl| cos(qlπ)η1 = 0 , l ∈ FK , (4.16)
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∂L̃1

∂ul
= 2|vl|2ul|hl|2M0 −

√
Wl |vlhlgl| cos(qlπ)η1 − 2ul(Wlr

2
rms|gl|2 +M0)τ = 0 , l ∈ FK ,

(4.17)
∂L̃1

∂η1

= 1−
∑

k∈FK

√
Wkuk|vkgkhk| cos(qkπ) = 0 (4.18)

and
∂L̃1

∂τ
= Ptot − ξ −

∑

k∈FK

(
1 + r2

rms|gk|2u2
k

)
Wk +M0u

2
k = 0 . (4.19)

By multiplying (4.16) with |vl|, summing up the outcome over all l, and using the
identities (4.10) and (4.12), we obtain

η1 = 2V (4.20)

which is a positive real number due to definition of V . Because of the last relationship
and according to (4.16), the value of cos(qlπ) must be a positive number and hence
each ql must be an even integer number. Thus, we can choose q?l = 0 for all l ∈ FK and
conclude

ϑ?l = −φl , l ∈ FK . (4.21)

This solution gives the identity cos(q?l π) = 1 which can be incorporated into (4.15),
(4.16), (4.17) and (4.18).

Again by multiplying (4.16) with

1

2

ul|hlgl|
√
Wl

ul|hl|2M0 +N0

, (4.22)

summing up the outcome over all l, and using (4.10), (4.12) and (4.20), we obtain

V =
η1

2
=

[ ∑

k∈FK

u2
k|hkgk|2Wk

u2
k|hk|2M0 +N0

]−1

. (4.23)

In turn, by incorporating (4.23) into (4.16), it yields

|vl| =
V ul|hlgl|

√
Wl

u2
l |hl|2M0 +N0

(4.24)

for all l ∈ FK .
Note that for each feasible ul and Wl, l ∈ FK , equation (4.24) describes a feasible

value for each |vl|. Since for each ulWl > 0 the relation |vl| > 0 consequently follows,
the feasible optimal values of each |vl| > 0 are not on the boundary |vl| = 0. Thus,
finding optimal values for each ul and Wl, l ∈ FK , leads to optimum values for each
|vl|, l ∈ FK , due to the convexity of (4.14) with respect to each |vl|. Hence, finding
a unique global optimum for ul and Wl, l ∈ FK , yields the sufficient condition for the
globally optimal solution of the minimization problem (4.14).
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We replace each |vl| in (4.15) and (4.17) with (4.24) and thus we obtain two equations
for τ as

τ =
−V 2u2

l |glhl|2(
1 + u2

l r
2
rms|gl|2

)(
u2
l |hl|2M0 +N0

) (4.25)

and

τ =
−V 2Wl|glhl|2N0(

Wlr2
rms|gl|2 +M0

)(
u2
l |hl|2M0 +N0

)2 . (4.26)

Note that because of the negativity of τ , due to (4.25) or (4.26), and positivity of η1

there exists a feasible subspace in which the optimization problem (4.14) is convex in
both ul and Wl, l ∈ FK , as well. Hence, the Lagrange function (4.14) is convex near
the optimum/stationary point in each ul, |vl| and Wl, but it seems not to be a jointly
convex function, at all. Since the Lagrangian is separately convex in each direction,
the stationary point cannot be a maximum. To be a saddle point is also not possible,
because then there would at least exist one additional stationary point which is not the
case here. Thus, the Lagrangian (4.14) must actually be a jointly convex function in
the neighborhood of its stationary point. Furthermore, since the number of stationary
points is equal to one, all equality (active) constraints are regular. Hence, the separate
convexity together with the regularity condition is even a sufficient condition for global
optimality in the present case.

For the sake of simplicity and in order to compare the results later on, we define new
quantities as1

αk :=
M0

r2
rms|gk|2

⇒ αk ∈ R+ , (4.27)

βk :=
N0

|hk|2
⇒ βk ∈ R+ , (4.28)

and

ũk := M0u
2
k ⇔ uk = +

√
ũk
M0

. (4.29)

By direct algebra from (4.25) and (4.26), we infer

Wl =
ũlαl(ũl + βl)

αlβl − ũ2
l

, l ∈ FK . (4.30)

To satisfy the positivity of each Wl, the inequality

αlβl > ũ2
l , l ∈ FK , (4.31)

must hold, which will be used later. By using (4.27)–(4.30), we may rewrite (4.19)
and (4.23) as

1 = (Ptot − ξ)

[ ∑

k∈FK

ũ2
k(αk + βk) + 2ũkαkβk

αkβk − ũ2
k︸ ︷︷ ︸

=:γk

]−1

(4.32)

1We will discuss the physical interpretation of all important parameters and quantities in Subsec-
tion 4.4.1.
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and

V −1 =
1

r2
rms

∑

k∈FK

ũ2
k

αkβk − ũ2
k

(4.33)

respectively. In turn, we incorporate (4.32) into (4.33) and infer

V −1 =
Ptot − ξ

r2
rms

∑
k∈FK

γk

∑

k∈FK

γkũk
ũk(αk + βk) + 2αkβk

. (4.34)

As is well-known, the arithmetic mean in (4.34) is less than its greatest element such
that the inequality

V −1 ≤ Ptot − ξ
r2

rms

max
k∈FK

{ ũk
ũk(αk + βk) + 2αkβk

}
(4.35)

arises consequently. It is obvious that (4.35) is strictly decreasing with respect to ξ.
Thus, the optimal value for the slack variable is zero, i.e., ξ? = 0. In (4.35), equality
holds, if and only if, some elements are zero and all other ones are equal. In addition,
it is obvious that (4.35) is strictly increasing in each ũk and in turn the maximum value
of a certain ũk is achieved if for all l 6= k, l ∈ FK , the identity ũl = 0 holds, since the
sum-power is kept constant. This means that only one SN is active and all other ones
are idle. Hence, we can calculate the value of the corresponding ũk from (4.32) as

ũk =

√( αkβk
αk + βk + Ptot

)2

+
αkβkPtot

αk + βk + Ptot

− αkβk
αk + βk + Ptot

. (4.36)

This value can be incorporated into (4.35) to obtain

V −1 =
P 2

tot

r2
rms

max
k∈FK

{ 1

c2
k(Ptot)− P 2

tot

}
(4.37)

with the disturbance-intensity2

ck(P ) :=
√
αkβk +

√
(αk + P )(βk + P ) , k ∈ FK , P ∈ R+ . (4.38)

The value of V −1 is maximal if the disturbance-intensity ck(Ptot) is minimal. Hence,
we re-index all SNs such that the inequality chain

ck(Ptot) ≤ ck+1(Ptot) , k ∈ FK−1 , (4.39)

holds and with that only the first SN is active, even if the first few disturbance-
intensities are equal. From (4.24), (4.29), (4.30),(4.36) and (4.37) we thus conclude

V ? =
r2

rms

P 2
tot

(
c2

1(Ptot)− P 2
tot

)
, (4.40)

2We give the name disturbance-intensity to ck because it behaves intrinsically like noise. In Sec-
tion 4.4 we will introduce a normalized version of ck and call it reliability-function
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ũ?1 =

√( α1β1

α1 + β1 + Ptot

)2

+
α1β1Ptot

α1 + β1 + Ptot

− α1β1

α1 + β1 + Ptot

, (4.41)

u?1 =

√
ũ?1
M0

, (4.42)

X?
1 =

ũ?1(Ptot + α1)

α1 + ũ?1
, W ?

1 =
α1(Ptot − ũ?1)

α1 + ũ?1
, (4.43)

|v?1| =
V ?ũ?1

rrms|h1|
√
ũ?1 + β1

√
α1β1 − (ũ?1)2

, (4.44)

and
|v?k| = X?

k = W ?
k = u?k = 0 , k ∈ FK , k 6= 1 . (4.45)

Note that by using the above results, the corresponding fusion rule is simplified by
discarding the influence of inactive SNs from the fusion rule. The fusion rule (4.8)
becomes

r̃ = y1 = ri + (m1h1u
?
1 + n1)v?1 , i ∈ FI . (4.46)

The equations (4.40)–(4.45) and (4.21) are the optimal solutions of the power allo-
cation problem only subject to the sum-power constraint. They are hence the main
contribution of the present subsection.

Note that the global optimality of the obtained results is trivially reasoned, first
because of the optimization of the relaxed Lagrange function (4.13) with extended
range of all variables, and second since the global optimum point of the relaxed problem
coincides with the original range of all variables.

4.2.3 Power allocation subject to individual power constraints
In the current case, the sum-power constraint is assumed to be much greater than the
output power-range constraint and thus does not have any effect on the optimization
problem, because the feasible set of the optimization problem is only limited by the
output power-range constraints. This leads to the corresponding constrained Lagrange
function (relaxation with respect to the range of Wk, uk and |vk|)

L2(Wk, uk, vk; η1, η2, λk; %k) :=
∑

k∈FK

|vk|2
(
u2
k|hk|2M0 +N0

)

+

(
1−

∑

k∈FK

√
Wkuk |vkgkhk| cos(ϑk + φk)

)
η1

−
( ∑

k∈FK

√
Wkuk |vkgkhk| sin(ϑk + φk)

)
η2

+
∑

k∈FK

(
Pmax − %k −

(
1 + r2

rms|gk|2u2
k

)
Wk −M0u

2
k

)
λk ,

(4.47)
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where λk are new Lagrange multipliers while %k are new slack variables.
Since the behavior of L2 is identical to that of L1 with respect to |vk| and ϑk, we

obtain the same results for the phases as given in (4.21). Hence, we may modify L2 as

L̃2(Wk, uk, |vk| ; η1, λk; %k) :=
∑

k∈FK

|vk|2
(
u2
k|hk|2M0 +N0

)

+

(
1−

∑

k∈FK

√
Wkuk |vkgkhk|

)
η1

+
∑

k∈FK

(
Pmax − %k −

(
1 + r2

rms|gk|2u2
k

)
Wk −M0u

2
k

)
λk .

(4.48)

Note that since the equality sin(ϑ?k + φk) = 0 holds due to (4.21), the constraint (4.11)
is discarded in (4.48).

At any stationary point of L̃2 the first partial derivatives of L̃2 with respect to Wk,
uk, |vk|, η1 and λk must vanish, if they exist. This leads to

∂L̃2

∂Wl

= −ul|vlhlgl|
2
√
Wl

η1 −
(
1 + u2

l r
2
rms|gl|2

)
λl = 0 , l ∈ FK , (4.49)

∂L̃2

∂ |vl|
= 2 |vl|

(
u2
l |hl|2M0 +N0

)
−
√
Wlul|hlgl|η1 = 0 , l ∈ FK , (4.50)

∂L̃2

∂ul
= 2|vl|2ul|hl|2M0−

√
Wl|vlhlgl|η1− 2ul

(
Wlr

2
rms|gl|2 +M0

)
λl = 0 , l ∈ FK , (4.51)

∂L̃2

∂η1

= 1−
∑

k∈FK

√
Wkuk |vkgkhk| = 0 (4.52)

and
∂L̃2

∂λl
= Pmax − %l −

(
1 + r2

rms|gl|2u2
l

)
Wl −M0u

2
l = 0 , l ∈ FK . (4.53)

By similar procedure as described in Subsection 4.2.2, we obtain the same results
as given in (4.23), (4.24) and (4.30), because the equations (4.49)–(4.52) and (4.15)–
(4.18) are pairwise the same except of the difference between τ and λl. On the one hand,
incorporating Wl from (4.53) into (4.23), and using the same definition as in (4.27)–
(4.29), lead to

V −1 =
1

r2
rms

∑

k∈FK

ũk(Pmax − %k − ũk)
(ũk + αk)(ũk + βk)

, (4.54)

which is obviously strictly decreasing with respect to each %k. Thus, the optimal value
for each slack variable is zero, i.e., %?k = 0 for all k ∈ FK . On the other hand, comparing
Wl from (4.53) with (4.30), leads to

ũ?k =

√( αkβk
αk + βk + Pmax

)2

+
αkβkPmax

αk + βk + Pmax

− αkβk
αk + βk + Pmax

, k ∈ FK . (4.55)
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Since equation (4.54) is strictly increasing in the number K of SNs and (4.55) holds
for all SNs, we infer that all SNs are active. From (4.24), (4.29), (4.30), (4.38), (4.54)
and (4.55) we thus conclude

V ? =

[
P 2

max

r2
rms

∑

k∈FK

1

c2
k(Pmax)− P 2

max

]−1

, (4.56)

u?k =

√
ũ?k
M0

, k ∈ FK , (4.57)

X?
k =

ũ?k(Pmax + αk)

αk + ũ?k
, W ?

k =
αk(Pmax − ũ?k)

αk + ũ?k
, k ∈ FK , (4.58)

|v?k| =
V ?ũ?k

rrms|hk|
√
ũ?k + βk

√
αkβk − (ũ?k)

2
, k ∈ FK . (4.59)

Note that by using the above results, the corresponding fusion rule cannot be sim-
plified, since all SNs are active and they cannot thus be discarded from the fusion
rule.

The equations (4.55)–(4.59) and (4.21) are the optimal solution of the power allo-
cation problem only subject to the output power-range constraint per SN. They are
hence the main contribution of the present subsection.

As mentioned in Subsection 4.2.2, the global optimality of the obtained results is
also trivially reasoned, first because of the optimization of the relaxed Lagrange func-
tion (4.47) with extended range of all variables, and second since the global optimum
point of the relaxed problem coincides with the original range of all variables.

4.2.4 Comparison of the solutions
As we have shown in Subsection 4.2.2, the SN with the smallest ck(Ptot) consumes the
whole available sum-power Ptot, because the combination of its sensing and commu-
nication channel is the best compared to other SNs. All other SNs do not get any
transmission power, since their information reliability is too poor to be considered for
data fusion. They can be discarded from the fusion rule such that the observation of
the target object is less interfered by noise and consequently results in a better data
communication. Note that the information reliability of each SN is only determined by
the value of its corresponding ck(Ptot).

In contrast, if the transmission power of each SN is individually limited and no
sum-power constraint is given, then all SNs are active and their transmission power
is equal to the output power-range constraint Pmax, according to (4.53). In order to
compare both methods from Subsection 4.2.2 and 4.2.3, the values in (4.40) and (4.56)
are needed. Note that for a fair comparison of both allocation methods in a certain
scenario, an equal overall power is necessary, i.e., Ptot = KPmax.

Note that r̃ is an unbiased estimator for each ri due to constraint (4.9). By similar
methods we can also minimize the mean squared error in both cases without restricting
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ourself to unbiased estimators. Obviously, the optimal value of V will then be smaller
than that in (4.40) or (4.56).

4.2.5 Power allocation subject to both types of power
constraints

In the current subsection, we consider the optimization problem from Subsection 4.2.1
subject to both types of power constraints, i.e., sum-power constraint as well as output
power-range constraint per SN. Two of three different cases can be singled out and
reduced to preceding instances.

First, if KPmax < Ptot, then the sum-power constraint is irrelevant, because the fea-
sible set is only limited by the output power-range constraints. Hence, the power
allocation problem reduces to the one described in Subsection 4.2.3 with results given
in (4.55)–(4.59) and (4.21). The only difference is that a part of the available sum-power
remains unallocated and cannot be used.

Secondly, if Ptot ≤ Pmax, then the output power-range constraints are irrelevant, be-
cause the feasible set is only limited by the sum-power constraint. Hence, the power
allocation problem is equal to the one described in Subsection 4.2.2. The corresponding
results are described by (4.40)–(4.45) and (4.21).

The case of Pmax < Ptot ≤ KPmax is most challenging. The amount of the available
sum-power is possibly inadequate to supply all SNs with power Pmax. Besides, it is
not possible to allocate the available sum-power only to a single SN since Pmax < Ptot.
Hence, it will be shown that for the optimal solution only a subset of K̃ ≤ K, K̃ > 1,
SNs are active. Similar to the procedures in the previous subsections, we consider the
corresponding constrained Lagrange function (relaxation with respect to the range of
Wk, uk and |vk|)

L3(Wk, uk, vk; η1, η2, τ, λk; ξ, %k) :=
∑

k∈FK

|vk|2
(
u2
k|hk|2M0 +N0

)

+

(
1−

∑

k∈FK

√
Wkuk |vkgkhk| cos(ϑk + φk)

)
η1

−
( ∑

k∈FK

√
Wkuk |vkgkhk| sin(ϑk + φk)

)
η2

+

(
Ptot − ξ −

∑

k∈FK

(
1 + r2

rms|gk|2u2
k

)
Wk +M0u

2
k

)
τ

+
∑

k∈FK

(
Pmax − %k −

(
1 + r2

rms|gk|2u2
k

)
Wk −M0u

2
k

)
λk .

(4.60)

Since the behavior of L3 is identical to that of L1 and L2 with respect to |vk| and ϑk,
we obtain the same results for the phases as given in (4.21). Hence, we may modify L3
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as

L̃3(Wk, uk, |vk| ; η1, τ, λk; ξ, %k) :=
∑

k∈FK

|vk|2
(
u2
k|hk|2M0 +N0

)

+

(
1−

∑

k∈FK

√
Wkuk |vkgkhk|

)
η1

+

(
Ptot − ξ −

∑

k∈FK

(
1 + r2

rms|gk|2u2
k

)
Wk +M0u

2
k

)
τ

+
∑

k∈FK

(
Pmax − %k −

(
1 + r2

rms|gk|2u2
k

)
Wk −M0u

2
k

)
λk .

(4.61)

Note that since the equality sin(ϑ?k + φk) = 0 holds due to (4.21), the constraint (4.11)
is discarded in (4.61).

At any stationary point of L̃3 the first partial derivatives of L̃3 with respect to Wk,
uk, |vk|, η1, τ and λk must vanish, if they exist. This leads to

∂L̃3

∂Wl

= −ul|vlhlgl|
2
√
Wl

η1 −
(
1 + u2

l r
2
rms|gl|2

)
(τ + λl) = 0 , l ∈ FK , (4.62)

∂L̃3

∂ |vl|
= 2 |vl|

(
u2
l |hl|2M0 +N0

)
−
√
Wlul|hlgl|η1 = 0 , l ∈ FK , (4.63)

∂L̃3

∂ul
= 2|vl|2ul|hl|2M0 −

√
Wl|vlhlgl|η1 − 2ul

(
Wlr

2
rms|gl|2 +M0

)
(τ + λl) = 0 , l ∈ FK ,

(4.64)
∂L̃3

∂η1

= 1−
∑

k∈FK

√
Wkuk |vkgkhk| = 0 , (4.65)

∂L̃3

∂τ
= Ptot − ξ −

∑

k∈FK

(
1 + r2

rms|gk|2u2
k

)
Wk +M0u

2
k = 0 (4.66)

and
∂L̃3

∂λl
= Pmax − %l −

(
1 + r2

rms|gl|2u2
l

)
Wl −M0u

2
l = 0 , l ∈ FK . (4.67)

By the same method as described in Subsection 4.2.2, we obtain the same results
as given in (4.23), (4.24) and (4.30), because the equations (4.62)–(4.66) and (4.15)–
(4.19) are pairwise the same except of the difference between τ and τ + λl. According
to (4.67), we are able to calculate the powers Wl in terms of %l and ul. By using the
same definition as in (4.27)–(4.29) and incorporating (4.30), (4.38) and (4.67) into (4.23)
and (4.66), we derive

V −1 =
1

r2
rms

∑

k∈FK

1
(
ck(Pmax−%k)
Pmax−%k

)2

− 1
(4.68)
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and

Ptot − ξ =
∑

k∈FK

(Pmax − %k) . (4.69)

As one can see, the minimization of the signomial program in (4.60) is reduced to the
maximization of (4.68) subject to (4.69) and 0 ≤ %k ≤ Pmax < Ptot for all k ∈ FK with
respect to each %k. Since the new maximization problem is of special structure, it is
amenable to an optimal solution via monotonicity and convexity of the objective (4.68)

with respect to each Pmax − %k. The first derivative of ck(P )
P

with respect to P leads to

d

dP

ck(P )

P
= − P (αk + βk) + 2αkβk

2P 2
√

(αk + P )(βk + P )
−
√
αkβk
P 2

, (4.70)

which is obviously negative for all positive P . Thus, ck(P )
P

is strictly decreasing in
P , and in turn, the objective in (4.68) is strictly decreasing in each %k. To show the
convexity more effort is needed. Since each element of the series (4.68) is equal to

1
(
ck(P )
P

)2

− 1
=

(√
αkβk −

√
(αk + P )(βk + P )

)2 − P 2

(αk − βk)2
, (4.71)

the second derivative of each element is given by

√
αkβk

2
√

(αk + P )3(βk + P )3
> 0 , P ∈ R+ . (4.72)

From this result, the objective in (4.68) is convex, and even jointly convex, with respect
to each %k. Since the objective is convex and strictly decreasing with respect to each %k,
a stationary point on the range 0 < %k < Pmax cannot exist. If there were a stationary
point defined by (%̃1, %̃2, %̃3, . . . , %̃K), then the addition of an ε > 0 to the slack variable
%̃k1 , which has the smallest slope among all considered slack variables, and subtraction
of the same amount ε from the slack variable %̃k2 , which has the greatest slope among
all considered slack variables, would lead to a greater value of the objective, because
of its monotonicity and convexity. However, this would contradict the existence of a
stationary point on the range 0 < %k < Pmax. Hence, the optimization of the maximiza-
tion problem yields a unique optimal value for each slack variable on the boundary of
its feasible set. Furthermore, the optimal solution for the slack variable ξ is zero, i.e.,
ξ? = 0, due to monotonicity of the objective (4.68) with respect to the number of SNs.
This means that the first K̃ − 1 SNs operate on Pmax, the K̃th SN operates on the
remaining power Premain := Ptot − (K̃ − 1)Pmax with 0 < Premain ≤ Pmax, while all other
SNs stay idle. Consequently, the optimal power allocation method is simply described
as follows.

First, all SNs are re-indexed to satisfy the inequality chain

ck(Pmax) ≤ ck+1(Pmax) , k ∈ FK−1 . (4.73)
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In turn, the first K̃ − 1 SNs are kept fix while the remaining SNs are re-indexed again
to satisfy the inequality chain

ck(Premain) ≤ ck+1(Premain) , k ∈ FK−1 \ FK̃−1 . (4.74)

Then, we can conclude

(%?1, . . . , %
?
K̃−1

, %?
K̃
, %?

K̃+1
, . . . , %?K) = (0, . . . , 0, Pmax − Premain, Pmax, . . . , Pmax) . (4.75)

From (4.24), (4.29), (4.30), (4.38), (4.67) and (4.68), we infer

V ? =

[
1

r2
rms

(
1

(
cK̃(Premain)

Premain

)2

− 1
+

K̃−1∑

k=1

1
(
ck(Pmax)
Pmax

)2

− 1

)]−1

, (4.76)

ũ?k =

√( αkβk
αk + βk + Pmax

)2

+
αkβkPmax

αk + βk + Pmax

− αkβk
αk + βk + Pmax

, k ∈ FK̃−1 , (4.77)

ũ?
K̃

=

√( αK̃βK̃
αK̃ + βK̃ + Premain

)2

+
αK̃βK̃Premain

αK̃ + βK̃ + Premain

− αK̃βK̃
αK̃ + βK̃ + Premain

, (4.78)

u?k =

√
ũ?k
M0

, k ∈ FK̃ , (4.79)

X?
k =

ũ?k(Pmax + αk)

αk + ũ?k
, W ?

k =
αk(Pmax − ũ?k)

αk + ũ?k
, k ∈ FK̃−1 , (4.80)

X?
K̃

=
ũ?
K̃

(Premain + αK̃)

αK̃ + ũ?
K̃

, W ?
K̃

=
αK̃(Premain − ũ?K̃)

αK̃ + ũ?
K̃

, (4.81)

|v?k| =
V ?ũ?k

rrms|hk|
√
ũ?k + βk

√
αkβk − (ũ?k)

2
, k ∈ FK̃ , (4.82)

and
|v?k| = X?

k = W ?
k = u?k = 0 , k ∈ FK \ FK̃ . (4.83)

The number K̃ of active SNs results from the inequality 0 < Premain ≤ Pmax, that must
be fulfilled for the last SN, and is given by the smallest integer number for which the
inequality

K̃ ≥ Ptot

Pmax

(4.84)

holds.
Note that in the considered case, the fusion rule may be more complicated than

in (4.46), since more SNs are active in general. On the other hand, the fusion rule may
be less complicated than that from Subsection 4.2.3, because not all SNs are possibly
active.

In summary, equations (4.75)–(4.84) and (4.21) are the optimal solution to the power
allocation problem subject to both types of constraints. They are hence the main
contribution of the present subsection.

Note that because of the same argumentation as in Subsection 4.2.2 and 4.2.3, the
global optimality of the obtained results is ensured.
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4.2.6 A numerical access

As mentioned before, the optimization problem in Subsection 4.2.1 is a signomial pro-
gram and as we have demonstrated in Subsection 4.2.5 its general optimal solution
is quite hard to work out. The main difficulty of dealing with optimization prob-
lems like (4.13), (4.47) and (4.60) is the absence of a specific mathematical structure,
e.g., monotonicity, convexity and higher order properties. The absence of a specific
mathematical structure exacerbates also a numerical access to the optimal solution
and a considerable effort is thus needed for solving all aforementioned optimization
problems, see [58]. In the current subsection, we provide a proper numerical method
to obtain iteratively the optimum of the general optimization problem, discussed in
Subsection 4.2.5.

In particular, the optimization problem considered in (4.60) is rewritten such that
to obtain a sequential convex program (SCP), which in turn can easily be solved by
standard numerical tools like MATLAB® [59] with the aid of CVX [60]. Our approach
is based on the substitution of all variables by

uk = eu
′
k , |vk| = ev

′
k , |wk| = ew

′
k , k ∈ FK , (4.85)

where all new variables are real valued. Then an equivalent optimization problem
of (4.61) is given by

minimize
u′, v′, w′

∑

k∈FK

e2v′k
(
e2u′k |hk|2M0 +N0

)
,

subject to
∑

k∈FK

eu
′
k+v′k+w′k |gkhk| = 1 ,

∑

k∈FK

(
1 + r2

rms|gk|2e2u′k
)
e2w′k +M0e2u′k ≤ Ptot ,

(
1 + r2

rms|gk|2e2u′k
)
e2w′k +M0e2u′k ≤ Pmax , k ∈ FK ,

u′, v′, w′ ∈ RK ,

(4.86)

where the equality constraint is not an affine function. To convexify the above problem,
we linearize the equality constraint and obtain the SCP

minimize
u′n,v

′
n,w

′
n

∑

k∈FK

e2v′k,n
(
e2u′k,n|hk|2M0 +N0

)
,

subject to
∑

k∈FK

eδk,n−1
(
1 + δk,n − δk,n−1

)
|gkhk| = 1 ,

∑

k∈FK

(
1 + r2

rms|gk|2e2u′k,n
)
e2w′k,n +M0e2u′k,n ≤ Ptot ,

(
1 + r2

rms|gk|2e2u′k,n
)
e2w′k,n +M0e2u′k,n ≤ Pmax , k ∈ FK ,

u′n, v′n, w′n ∈ RK ,

(4.87)
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where the auxiliary variable δn := u′n + v′n + w′n is used. The counting index n ∈ N
thereby represents the nth solution of the SCP (4.87) with arbitrary feasible initial-
values u′0, v′0 and w′0. The value of the objective after the nth iteration is denoted by
Vn. For sufficiently large n and an accurate choice of initial-values, we expect that the
solution of (4.87) converges to the solutions derived in Subsection 4.2.5 which means
Vn −→

n7→∞
V ?.

0 5 10 15 20 25 30 35 40

10
0

10
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Ptot

V �
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σ2

g = 4
σ2
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M0 = 2/3
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h = 4
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h = 1
N0 = 6
N0 = 2/3
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Figure 4.3: The behavior of V ? from equation (4.76) with respect to Ptot is visualized
together with the numerical results obtained by the computation of the SCP (4.87).
All curves show a decreasing property in Ptot. The results of the SCP for sufficiently
large number of iterations are equivalent to the closed-form solutions. In order to
show a wide range of different cases, we simulate a reference curve with the default
parameters K = 20, Pmax = 2, r2

rms = 1, E [|gk|2] = 2 ∀k, E [|hk|2] = 2∀k, M0 = 2
and N0 = 2. We usually create a new curve by changing only the value of a single
parameter which is given in the legend.

In Figure 4.3, both analytical and numerical results for the optimal objective re-
spectively obtained by (4.76) and (4.87) are presented. The SCP is calculated with
three criteria of termination. The first one is a minimum number of iterations which
is achieved for n ≥ 8. The second criterion is a feasibility check and is fulfilled by
|1−

∑
k∈FK

eδk,n−1
(
1 + δk,n − δk,n−1

)
|gkhk| | ≤ 10−4. The last one is a check of conver-

gency and is determined by the relative value condition |Vn − Vn−5| ≤ Vn · 10−3. All
above criteria are based on experiences in this field. Furthermore, each SCP point is
calculated with three randomly and independently generated initial-values, where at
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the end of each three runs the best achieved result is depicted. Since the precision of
the numerical solutions are very high, due to the strict termination criteria from above,
all SCP points fall onto the analytical curves. This coincidence reinforces the statement
for global optimality of the analytical results on the one hand, and the convergence of
the numerical method on the other hand.

4.2.7 Discussion of the solutions
In the case Pmax < Ptot ≤ KPmax from Subsection 4.2.5 the overall system performance
is reduced because of two reasons. First, the SNR of each SN is reduced compared to the
results from Subsection 4.2.2, due to the output power-range limitation by Pmax < Ptot.
Second, not all SNs can in general be active, due to the sum-power limitation by
Ptot ≤ KPmax, such that the system performance is weaker compared to the results
of Subsection 4.2.3. Hence, the value in (4.76) is in general greater than the ones
in (4.40) and (4.56). This behavior is not surprising and the performance reduction
was predictable, since we have included more restrictions into the optimization problem.
Note that all optimal solutions from Subsections 4.2.2, 4.2.3 and 4.2.5 are different to the
well-known water-filling solution, see [44]. The difference to the water-filling solution
emerges from the fact that the information flow over each effective path, consisting
of a single SN, its sensing channel, the modest signal processing of the same SN, and
its communication channel followed by the associated weight in the fusion center, is
adjustable due to the power optimization. Thus, on the one hand, the diversity of each
effective path is not predetermined such that the water-filling solution cannot hold in
its general form. On the other hand, the diversity of best effective paths is amplified in
comparison to the diversity of poorest effective paths because of the optimal solution
to the power allocation.

In practice, the value of each ck(Pmax) is in general unique such that the inequality
chain ck(Pmax) < ck+1(Pmax) for all k ∈ FK−1 holds. In this case, the optimal value
of the objective (4.76) is decreasing with respect to both Ptot and Pmax. If Pmax is
fixed and Ptot varies in the range Pmax ≤ Ptot ≤ KPmax, then the optimal value of the
objective (4.76) is decreasing with respect to Ptot because the SNR of the whole sensor
network is increasing with Ptot. The best situation is achieved only when all SNs are
active, i.e., Ptot = KPmax. In contrast, if Ptot is fixed and Pmax varies in the range
1
K
Ptot ≤ Pmax ≤ Ptot, then the optimal value of the objective (4.76) is decreasing with

respect to Pmax because the capability of each SN is increasing with Pmax. The best
situation is achieved only when a single SN is active, i.e., Pmax = Ptot.

In a practical application, the value of Pmax is fixed and Ptot can suitably be adjusted
within the extended range 0 < Ptot ≤ KPmax. In order to save energy, the value of
Ptot should be as less as possible, which means that a single SN or only a few SNs
are active. On the other hand, to accurately estimate additional quantities such as
position, velocity, acceleration, angle of movement, and other important properties and
parameters of the target object, more than few SNs are needed to be active. Hence,
if the number K̃ of active SNs is satisfactory to accurately estimate all important
parameters of the target, then the best energy-aware value of Ptot is equal to K̃Pmax.
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In turn, the value of Pmax should be large enough to achieve a desired classification or
detection probability. With this setup, all three system parameters K̃, Pmax and Ptot

are optimally determined for an energy-aware system design.

4.3 Geometric Position of Most Reliable Sensor
Nodes

In this section, we are aiming for an analytic-geometric solution to determine regions
containing only the subset of most reliable and therefore active SNs. In general, as
depicted in Figure 4.4, only a single region, not necessary a connected space, exists
such that all containing SNs are active and correspond with the optimum power alloca-
tion. The Figure 4.4 shows a cut through the disturbance-intensity (4.38) yielding the
optimum selection area of SNs in a 2-dimensional case, where all SNs, the fusion center
and the target object are placed on a single plane. By assuming a uniform distribution
of SNs and a simple channel model without multipath and fading effects, we are able to
determine a 3-dimensional region for identifying the most reliable SNs. Although the
mathematical integration for determining the number of active SNs within the corre-
sponding geometrical subspace is challenging, we analytically derive novel relationships
in closed-form between the number of active SNs, their reliability and geometrical po-
sitions. Since these results are cumbersome in practice, we propose in addition an
accurate and simple approximation for the mentioned relationship. Our insights might
be used for replacing the selection procedure or for pre-selection of most reliable SNs
to limit the complexity of subsequent algorithms.

4.3.1 Identifying the best sensor nodes
In the current subsection, we again consider the optimization problem from Subsec-
tion 4.2.5 and recapitulate selected results first. Without loss of generality, we set the
useful range of Pmax and Ptot equal to 0 < Pmax ≤ Ptot ≤ KPmax and assume a quantized
sum-power constraint, which is described by Ptot

Pmax
∈ N or equivalently Premain = Pmax,

for reasons of simplicity. If all SNs are such re-indexed that the inequality chain in (4.73)
holds, then the reliability of the best and the worst SN is described by c1(Pmax) and
cK(Pmax), respectively. Since the reliability of the first K̃ SNs, with K̃ ∈ FK , is better
than that of the remaining ones, only these K̃ SNs are active and participate in sensing
and data communication. Each of K̃ SNs receives Pmax for the sum of its sensing and
communication powers.

Based on this, the main problem of sensor selection is to sort all SNs such that the
inequality chain in (4.73) holds. Since each quantity ck(Pmax) is dependent on its |gk|
and |hk|, the geometric position of fusion center, target object and the kth-SN pre-
describe the expected value of ck(Pmax). Thus, for selecting the most reliable SNs, an
investigation of the interaction of all positions is essential. In the following, we consider
a scenario described by Figure 4.5, where the fusion center is located at the origin of
the Cartesian coordinates, the target object at the position (σ0, 0, 0), σ0 ∈ R+, and the
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Figure 4.4: A visualization of the 2-d disturbance-intensity containing the slice plane
and its projection. Active and idle sensor nodes are marked in red and gray, respec-
tively. The fusion center and the target object are marked by a square and a circle,
respectively.
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Figure 4.5: The placement of fusion center, target object and all sensor nodes in Carte-
sian coordinates.
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kth-SN at the position (σk, τk, ωk) ∈ R3. If we only consider the free-space path loss
without fading, then both channel coefficients of the kth-SN are described by

|gk| =
λ

4 π 2 dgk
and |hk| =

λ

4π dhk
, k ∈ FK , (4.88)

where the distance between the kth-SN to the fusion center is described by dhk ∈ R+

while the distance from the kth-SN to the target object and back to the same SN is
described by 2dgk ∈ R+. The value λ is the signal wavelength. Both Euclidean distances
dgk and dhk are described by

dgk :=
√

(σk − σ0)2 + τ 2
k + ω2

k and dhk :=
√
σ2
k + τ 2

k + ω2
k , k ∈ FK . (4.89)

By incorporating all above equations into (4.38), we obtain

ck(P ) =
√
a2 [(σk − σ0)2 + τ 2

k + ω2
k] ·
√
b2 [σ2

k + τ 2
k + ω2

k]

+
√
P + a2[(σk − σ0)2 + τ 2

k + ω2
k] ·
√
P + b2[σ2

k + τ 2
k + ω2

k] ,
(4.90)

where both parameters a and b are independent from index k and are given as

a2 :=
M0 43 π2

λ2 r2
rms

> 0 and b2 :=
N0 42 π2

λ2
> 0 . (4.91)

For a given c and Pmax, with cK̃(Pmax) < c ≤ cK(Pmax), the associated subspace S(c),
in which the most reliable SNs are included, is described with the aid of (4.38) by

S(c) :=
{

(σ, τ, ω) ∈ R3 |
√
a2 [(σ − σ0)2 + τ 2 + ω2] ·

√
b2 [σ2 + τ 2 + ω2]

+
√
Pmax + b2[σ2 + τ 2 + ω2] ·

√
Pmax + a2[(σ − σ0)2 + τ 2 + ω2] ≤ c

}
.

(4.92)

The surface of the subspace (4.92) describes a 2-dimensional submanifold, or equiv-
alently a 3-dimensional subspace of R3, which in turn is described by a multivariate
polynomial with a degree equal to four, in three variables, and five parameters. Thus,
it is analytically challenging to calculate its volume in closed-form, since for this calcu-
lation the evaluation of all polynomial roots is needed to obtain the integration bound-
aries. Nevertheless, in the following, we set out to obtain a relationship between the
number K̃ of active SNs and corresponding values of the disturbance-intensity ck(Pmax)
by calculating the volume of (4.92).

At first, we reduce the number of parameters by the substitutions Pa := Pmax/a
2,

Pb := Pmax/b
2 and cab := c/(a · b). Second, we reduce the number of variables for

integration by transforming the coordinate system with the aid of ξ2 := τ 2 + ω2, since
S is symmetric with respect to rotations in the τ -ω-plane. Hence, we obtain equivalent
forms

S(cab) =
{

(σ, ξ, ϕ) ∈ R×R+ × [0, 2π] |
√

(σ − σ0)2 + ξ2 ·
√
σ2 + ξ2

+
√
Pb + σ2 + ξ2 ·

√
Pa + (σ − σ0)2 + ξ2 ≤ cab

}

= [0, 2π]×
{

(σ, ξ) ∈ R×R+ |
√

(σ − σ0)2 + ξ2 ·
√
σ2 + ξ2

+
√
Pb + σ2 + ξ2 ·

√
Pa + (σ − σ0)2 + ξ2 ≤ cab

}
=: [0, 2π]× S̃(cab) .

(4.93)

70



4.3 Geometric Position of Most Reliable Sensor Nodes

In order to calculate the corresponding number K̃ of SNs, which are members of the
subspace S(cab), an integration over the sensor distribution in this subspace is needed.
If we assume that all SNs are uniformly distributed, with a density of ρ SNs per volume-
unit, then we are analytically able to calculate the corresponding integrals

K̃(cab) :=

∫

S(cab)

ρ dσ dτ dω = 2π

∫

S̃(cab)

ρ ξ dσ dξ (4.94)

in closed form. However, for the integration all proper boundaries are needed. These
boundaries are equivalent with some real roots of the equation
√

(σ − σ0)2 + ξ2 ·
√
σ2 + ξ2 +

√
Pb + σ2 + ξ2 ·

√
Pa + (σ − σ0)2 + ξ2− cab = 0 . (4.95)

By some algebra, we infer four real roots for ξ while only one of them can be satisfied
by the range of σ and is in addition always positive. The corresponding root is given
by

ξ2
0(σ) :=

(Pa + Pb) · [2c2
ab − 2PaPb − σ0(Pa − Pb) · (2σ − σ0)]

2(Pa + Pb)2 − 8c2
ab

+
(2σ2 + σ2

0 − 2σσ0) · [4c2
ab − (Pa + Pb)

2]

2(Pa + Pb)2 − 8c2
ab

−
4cab

√
c2
ab − (Pa − 2σσ0 + σ2

0) · (Pb + 2σσ0 − σ2
0) ·
√
c2
ab − PaPb

2(Pa + Pb)2 − 8c2
ab

.

(4.96)

Furthermore, we infer four roots for σ which define possible integration boundaries over
σ and in turn yield real positive values for ξ2

0(σ). The first two roots of σ are always
real while the domain of the other two is real or complex depending on certain choices
of parameters. These roots are given as

σ1 :=
2σ0(Pb + cab)−

√
c2
ab − PaPb ·

√
Pa + Pb + 2cab + σ2

0

2(Pa + Pb + 2cab)
, (4.97a)

σ2 :=
2σ0(Pb + cab) +

√
c2
ab − PaPb ·

√
Pa + Pb + 2cab + σ2

0

2(Pa + Pb + 2cab)
, (4.97b)

σ3 :=
2σ0(Pb − cab)−

√
c2
ab − PaPb ·

√
Pa + Pb − 2cab + σ2

0

2(Pa + Pb − 2cab)
(4.97c)

and

σ4 :=
2σ0(Pb − cab) +

√
c2
ab − PaPb ·

√
Pa + Pb − 2cab + σ2

0

2(Pa + Pb − 2cab)
. (4.97d)

Since the subspace S(cab) is for some certain choices of parameters a connected space
and for other choices a disconnected space, different cases for the evaluation of the
integral (4.94) are to distinguish. In summary, we obtain the following five cases.
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1. If cab ≤ min
{√

(Pb + σ2
0)Pa,

√
(Pa + σ2

0)Pb
}

, the value of cab is too small to obtain
any positive volume:

⇒ K̃(cab) = 0 (4.98a)

2. If min
{√

(Pb + σ2
0)Pa,

√
(Pa + σ2

0)Pb
}
< cab ≤ max

{√
(Pb + σ2

0)Pa,
√

(Pa + σ2
0)Pb

}

and Pa > Pb, the subspace S is a disconnected space and separated in two regions,
where only one of both regions has a positive real volume:

⇒ K̃(cab) = πρ

σ4∫

σ1

ξ2
0(σ) dσ (4.98b)

3. If min
{√

(Pb + σ2
0)Pa,

√
(Pa + σ2

0)Pb
}
< cab ≤ max

{√
(Pb + σ2

0)Pa,
√

(Pa + σ2
0)Pb

}

and Pa < Pb, the structure of the subspace S is analogous to the previous case:

⇒ K̃(cab) = πρ

σ2∫

σ3

ξ2
0(σ) dσ (4.98c)

4. If max
{√

(Pb + σ2
0)Pa,

√
(Pa + σ2

0)Pb
}
< cab ≤ Pa+Pb+σ2

0

2
and σ2

0 > |Pb − Pa|, the
disconnected subspace S consists of two regions and has two positive real volumes:

⇒ K̃(cab) = πρ

σ4∫

σ1

ξ2
0(σ) dσ + πρ

σ2∫

σ3

ξ2
0(σ) dσ (4.98d)

5. If otherwise, the subspace S is a connected space with a single positive volume:

⇒ K̃(cab) = πρ

σ2∫

σ1

ξ2
0(σ) dσ . (4.98e)

Note that for the above cases the unbounded integral
∫
ξ2

0(σ) dσ is given in closed-
form with the aid of [29, p. 95, eq. 2.262.1] and [29, p. 94, eq. 2.261]. Unfortunately,
after incorporating both integration boundaries, this solution becomes too long such
that we omit the presentation of this integration result in this thesis, for the sake of
compactness.

Since the obtained results in (4.98) are lengthy, we present in addition the approxi-
mation

K̃(cab) ≈
πρ
√

2
(
cab −min

{√
(Pb + σ2

0)Pa,
√

(Pa + σ2
0)Pb

})3/2

3
, (4.99)

which has a simple structure and is very accurate for all cab � Pa+Pb+σ2
0

2
, without proof.

A detailed investigation of similar approximations is discussed in [12].
All equations in (4.98) analytically determine the number K̃ of active SNs as a

function of any maximum reliability value cab in closed-form. These are the main
contributions of the present subsection.
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4.4 Technical Interpretation and Visualization of Results

4.3.2 Visualization and numerical evaluation
In Figure 4.6, the relationship between the number K̃ of active SNs and the maxi-
mum reliability cab is shown for two different sets of parameters. All markers represent
numerical evaluations while all continuous curves represent analytical results. Further-
more, the approximation in (4.99) is depicted which converges very fast for large values
of cab.

0 10 20 30 40
0

100

200

300

cab

K̃

Pa = 1, Pb = 15, σ0 = 2

Pa = 1, Pb = 2, σ0 = 5

numerical evaluations

Figure 4.6: Number K̃ of active sensor nodes, which are included in the subspace S(cab),
as a function of the maximum reliability cab for ρ = 1. Two different sets of parame-
ters are chosen to visualize all five cases described analytically by equations in (4.98).
Markers show numerical evaluations of (4.94) for comparison. Equation (4.99) is also
visualized by two dashed curves for the same two sets of parameters.

In order to develop an imagination for the subspace S, its surface is exemplary de-
picted in Figure 4.7a. As can be seen, this subspace has a complicated surface compared
to an ellipsoid. Hence, the geometric region of most reliable SNs is highly dependent
on the specific values for the parameters a, b, Pmax and σ0.

In Figure 4.7b the ω-ordinate is fixed to ω = 0 in order to show the effect of the
parameter c over the main slice plane of S. Because of a certain choice of the parameters
a, b, Pmax and σ0, it is obvious that the regions become asymmetric and hence for small
values of c each single subspace is divided into two parts. This behavior is very clearly
shown in Figure 4.4, as well.

4.4 Technical Interpretation and Visualization of
Results

As derived in Subsection 4.2.5, the power allocation problem in its general form is
analytically solved in closed-form. For achieving these results, we only have focused
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Figure 4.7: Visualization of the subspace S for the specific choice of a = 0.2, b = 0.05,
Pmax = 0.001 and σ0 = 2.

on the mathematical analysis, synthesis and methods. However, it is difficult to gain
insight into the technical analysis, synthesis and description, due to the presented form.
In this section, we introduce physical parameters in order to highlight important aspects
of the underlying system and technically interpret the optimal solution of the power
allocation problem. Following this, selected results are visualized by corresponding
curves.

4.4.1 Measurable parameters and technical interpretation of
results

Analogous to Subsection 3.3.1, we denote the signal-to-noise ratio at the receiver of
each SN and the signal-to-noise ratio at the receiver of the fusion center respectively
by

SNRS
k(W ) :=

Wr2
rms|gk|2

M0

and SNRC
k (X) :=

X|hk|2

N0

, k ∈ FK , (4.100)

for all 0 < W ≤ min{Pmax, Ptot} and 0 < X ≤ min{Pmax, Ptot}. Alternatively, the
signal-to-noise ratio at the receiver of the fusion center can be described by both
SNRS

k(W ) and SNRC
k (X) as

SNRk(W,X) :=
E [|wkrigkukhk|2]

E [|mkukhk + nk|2]
=

SNRS
k(W ) · SNRC

k (X)

1 + SNRS
k(W ) + SNRC

k (X)
, k ∈ FK . (4.101)

The ratio SNRk(W,X) is the signal-to-noise ratio of the kth path from the kth SN to
the target, back to the same SN, and from there to the fusion center. Note that all
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above definitions depend on the specific values of W and X. By substitution of αk and
βk by

αk =
P

SNRS
k(P )

and βk =
P

SNRC
k (P )

, P > 0 , k ∈ FK , (4.102)

and incorporating all these into equation (4.23), we obtain a signal-to-noise ratio at the
output of the fusion center as given by

SNRtot :=
r2

rms

V
=
∑

k∈FK

SNRS
k(Wk) · SNRC

k (Xk)

1 + SNRS
k(Wk) + SNRC

k (Xk)
=
∑

k∈FK

SNRk(Wk, Xk) . (4.103)

This means that after optimization of the variables vk, only the path signal-to-noise
ratios SNRk are important at the fusion center. In this way, the minimization of the
mean square deviation in (4.12) leads to the maximization of the total signal-to-noise
ratio at the output of the fusion center. This is equivalent with

maximize
X,W

∑

k∈FK

SNRS
k(Wk) · SNRC

k (Xk)

1 + SNRS
k(Wk) + SNRC

k (Xk)

subject to
∑

k∈FK

Xk +Wk ≤ Ptot , Xk +Wk ≤ Pmax , k ∈ FK , X ∈ RK
+ , W ∈ RK

+ .

(4.104)

In contrast to the case described in Subsection 3.3.1, the above maximization problem
is neither a convex nor a concave optimization problem such that more effort is needed
to solve it as shown in Subsection 4.2.5. It is to mention, that the above maximization
problem is symmetric in SNRS

k(Wk) and SNRC
k (Xk) and thus it can be expected that

all results behave also symmetric in SNRS
k(Wk) and SNRC

k (Xk). After maximization
we obtain the results

ũ?k =
Pmax

1 +
√

1 + SNRS
k(Pmax) + SNRC

k (Pmax) + SNRS
k(Pmax) · SNRC

k (Pmax)
, k ∈ FK̃−1 ,

(4.105)

ũ?
K̃

=
Premain

1 +
√

1 + SNRS
K̃

(Premain) + SNRC
K̃

(Premain) + SNRS
K̃

(Premain) · SNRC
K̃

(Premain)
,

(4.106)

SNR?
tot :=

r2
rms

V ?
=

SNRS
K̃

(Premain) · SNRC
K̃

(Premain)
(√

1 + SNRS
K̃

(Premain) +
√

1 + SNRC
K̃

(Premain)
)2

+
K̃−1∑

k=1

SNRS
k(Pmax) · SNRC

k (Pmax)
(√

1 + SNRS
k(Pmax) +

√
1 + SNRC

k (Pmax)
)2 ,

(4.107)
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X?
k = Pmax ·

ũ?k
Pmax

(
1 + SNRS

k(Pmax)
)

1 +
ũ?k
Pmax

SNRS
k(Pmax)

, W ?
k = Pmax ·

1− ũ?k
Pmax

1 +
ũ?k
Pmax

SNRS
k(Pmax)

, k ∈ FK̃−1,

(4.108)
and

X?
K̃

= Premain ·
ũ?
K̃

Premain

(
1 + SNRS

K̃
(Premain)

)

1 +
ũ?
K̃

Premain
SNRS

K̃
(Premain)

, W ?
K̃

= Premain ·
1− ũ?

K̃

Premain

1 +
ũ?
K̃

Premain
SNRS

K̃
(Premain)

,

(4.109)
where an equivalent definition for the disturbance-intensity ck, the so called reliability-
function, given as

c̃k(P ) :=

√
c2
k(P )

P 2
− 1 =

√
1 + SNRS

k(P )

SNRS
k(P ) · SNRC

k (P )
+

√
1 + SNRC

k (P )

SNRS
k(P ) · SNRC

k (P )
, k ∈ FK ,

(4.110)
for all 0 < P ≤ min{Pmax, Ptot}, is used. The best choice for P is to be equal to
min{Pmax, Ptot} or equal to Premain depending on k, because in this case no SN will
exceed its power limitation Pmax. The advantage of the new definition (4.110) is that
this equivalent definition is easily comparable with the reliability-function in (3.72). In
contrast to (3.72) the reliability in (4.110) is symmetric in both SNRS

k(P ) and SNRC
k (P ).

Because of this distinction, the optimal method for power allocation is in case of passive
networks similar to water-filling while in case of active networks is not water-filling. The
interpretation behind the optimal power allocation is that at the globally optimum the
active sensor network combines independently all signal-to-noise ratios SNRS

k(Pmax),
SNRC

k (Pmax), SNRS
k(Premain) and SNRC

k (Premain) of all active SNs, with fixed powers
Pmax and Premain, as demonstrated in (4.107). In turn, at the globally optimum only
the signal-to-noise ratios SNRS

k(Pmax), SNRC
k (Pmax), SNRS

k(Premain) and SNRC
k (Premain)

are needed to determine the total signal-to-noise ratio SNR?
tot at the fusion center.

Hence, one only needs the equation (4.107) with (4.110) in order to investigate or to
discuss the entire sensor network in a simple manner. In a practical application, the
consecutive steps in Table 4.1 are to perform for an optimal allocation of power.

Since SNR?
tot is again the sum of the K̃ largest observations in the sample of K

independent observations SNRk, the distribution of SNR?
tot is amenable by the theory of

order statistics. As already mentioned in Subsection 3.3, for a wide range of continuous
distributions of the samples SNRk, the distribution of SNR?

tot can accurately be fitted
by the Fréchet distribution.

4.4.2 Visualization of results
Analogous to Subsection 3.3.2, we assume that all channel coefficients are complex
normal distributed such that resulting signal-to-noise ratios are gamma distributed.
Furthermore, we assume Ptot

Pmax
∈ N such that Premain = Pmax. To visualize the total

signal-to-noise ratio (4.107), we perform a Monte-Carlo simulation with 100000 itera-
tions per simulation point. All signal-to-noise ratios SNRS

k(Pmax) and SNRC
k (Pmax) are
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Table 4.1: Consecutive steps for an optimal allocation of power in active sensor net-
works.

Step Number Step Description

1. Choose W = min{Pmax, Ptot} for the sensing power of each SN,

2. choose X = W for the communication power of each SN,

3. measure each signal-to-noise ratio SNRS
k(W ) at the input of the

corresponding SN,

4. measure each signal-to-noise ratio SNRC
k (X) at the input of the

fusion center,

5. determine αk and βk by relationships in (4.102),

6. determine c̃k(Pmax) by (4.110) and sort all SNs such that the
corresponding values of c̃k(Pmax) are in an ascending manner,

7. calculate the smallest number K̃ of active SNs for which the
inequality K̃ ≥ Ptot

Pmax
holds,

8. calculate the remaining power by Premain = Ptot − (K̃ − 1)Pmax,

9. use (4.105) and (4.108) to obtain the optimal powers X?
k and W ?

k

for the first K̃ − 1 SNs,

10. exclude the first K̃ − 1 SNs from further considerations,

11. choose W = X = Premain for the sensing and communication power
of the remaining SNs,

12. measure each signal-to-noise ratio SNRS
k(Premain) and SNRC

k (Premain)
at the input of the remaining SNs and at the fusion center,
respectively,

13. determine αk and βk by relationships in (4.102) for all k > K̃ − 1,

14. determine c̃k(Premain) by (4.110) and sort again all remaining SNs
such that the corresponding values of c̃k(Premain) are in an
ascending manner,

15. use (4.106) and (4.109) to obtain the optimal powers X?
K̃

and W ?
K̃

for the last active SN,

16. in order to estimate the current quality of data fusion the
signal-to-noise ratio in (4.107) can in addition be calculated.
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randomly generated for each simulation step with the densities G(1, σ2
s) and G(1, σ2

c ),

respectively. Note that σ2
s and σ2

c are equal to Pmax · E
[ r2rms|gk|2

M0

]
and Pmax · E

[ |hk|2
N0

]
,

respectively, in which the expectation is performed over all k. By the aid of these
signal-to-noise ratios, we apply consecutively the steps 5. to 16. from Table 4.1 to ob-
tain the corresponding value of SNR?

tot in each simulation step. In Figures 4.8 and 4.9
the expected value of SNR?

tot

K
, with expectation over all simulation steps, is depicted. In

particular, for different choices of K̃
K
∈ { 1

10
, 2

10
, 4

10
, 6

10
, 8

10
, 10

10
} and K ∈ {10, 1000} the

behavior of SNR?
tot

K
with respect to σ2

s and σ2
c is shown. As can be seen, the deviation

of SNR?
tot

K
with respect to σ2

c is equal to the deviation with respect to σ2
s . This behav-

ior results from the symmetric property of SNR?
tot with respect to SNRS

k(Pmax) and
SNRC

k (Pmax). Although the behavior of SNR?
tot is dependent on both K and K̃, the

behavior of SNR?
tot

K
is virtually dependent on the ratio K̃

K
.

In order to highlight an important insight, we consider the following example and look
at both Figures in 4.9a and 4.9b. Note that all curves in 4.8 and 4.9 behave apparently
convex in both σ2

s and σ2
c . Furthermore, all curves behave apparently increasing with

respect to K̃ while K is kept constant. Now, we consider the transition from K̃ = 100 to
K̃ = 200 while K = 1000 is kept constant. This transition, which doubles the number
of active SNs, is performed by one of the following ways. The first way is to double
the total power Ptot in which the values of σ2

s and σ2
c will remain unchanged while the

value of SNR?
tot

K
will be improved, due to its monotonicity in K̃. The second way is to

halve the power constraint Ptot in which both σ2
s and σ2

c will be reduced to one half
and the value of SNR?

tot

K
will be worsen, due to its convexity in σ2

s and σ2
c . As can be

seen, this example is valid for any transition in which K̃ is increased while K is kept
constant. This fact reinforces the discussion in Subsection 4.2.7.

In order to visualize the density of SNR?
tot

K
, we perform the above described Monte-

Carlo simulation with the same parameter setup. At the end of the simulation, all
100000 observations of SNR?

tot

K
are used to generate a corresponding histogram with 30

bins. Note that the last bin contains all tail observations. In addition, all 100000
observations are applied to fit the histogram by both the Fréchet and the gamma den-
sity, where all density parameters are calculated with the maximum likelihood method.
Furthermore, the sample mean of the 100000 observations is calculated for reasons of
comparison. For selected values of involved parameters, some curves are shown in Fig-
ures 4.10 and 4.11. It is in evidence that in some cases the Fréchet density and in other
cases the gamma density is an accurate fit for the density of SNR?

tot

K
.
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4.5 Summary
The main contribution of the present chapter is to present an optimal solution to the
power allocation problem in distributed active multiple-radar systems subject to dif-
ferent power constraints. Analogously to the previous chapter, we have introduced
a system model, a linear fusion rule and a simple objective function, which enable
us to solve the power allocation problem analytically. Three different cases of power
constraints have been investigated. For a limitation of transmission power per sensor
node and a sum-power limitation as well as their combination, we have analytically
obtained optimal solutions in closed-form. Furthermore, all proposed solutions are
valid for AWGN channels as well as for frequency-flat slow-fading channels, provided
that channel state information is available at each receiver. The obtained results have
rather theoretical aspects and can be used for comparing the system performance of
sensor networks while the power consumption of the whole network is kept constant.
In addition, we analytically have derived novel relationships in closed-form between the
number of active sensor nodes, their reliability and geometrical positions. These rela-
tionships might be used for replacing a complicated procedure for sensor selections or
for pre-selection of most reliable SNs to limit the complexity of subsequent algorithms.
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Figure 4.8: Visualization of SNR?
tot

K
for K̃ ∈ {1, 2, 4, 6, 8, 10} and K = 10 over the range

1
10
≤ σ2

s ≤ 10 and 1
10
≤ σ2

c ≤ 10.
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Figure 4.9: Visualization of SNR?
tot

K
for K̃ ∈ {100, 200, 400, 600, 800, 1000} and K = 1000

over the range 1
10
≤ σ2

s ≤ 10 and 1
10
≤ σ2

c ≤ 10.
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Figure 4.10: Visualization of the density of SNR?
tot

K
for K̃ ∈ {1, 100}, K ∈ {10, 1000}

and σ2
s = σ2

c ∈ { 1
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, 1, 10}. The histogram of SNR?

tot

K
, its maximum likelihood fit by

the gamma density, and its maximum likelihood fit by the Fréchet density are shown
in cyan, red and black color, respectively. The sample mean is indicated by the blue
line to be compared with the corresponding values in Figures 4.8 and 4.9.
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Figure 4.11: Visualization of the density of SNR?
tot
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and σ2
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, 1, 10}. The histogram of SNR?
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the gamma density, and its maximum likelihood fit by the Fréchet density are shown
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line to be compared with the corresponding values in Figures 4.8 and 4.9.





5 Classification

As demonstrated in Chapters 3 and 4, we are able to separate the power allocation
problem from the classification process and optimize the power allocation indepen-
dently. We have also seen that the proposed power optimization leads to an unbiased
estimate for the actual recognition feature of the target at the output of the combiner
in the fusion center. Hence, for the classification process a decision unit is necessary
to classify the target by its estimate. This setup is illustrated in Figure 5.1. Since
classification algorithms are comprehensively investigated in the literature, we discuss
only an elementary version and show that the explicit evaluation of the classification
probability is extremely hard. The evaluation is even harder under influence of channel
fading, as we will see later.

In the following, we exemplarily consider the classification problem of target objects.
Based on the system model in Chapter 4, we utilize a distance classifier and present
the corresponding instantaneous classification probability in its integral form for the
general case, as well as closed-form equations for some particular cases. Afterwards, we
discuss the average classification probability under influence of channel fading. Finally,
we show an important relationship between the evaluation of average classification
probabilities and the evaluation of average symbol-error probabilities.

5.1 Distribution of the Estimates
In order to optimize the classification process, we need more information about statis-
tical properties of the estimates, which are observed at the input of the decision unit.
By considering (4.8) together with the identity (4.9), we obtain the equation

r̃ = ri +
K∑

k=1

(mkhku
?
k + nk)v

?
k

︸ ︷︷ ︸
white Gaussian noise

, i ∈ FI . (5.1)

This equation shows that first the input signal r̃ is unbiased for each i, because all
noise signals mk and nk are assumed to be zero mean, and second it has a Gaussian
distribution, due to Gaussian distribution of all noise signals. Note that the coherence
time of all channels is assumed to be much longer than the duration of each classification
process, i.e., all channel coefficients hk are assumed to be static during the whole
classification process and thus cannot influence the signal distribution. The input of
the decision unit is hence a noisy version of the actual reflection coefficient ri, where the
associated additive noise is complex-valued and Gaussian distributed with zero-mean.

85



5 Classification

yK

y1

r̃

Fusion Center

r̂

Figure 5.1: System model of combiner and decision unit.

In addition, if we consider definition (4.12) and use one of the results (4.40), (4.56)
or (4.76), then the corresponding covariance matrix of r̃ for each i is given as

V ?

2

(
1 0
0 1

)
. (5.2)

Note that both diagonal values are identical because both in-phase and quadrature
component of each noise signal are assumed to have the same variance. Finally, the
conditional probability density of r̃, given object i, is obtained as

fi(r) =
1

πV ?
exp

(
−|r − ri|

2

V ?

)
, r ∈ C, i ∈ FI . (5.3)

5.2 Classification Rule and Probability

Due to the simple form of the conditional densities and identical covariance matrices for
all i, we may use a distance classifier (nearest-neighbor algorithm) for the global clas-
sification rule. On the one hand, distance classifiers are easily implementable because
in the present case we deal with linear discriminant functions. On the other hand, dis-
tance classifiers are optimal and yield high classification performance [52] because they
coincide with the Bayes classifier. The corresponding classification rule is described by
the selection

î = argmin
i∈FI

|r̃ − ri| (5.4)

and in turn it follows

r̂ = rî , (5.5)
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5.3 Instantaneous Classification Probability for Particular Cases

where r̂ denotes the output of the decision unit. By applying the above decision rule,
the corresponding instantaneous probability of correct classification is well-known [52].
It is given by

I∑

i=1

P [ri]P [r̂ = ri | ri] =
I∑

i=1

πiP [r̂ = ri | ri] (5.6)

and can be calculated by ∫

r∈C

max
i∈FI

(
πifi(r)

)
dr (5.7)

for a single observation. Integral (5.7) is in general extremely hard to evaluate an-
alytically, if at all possible. However, accurate numerical solutions are attainable.
Nevertheless, the integral (5.7) can be evaluated for some special cases in terms of the
complementary error function. These cases are considered in the next section.

If the reflection coefficients are placed very close to each other in the complex plane,
then the outcome of (5.7) can sometimes be unsatisfactory. In such cases, the perfor-
mance of the target classification can be enhanced by increasing the number of obser-
vations, provided that the whole network with its parameters and the target object are
static during all observations. If we use M independent observations for each classifica-
tion process, then the corresponding instantaneous probability of correct classification
is given by ∫

r∈CM

max
i∈FI

(
πi

M∏

m=1

fi(rm)

)
dr , (5.8)

where r = (r1, r2, . . . , rM).
Note that the outcome of both integrals must finally be averaged over the position

of the target object as well as the realization of each channel coefficient. As we will see
in the next chapter, the evaluation of this average is difficult in general and hence we
will propose some useful bounds to replace the averaging.

5.3 Instantaneous Classification Probability for
Particular Cases

In this section, we show that in some particular cases the evaluation of (5.7) leads to
probabilities which are described by the complementary error function. Considering
the case of equal a-priori probability of occurrences, i.e., πi = 1

I
for all i ∈ FI , we can

use the densities in (5.3) and rewrite the integral (5.7) as

1

I

∫

r∈C

max
i∈FI

(
fi(r)

)
dr =

1

IπV ?

∫

r∈C

exp

(
− 1

V ?
min
i∈FI

(
|r − ri|2

))
dr . (5.9)

As can be easily seen, the above integration is complicated because of the integrand
which contains the function min(·) combined with the Gaussian density. In order to
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simplify the integrand and thus also the integration, we determine the boundaries of
subsets in which the integrand is free from the difficulties of the function min(·). For
each pair of adjacent integration areas Di ⊆ C and Dj ⊆ C, the boundary between both
areas is given implicitly by the equation

|r − ri|2 = |r − rj|2 ⇔ <(r)<(rj − ri) + =(r)=(rj − ri) =
|rj|2 − |ri|2

2
, (5.10)

which describes a straight line in the complex plain for all i 6= j, i, j ∈ FI . Hence, each
integration area Di ⊆ C, i ∈ FI , is a polygon (Voronoi cell [61]) in the complex domain
and we may rewrite (5.9) as

1

IπV ?

∫

r∈C

exp

(
− 1

V ?
min
i∈FI

(
|r − ri|2

))
dr =

1

IπV ?

I∑

i=1

∫

r∈Di

exp

(
−|r − ri|

2

V ?

)
dr . (5.11)

Note that the subsets Di are pairwise disjoint and their union is the whole com-
plex domain. The last Integral is still challenging to evaluate, see [15, pp. 936–940].
In addition to the aforementioned assumption πi = 1

I
, if the reflection coefficients ri

are placed symmetrically on an equidistant rectangular grid such that each integra-
tion area Di is also rectangularly shaped, then we are able to define each subset by
Di = [αi, βi]× [γi, δi] ⊆ R×R, αi < βi and γi < δi. In this case, the outcome of each
integration is described by the complementary error function. Hence, the integral
in (5.11) may be written as

1

IπV ?

I∑

i=1

∫

r∈Di

exp

(
−|r − ri|

2

V ?

)
dr =

1

IπV ?

I∑

i=1

βi∫

αi

δi∫

γi

exp

(
−|ν + jω − ri|2

V ?

)
dωdν

= 1
4I

I∑

i=1

[
erfc
(
βi−<(ri)√

V ?

)
− erfc

(
αi−<(ri)√

V ?

)][
erfc
(
δi−=(ri)√

V ?

)
− erfc

(
γi−=(ri)√

V ?

)]
, (5.12)

where ν and ω denote the real and imaginary part of r, respectively.
In case of I = 2, there exist only one boundary between the reflection coefficients r1

and r2 such that the complex domain is divided into two parts. Thus, without loss
of generality, we can assume that both reflection coefficients are placed symmetrically
on the real line. Hence, the equalities =(r1) = =(r2) = 0 and <(r2) = −<(r1) = −r1,
r1 > 0 hold. By considering δi 7→ ∞, γi 7→ −∞ for i ∈ {1, 2}, and α1 7→ 0, β1 7→ ∞,
α2 7→ −∞ and β2 7→ 0, we conclude

1

2
erfc

(
−r1√
V ?

)
(5.13)

for the classification probability of correct decision from (5.12). Since for any admis-
sible reflection coefficient ri the inequality |ri| ≤ 1 holds, a basic upper bound for the
classification probability (5.13) is obtained as

1

2
erfc

(
−r1√
V ?

)
≤ 1

2
erfc

(
−1√
V ?

)
. (5.14)
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5.4 Average Classification Probability

Note that in the present case the classification probability is comparable with the
converse of the bit-error probability of BPSK-modulated signals over AWGN channels.
Inequality (5.14) shows that the maximum classification probability of correct decision
is strongly dependent on V ? and hence is also strongly dependent on the quality of the
specific method for the power allocation.

In case of I = 4, there exist at least two boundaries between the reflection coefficients
r1, r2, r3 and r4 such that the complex domain is at least divided into four equal parts.
If we assume that all reflection coefficients are placed symmetrically on both sides of
real and imaginary axes, then the equalities |=(ri)| = |<(ri)| = |r1|√

2
, i ∈ {1, 2, 3, 4}, hold.

Since in the current case the integration problem (5.12) is symmetric, we may write

1

IπV ?

I∑

i=1

βi∫

αi

δi∫

γi

exp

(
− |ν + jω − ri|2

V ?

)
dνdω

=
1

πV ?

∞∫

0

∞∫

0

exp

(
− |ν + jω − r1|2

V ?

)
dνdω =

1

4
erfc2

(
−|r1|√

2V ?

)
(5.15)

for the probability of correct classification. Again, by using the inequality |ri| ≤ 1, we
obtain the upper bound

1

4
erfc2

(
−|r1|√

2V ?

)
≤ 1

4
erfc2

(
−1√
2V ?

)
. (5.16)

Analogously, the classification probability, in case of I = 4, is comparable with the
converse of the symbol-error probability of QPSK-modulated signals over AWGN chan-
nels. Similar to the previous case, the maximum probability of correct classification
is strongly dependent on V ?, even more than in the previous case. In general, the
optimization of power allocation becomes more important as the number of different
types of objects increases.

There are some other cases, e.g., I = 16 or I = 64 with a symmetric placement of
reflection coefficients in the complex domain, in which the classification probability
can similarly to (5.14) and (5.16) be upper-bounded in terms of a complementary
error function. However, some more interesting cases, e.g., I = 3 or I = 5, are still
challenging to investigate and thus remain as open problems.

5.4 Average Classification Probability
As we have seen, in some particular cases, the instantaneous classification probability
is determined by (5.12), especially if both sensing and communication channels are
static. In contrast, if at least one of the channels is time-varying, then the average
classification probability is of importance. In these cases, the optimal value V ? is
time-varying and each realization depends on the underlying probability distribution
of corresponding channels. Assuming that the probability density of V ? is described
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by fV ?(v), the support of V ? is denoted by D ⊆ R+, and the instantaneous probability
of correct classification is given as in (5.12), we may write the average probability of
correct classification as

1
4I

I∑

i=1

∫

v∈D

[
erfc
(
βi−<(ri)√

v

)
− erfc

(
αi−<(ri)√

v

)][
erfc
(
δi−=(ri)√

v

)
− erfc

(
γi−=(ri)√

v

)]
fV ?(v) dv .

(5.17)
As an example, the average error probability with a uniform power allocation as well
as an optimized power allocation is depicted in Figure 5.2.
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Figure 5.2: Visualization of the average classification probability for I = 2 under influ-
ence of Rayleigh block-fading. The red curves represent a power optimized active
sensor network with solutions given in Subsection 4.4, while the blue curves represent
a sensor network with uniformly distributed powers. In case of K = 1, the whole to-
tal power can only be allocated to one single SN which is represented by the black
curve.
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5.4 Average Classification Probability

As one can easily see, the evaluation of the average classification probability in (5.17)
yields the following three types of integration problems. The first one is described by

∫

w∈D

erfc
(
c
√
w
)
f(w)dw , c ∈ R, (5.18)

while the more complicated ones are described by

∫

w∈D

erfc2
(
c
√
w
)
f(w)dw , c ∈ R, (5.19)

and ∫

w∈D

erfc
(
c1

√
w
)

erfc
(
c2

√
w
)
f(w)dw , c1, c2 ∈ R. (5.20)

In general, the particular evaluation of (5.18), (5.19) or (5.20) depends on the specific
type of the density f(w). In communication theory, common densities are the Nak-
agami and Rice distribution [62]. Each of them in combination with the complementary
error function cannot be integrated in closed-form. Hence, the average probability of
correct classification (5.17) can only be calculated by numerical methods if the under-
lying densities are Nakagami or Rice distributed. But numerical methods have many
disadvantages especially when the number of parameters are high. For example, so-
lutions can be difficult to interpret and often one must vary the parameters to get
a full understanding of the numerical result, or in a broader sense, theoretical state-
ments for limiting cases of involved parameters are not always easy to substantiate.
In spite of that, or precisely because of that, it is highly interesting to investigate all
three integration problems since they appear in different fields of communication the-
ory. For example, similar expressions are known for the symbol-error probability in
communication over fading channels. Furthermore, an accurate approximation of the
integrals is already sufficient in most applications. Hence, we investigate the approxi-
mation of (5.18) in the next chapter in order to simplify the evaluation of the average
classification probability as well as some related problems. A more detailed and direct
investigation of (5.19) and (5.20) is of interest and will be devoted to future works.
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6 Error Probability for
Nakagami-Distributed Fading

In the previous chapter, we have shown that the expression of the average classification
probability is similar to the expression of the average symbol-error probability in com-
munication over fading channels. Hence, investigations on the average symbol-error
probability over fading channels yield insight into the average classification probability.
In fact, practically relevant fading channels are much less understood and investigated.
The main reason is that analytical expressions become nearly intractable and require
the use of complicated functions. Thus, numerical methods are typically applied in sim-
ulations to optimize, analyze or verify a communication system, or parts of it. These
methods are indeed appropriate for many applications, but inadequate to truly under-
stand and describe the behavior of transceivers and their performance. A prominent
example is the explicit evaluation of the average error probability in signal transmission
over Nakagami- or Rice-distributed fading channels. It is mathematically challenging
to derive a closed-form equation of the average error probability from its integral rep-
resentation, if at all possible. Closed-form and analytical solutions are only known for
some special cases. In this situation, mathematical approximations by simple func-
tions are of great help and fully sufficient for most practical purposes. It is the main
purpose of the present chapter to provide such approximations in form of analytical
bounds, and at the same time guarantee a minimum deviation from the true values.
In particular, we investigate the average symbol-error probability that appears in data
communication over Nakagami-distributed fading channels. First, we present some new
identities and properties of the integral representation of the average error probability.
Second, we propose two novel analytical bounds in closed-form on the average error
probability. Our aim is to suggest a lower and an upper bound which have a sim-
ple mathematical expression and are accurate over a wide range of parameters. Both
bounds achieve a relative error of approximately less than 1.2% over the whole param-
eter set. Furthermore, users can adapt the proposed bounds to their needs in order to
obtain mathematically simpler expressions at the cost of a lower precision. Third, we
determine tight analytical upper bounds on the maximum relative error between the
proposed bounds and the true average error probability. Finally, we visualize selected
results to demonstrate the achieved accuracy.

To the best of our knowledge, the identities and bounds in this chapter are new.
They have been examined neither in the original work by Nakagami [63] nor in other
publications. The main reason is that approximating the integrand by simpler functions
is much easier than the approximation of the integral itself. Thus, in many publications
we can find approximations for the Gauss error function or for the Bessel function which
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6 Error Probability for Nakagami-Distributed Fading

are subsequently used to approximate the average error probability from the Nakagami
or Rice distribution, respectively. For instance, in [64–71] and [72] relatively good
approximations of the integrands are suggested. In general, there exists a trade-off
between improvement of integrand approximation and complication of the subsequent
integration. Some examples of sharp integrand approximations, however not including
the integration of the conditional error probability, are given in [73–75] and [76]. We
also want to mention some pioneering works, like [77–82] and [83], in which the error
probability and some corresponding approximations in terms of special functions and
finite or infinite series are investigated. These approximations are rather useful for
numerical evaluations. The approximation of the whole integral by lower and upper
bounds is an open problem, and the main objective of the present chapter.

In the next section, the average error probability is represented in its integral form.
Subsequently, we derive particular identities and properties of the integral and, as
a main result, sharp analytical upper and lower bounds. Thereafter, the maximum
relative deviation between the proposed bounds and the true integral value is also an-
alytically upper-bounded. In between, selected results are visualized by corresponding
curves.

Note that our results and proofs are based on the special ratio (2.31) and its cor-
responding inequality (2.34). Thus, the ratio τ(·) is essential throughout the entire
chapter.

6.1 Problem Description and Associated Identities
In many situations the bit or the symbol error probability is exactly described or can
be accurately approximated by the function

P (ξ) := c1 erfc(c2

√
ξ) (6.1)

with positive real constants c1 and c2 depending on the modulation scheme, where the
variable ξ denotes the signal-to-noise ratio (SNR) at the receiver. Coherently detected
M-ary PAM [84, p. 265] and BPSK [84, p. 268] are examples where the corresponding
error probability is exactly described by equation (6.1). M-ary PSK, M-ary QAM [85,
p. 180], and M-ary FSK [86, p. 230] are other examples where the corresponding error
probability can be accurately approximated by (6.1). Now, assuming that the SNR itself
is a random variable and the envelope of the channel response is Nakagami-distributed1.
Then, the average error probability (AEP) is calculated by

Pavg(m, ξ̄ ) :=

∞∫

0

P (s)
(m
ξ̄

)m sm−1

Γ(m)
exp
(
−ms

ξ̄

)
ds , (6.2)

where ξ̄ is the average value of ξ and parameter m is called fading-figure, see [88]. Re-

parameterizing in (6.2) m = p+1
2

, ξ̄ = p+1
2xc22

, s = t2

c22
, and normalizing with c−1

1 τ(p)x−
p+1
2

yields the following general integral form.

1In particular, we consider the so called Nakagami-m distribution, see also [87].
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Definition 6.1.1. For all p ∈ R, −1 < p <∞2 and for all x ∈ R+, we define the Beta-
Nakagami Integral (BeNaI) by

g(p, x) :=
(p+ 1)

√
π

Γ
(
p+2

2

)
∞∫

0

tp e−xt
2

erfc(t)dt . (6.3)

Note that the normalization factor yields g(p, 0) = 1 which results from the identity3

∞∫

0

tp erfc(t)dt =
Γ
(
p+2

2

)

(p+ 1)
√
π
. (6.4)

Hence, the relationship between (6.2) and (6.3) is given by

Pavg

(p+ 1

2
,
p+ 1

2xc2
2

)
=
x

p+1
2 c1

τ(p)
g(p, x) . (6.5)

The AEP and thus also the BeNaI are usually evaluated numerically. In order to
decrease computational effort and to improve numerical accuracy, we deduce new iden-
tities in the following.

Lemma 6.1.2. For all n ∈ N, the nth partial derivative of g(p, x) with respect to x is
given by

g(n)(p, x) :=
∂ng(p, x)

∂xn
= (−1)n

p+ 1

p+ 1 + 2n
g(p+ 2n, x)

n∏

m=1

p+ 2m

2
. (6.6)

In particular, it leads to

g′(p, x) :=
∂g(p, x)

∂x
= −p+ 1

2

p+ 2

p+ 3
g(p+ 2, x) . (6.7)

Proof. Differentiating g(p, x) n-times with respect to x and using the identity in (2.3)
gives

g(n)(p, x) = (−1)n
(p+ 1)

√
π

Γ
(
p+2

2

)
∞∫

0

tp+2n e−xt
2

erfc(t)dt

= (−1)n
Γ
(
p+2

2
+ n
)

Γ
(
p+2

2

) p+ 1

p+ 1 + 2n
g(p+ 2n, x)

= (−1)n
p+ 1

p+ 1 + 2n
g(p+ 2n, x)

n∏

m=1

p+ 2m

2
.

(6.8)

2The domain of p may be extended to {p ∈ R | p > −1} ∪ {∞}, and therewith, all results can be
proven by concepts of uniform integrability. But this extension is pointless for the purpose of the
present work and hence is not considered.

3Identity (6.4) is well-known and was first published in [89, p. 56, eq. 12].
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Lemma 6.1.3. The BeNaI satisfies the following ordinary differential equation

g(p, x) +
2x

p+ 1
g′(p, x) =

1

(1 + x)
p+2
2

. (6.9)

Proof. Considering (6.3) and using integration by parts, where tp is integrated and
e−xt

2
erfc(t) is differentiated with respect to t, we deduce the identity

g(p, x) =
p+ 2

p+ 3
x g(p+ 2, x) +

1

(1 + x)
p+2
2

. (6.10)

Incorporating equation (6.7) into (6.10) leads to (6.9).

Theorem 6.1.4. For all −1 < p <∞ and for all x ∈ R+, the BeNaI has the series
representation4

g(p, x) =
p+ 1

p (1 + x)
p+2
2

∞∑

n=0

( x

1 + x

)n n∏

m=0

p+ 2m

p+ 1 + 2m
. (6.11)

Proof. By elementary algebra and from (6.11), we obtain the equality

p+ 2

p+ 3
x g(p+ 2, x) =

x

(1 + x)
p+4
2

∞∑

n=0

( x

1 + x

)n n∏

m=0

p+ 2 + 2m

p+ 3 + 2m

=
1

(1 + x)
p+2
2

∞∑

i=1

( x

1 + x

)i i−1∏

m=0

p+ 2 + 2m

p+ 3 + 2m

=
p+ 1

p (1 + x)
p+2
2

∞∑

i=1

( x

1 + x

)i i∏

j=0

p+ 2j

p+ 1 + 2j

= g(p, x)− 1

(1 + x)
p+2
2

,

(6.12)

which is equivalent to (6.10).

Theorem 6.1.5. It holds that

g(p, x) =
p+ 1

2x
p+1
2

x∫

0

t
p−1
2

(1 + t)
p+2
2

dt (6.13a)

=
p+ 1

2

1∫

0

t
p−1
2

(1 + xt)
p+2
2

dt (6.13b)

for all −1 < p <∞ and for all x ∈ R+.

4Note that p = 0 is a removable discontinuity.
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Proof. The proof is by inspection. The right hand side of (6.13a) is a solution of
differential equation (6.9) as can be seen from

∂

∂x

[
p+ 1

2x
p+1
2

x∫

0

t
p−1
2

(1 + t)
p+2
2

dt

]
=
p+ 1

2

[
− p+ 1

2x
p+3
2

x∫

0

t
p−1
2

(1 + t)
p+2
2

dt+
1

x
p+1
2

x
p−1
2

(1 + x)
p+2
2

]

=
p+ 1

2x

[
−g(p, x) +

1

(1 + x)
p+2
2

]
.

(6.14)

Since the initial values of (6.3) and (6.13a) are equal, both representations coincide.
By substituting t in equation (6.13a) with tx, we deduce (6.13b).

We are now in a position to easily prove interesting connections between BeNaI and
the special functions 2F1 and B from (2.10) and (2.6), respectively.

Corollary 6.1.6. It holds that

g(p, x) = 2F1

(p+ 1

2
,
p+ 2

2
;
p+ 3

2
;−x

)
(6.15a)

=
1

(1 + x)
p
2

2F1

(1

2
, 1;

p+ 3

2
;−x

)
(6.15b)

=
p+ 1

2x
p+1
2

B
(p+ 1

2
,
1

2
;

x

1 + x

)
(6.15c)

for all −1 < p <∞ and for all x ∈ R+.

Proof. By using the integral identity in (2.11), the representation in (6.13b), and the
identity in (2.3), we infer (6.15a)5. By applying the transformation formula from [15,
p. 559, eq. 15.3.3], we obtain identity (6.15b). Identity (6.15c) follows from comparing
equation (6.13a) with (2.7).

A short verification : In order to verify the distribution of the SNR, we start
the following discussion from an alternative representation of the BeNaI. Because of
identity (6.15c), the BeNaI is related to the cumulative density function (CDF) of a
real positive random variable which has a beta-prime distribution or synonymously a
beta distribution of the second kind, see [91, p. 50, eq. 4.3] and [92, p. 248, eq. 25.79].
The corresponding CDF of a beta-prime distributed random variable X with param-
eters a and b is in general described by P(X ≤ x) = 1

B(a,b)
B
(
a, b; x

1+x

)
. The random

variable X = X1

X2
is beta-prime distributed with parameters a = p+1

2
and b = 1

2
, if both

random variables X1 and X2 are independent and gamma distributed with parame-
ters k1 = p+ 1 and k2 = 1, respectively. Note that we only consider a particular case
of gamma distributions for which the density is defined as xk−1 e−x/2

Γ(k)2k
with parameter

k > 0. In turn, the random variables X1 = Y 2
1 and X2 = Y 2

2 are gamma distributed, if

5See also the equation in [90, p. 310, eq. 20]
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the random variables Y1 and Y2 are Nakagami and standard normal distributed, respec-
tively. For example, the random variable Y2 could describe the AWGN at the receiver
while the variable Y1 might model the underlying multi-path propagation channel. This
short verification confirms the validity of the underlaying communication model and
the distribution of the SNR, which is discussed in the introduction of this section6.

Note that by applying other transformation formulas, such as the ones in [15] and [29],
the reader is able to deduce additional important identities. In particular, identities
related to the associated Legendre function of the second kind with complex argument
or equations related to the Meijer’s G-function can be derived.

The new identity (6.13a) or (6.13b) enables us to evaluate the value of g(p, x), for
certain p and x, numerically more accurate than the evaluation of g(p, x) by equa-
tion (6.3). There are three reasons for this fact. First, the integration domain is finite
and includes a singularity at the origin for all −1 < p < 1. Second, the integrand does
not contain any complicated functions. Third, all operations and functions in the inte-
grand are numerically stable. Both last properties are also fulfilled for the AEP. This
can be seen by incorporating (6.13a), (2.3) and (2.33) into (6.5), which gives7

Pavg

(p+ 1

2
,
p+ 1

2xc2
2

)
=
c1

π
τ(p− 1)

x∫

0

t
p−1
2 dt

(1 + t)
p+2
2

=
pc1

2π

∞∫

0

dt

(1 + t)
p+1
2

√
t

x∫

0

t
p−1
2 dt

(1 + t)
p+2
2

.

(6.16)

Furthermore, by the new representations, it becomes much easier to calculate the
BeNaI explicitly in certain special cases, as is demonstrated by the following examples.

Example 6.1.7. For p = 1 and all x ≥ 0, we derive the known identity8

g(1, x) =
2

1 + x+
√

1 + x
. (6.17)

Proof. We deduce the above equality from Theorem 6.1.5 by substitution of t− 1 for t
and a subsequent integration of the outcome.

Example 6.1.8. For p = 0 and all x ≥ 0, we derive the known identity9

g(0, x) =
1√
x

arctan
(√

x
)
. (6.18)

6As we will show later, the range of g(px) is between zero and one. Hence, g(p, x) can be regarded
as a probability. Since it has roots to the beta-prime distribution and arises from the Nakagami
distribution, we call it Beta-Nakagami Integral (BeNaI), as stated in Definition 6.1.1.

7A transformed version of identity (6.16) in terms of regularized incomplete beta function is already
discussed in [82, eq. A.5], however, its solution is given without a full proof.

8Identity (6.17), initially mentioned in [89, p. 49, eq. 14], was derived from (6.3) by a certain
relation to the complementary gamma function.

9Equation (6.18), initially mentioned in [93, p. 37], was first derived from equation (6.3) by using
the method of Laplace transform.
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Proof. We deduce the above equality from Theorem 6.1.5 by substitution of t2 for t
and a subsequent integration of the outcome.

Example 6.1.9. For p = −1 and all x ≥ 0, we derive the new equality

lim
p7→−1

g(p, x) = 1 . (6.19)

Proof. The limit of g(p, x) as p tends towards −1 is not obvious when we consider only
equation (6.3). However, this limit follows easily from (6.10) by using (6.17).

More analytical properties of the BeNaI are presented and discussed in the following
section.

6.2 Functional Properties of the BeNaI
In this section, we investigate some commonly used properties of the BeNaI from Def-
inition 6.1.1. Moreover, the behavior of the BeNaI for the limits x 7→ 0 and x 7→ ∞ is
discussed.

Positivity, continuity and monotonicity are obvious due to representation in (6.3).
Hence, the following holds.

Lemma 6.2.1. For all −1 < p <∞ and for all x ≥ 0, the function g(p, x) is

a) non-negative,

b) continuous in both arguments, and

c) strictly decreasing with respect to x.

To prove the convexity more effort is needed. As is well-known and stated in Corol-
lary 2.2.2, logarithmically convex functions are also convex. We hence set out to prove
this stronger property.

Lemma 6.2.2. For all −1 < p <∞ and for all x ≥ 0, the function g(p, x) is logarith-
mically convex with respect to x.

Proof. In order to prove the log-convexity, we show that the inequality

g
(
p, λx1 + (1− λ)x2

)
≤ gλ(p, x1) g1−λ(p, x2) (6.20)

holds for all −1 < p <∞, x1 ≥ 0, x2 ≥ 0 and 1 ≥ λ ≥ 0. By using Hölder’s inequality
for integrals, see Lemma 2.2.6, we deduce from Definition 6.1.1 the inequality

∞∫

0

tp e−(λx1+(1−λ)x2)t2 erfc(t)dt =

∞∫

0

(
tp e−x1t

2

erfc(t)
)λ(

tp e−x2t
2

erfc(t)
)1−λ

dt

≤
( ∞∫

0

tp e−x1t
2

erfc(t)dt
)λ( ∞∫

0

tp e−x2t
2

erfc(t)dt
)1−λ

(6.21)

which shows the assertion.
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Lemma 6.2.3. The Taylor expansion of g(p, x) at x = 0 is given by

g(p, x) =
p+ 1

p

∞∑

n=0

(−1)n xn

(p+ 1 + 2n)n! 2n

n∏

m=0

(p+ 2m)

= 1− (p+ 1)(p+ 2)x

2(p+ 3)
+

(p+ 1)(p+ 2)(p+ 4)x2

8(p+ 5)
−O

(
x3
)
.

(6.22)

Proof. Using the derivatives from Lemma 6.1.2 and the fact g(p, 0) = 1, −1 < p <∞,
see (6.4), lead to the Taylor expansion (6.22).

Moreover, combining (2.10) and (6.15b) gives the series expansion

g(p, x) =
1

(1 + x)
p
2

Γ
(
p+3

2

)
√
π

∞∑

n=0

Γ
(
n+ 1

2

)
(−1)n xn

Γ
(
n+ p+3

2

) , (6.23)

which is of interest in its own.
We next consider an asymptotic series expansion of g(p, x) as x 7→ ∞, see also Defi-

nition 2.4.2.

Lemma 6.2.4. The asymptotic series expansion of g(p, x) for x 7→ ∞ is given by

g(p, x) =
τ(p)

x
p+1
2

− p+ 1

p x
p+2
2

∞∑

n=0

(−1)n

(2n+ 1)n! 2n xn

n∏

m=0

(p+ 2m)

=
τ(p)

x
p+1
2

− (p+ 1)

x
p+2
2

+
(p+ 1)(p+ 2)

6x
p+4
2

−O
(
x−

p+6
2

)
.

(6.24)

Proof. Substituting the complementary error function in equation (6.3) with its se-
ries (2.9) and by using the identity

Γ(p+1
2

)

2x
p+1
2

=

∞∫

0

tp e−xt
2

dt , p > −1, x > 0, (6.25)

which can be derived from equation (2.1), it follows that

g(p, x) =
p+ 1

2

Γ(p+1
2

)
√
π

Γ(p+2
2

)x
p+1
2

− p+ 1

Γ(p+2
2

)

∞∑

n=0

(−1)n

(2n+ 1)n!

Γ(p+2
2

+ n)

x
p+2
2

+n
. (6.26)

In the light of equality (2.3) and (2.31), and after some algebra, Lemma 6.2.4 follows.

It is sometimes necessary to deal with another representation of the asymptotic
expansion than that in Lemma 6.2.4. In such cases, we refer the reader to the books [23]
and [94].

As it was shown, the BeNaI has some pronounced mathematical properties. Since
we are interested in accurately bounding the BeNaI, we need to look for bounds with
similar properties. In the next section, we first motivate the proper choice of the
bounds. Subsequently, we present the bounds and discuss their properties.
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6.3 Choosing the Proper Class of Bounds
In this section, we provide the motivation for selecting the proper class of bounds,
which is essential for an accurate approximation of the BeNaI. As shown in (6.13b),
the BeNaI is equivalent to

g(p, x) =
p+ 1

2

1∫

0

t
p−1
2 dt

(1 + xt)
p+2
2

. (6.27)

In order to get a first impression about a proper class, we apply some basic inequalities
to the above identity and obtain the double inequality

p+ 1

2

1∫

0

t
p−1
2 dt

(1 + xt)
p+3
2

≤ g(p, x) ≤ p+ 1

2

1∫

0

t
p−2
2 dt

(1 + xt)
p+2
2

. (6.28)

By using the identity10

∫
tρ−1 dt

(1 + xt)ρ+1
=

tρ

ρ (1 + xt)ρ
, ρ > 0 , (6.29)

we can calculate both sides of the double inequality and conclude

1

(1 + x)
p
2

· 1√
1 + x

≤ g(p, x) ≤ 1

(1 + x)
p
2

· p+ 1

p
. (6.30)

As can be seen, a proper approximation is described by a product of two functions. The
first function is the mutual factor on both sides of the above double inequality which
may be considered as the main part of a proper approximation. Note that the same
factor can be observed in equation (6.15b). The second function is a function which
should lie between 1√

1+x
and p+1

p
on the one hand, and on the other hand, the entire

product of both functions should have the same discussed properties of the BeNaI. As
we will see later, the choice of

e1

e2 +
√

1 + x e3

, e1, e2, e3 ∈ R+, (6.31)

for the second function is accurate enough for most applications.

6.4 Bounds and Approximations
In this section, we propose two new bounds for the BeNaI from Definition 6.1.1. We
will determine bounds in a parametric class of functions given by

1

(1 + x)
p
2

e1

e2 +
√

1 + x e3

(6.32)

10Identity (6.29) is devised in the present thesis. However, we think that this identity is already
known.
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with positive real coefficients e1, e2 and e3. This specific class of functions has advanta-
geous properties to bound the BeNaI as we will describe later. Since the BeNaI depends
on x and p, the coefficients e1, e2 and e3 must also depend on p to achieve accurate
bounds. In the following, we first present both bounds with optimal coefficients. The
particular choice of the coefficients will be explained later. Second, we introduce an
important property of the bounds with respect to their coefficients, which enables the
users to choose other coefficients in order to adapt the bounds for their needs.

Theorem 6.4.1. Let f(p, x) be defined by

f(p, x) :=
1

(1 + x)
p
2

af (p) + 1

af (p) +
√

1 + x bf (p)
(6.33)

with the coefficients

af (p) :=
2

p+ 3
τ 2(p)− 1 (6.34)

and

bf (p) :=
4 τ 2(p)

(p+ 3)2
. (6.35)

Then for all p ∈ R, 1 ≤ p <∞ and for all x ∈ R+, the inequality

f(p, x) ≤ g(p, x) (6.36)

holds. If p ∈ R and −1 < p ≤ 1, then the reverse inequality holds.

Proof. See Appendix 6.6.

Remark 6.4.2. The coefficients in (6.32) with e1 = af (p) + 1, e2 = af (p) and e3 = bf (p)
are the best possible ones for the inequality (6.36) to hold. In other words, no coeffi-
cient can be replaced by a better value while keeping the other ones fixed in order to
further improve the bound. In this sense, the inequality in Theorem 6.4.1 is sharp.

Please note that by incorporating (6.34) into (6.35) we obtain the relationship

bf (p) = 2
af (p) + 1

p+ 3
. (6.37)

We now collect some important properties of the coefficients af (p) and bf (p).

Lemma 6.4.3. For all −1 < p <∞,

a) the coefficient af (p) is strictly increasing in p,

b) it holds that 0 < af (p) < π − 1, and

c) both coefficients af (p) and bf (p) are non-negative.
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Proof. The coefficient af (p) is strictly increasing, if its first derivative with respect to
p is positive. The first derivative is given by

daf (p)

dp
= 2 τ(p)

2(p+ 3) τ ′(p)− τ(p)

(p+ 3)2
(6.38)

where τ ′(p) denotes the first derivative of τ(p) with respect to p. Positivity is given, if
the inequality

τ ′(p)

τ(p)
>

1

2(p+ 3)
⇔ ψ(p+3

2
)− ψ(p+2

2
) >

1

p+ 3
(6.39)

holds. After replacing p with 2(x− 1), we can use [27, Theorem 3] to deduce

ψ(x+ 1
2
)− ψ(x) >

1

2x+ 1
(6.40)

which proves the statement.
Considering the monotonicity of af (p), as shown above, we obtain the lower bound for

p 7→ −1 and the upper bound for p 7→ ∞. For p 7→ −1, we obtain τ(−1) = 1 from (2.32)
and hence

af (−1) =
2

−1 + 3
τ 2(−1)− 1 = 0 . (6.41)

By using the limit in (2.4) and replacing p with 2(x− 1), we obtain

lim
p7→∞

af (p) = −1 + π lim
x7→∞

(
Γ(x+ 1

2
)

√
xΓ(x)

)2

= −1 + π . (6.42)

The coefficient bf (p) is trivially non-negative by definition. Due to 0 < af (p) < π − 1,
the coefficient af (p) is also non-negative.

Corollary 6.4.4. By (6.37) the representation

f(p, x) =
1

(1 + x)
p
2

af (p) + 1

af (p) +
√

1 + 2x
af (p)+1

p+3

(6.43)

is obtained, which is a strictly increasing function in af (p).

Proof. We show that the first partial derivative of f(p, x) with respect to af (p) is strictly
positive for all −1 < p <∞. The derivative is given by

(1 + x)
p
2
∂f(p, x)

∂af (p)
=

1 + x
af (p)+1

p+3
−
√

1 + 2x
af (p)+1

p+3[
af (p) +

√
1 + 2x

af (p)+1

p+3

]2√
1 + 2x

af (p)+1

p+3

. (6.44)

Elementary algebra shows that the numerator of (6.44) is strictly positive.
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Theorem 6.4.5. Let h(p, x) be defined by

h(p, x) :=
1

(1 + x)
p
2

ah(p) + 1

ah(p) +
√

1 + x bh(p)
(6.45)

with the coefficients

ah(p) :=
(p+ 1)

τ 2(p)− (p+ 1)
(6.46)

and

bh(p) :=
[ τ(p)

τ 2(p)− (p+ 1)

]2

. (6.47)

Then for all p ∈ R, 1 ≤ p <∞ and for all x ∈ R+, the inequality

g(p, x) ≤ h(p, x) (6.48)

holds. If p ∈ R and −1 < p ≤ 1, then the reverse inequality holds.

Proof. See Appendix 6.6.
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Figure 6.1: The coefficients af (p), bf (p), ah(p) and bh(p) are visualized for the range
of −1 < p ≤ 9. af (p) and ah(p) are strictly increasing and they tend towards π − 1
and 2/(π − 2) as p approaches infinity, respectively. The coefficients bf (p) and bh(p)
approach zero as p approaches infinity. Moreover, all coefficients are non-negative
for all −1 < p <∞.
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Remark 6.4.6. The coefficients in (6.32) with e1 = ah(p) + 1, e2 = ah(p) and e3 = bh(p)
are the best possible ones for inequality (6.48) to hold. In other words, no coefficient
can be replaced by a better value while keeping the other ones fixed in order to further
improve the bound. In this sense, the inequality in Theorem 6.4.5 is sharp.

Please note that the bounds in Theorem 6.4.1 and 6.4.5 are converse to each other.
For all 1 ≤ p <∞ the double inequality f(p, x) ≤ g(p, x) ≤ h(p, x) holds while for all
−1 < p ≤ 1 the converse double inequality h(p, x) ≤ g(p, x) ≤ f(p, x) holds.

Note that by incorporating (6.46) into (6.47) we obtain the relationship

bh(p) =
ah(p) + 1

p+ 1
ah(p) . (6.49)

Analogously to the properties of af (p) and bf (p) the following holds.

Lemma 6.4.7. For all −1 < p <∞,

a) the coefficient ah(p) is strictly increasing in p,

b) it holds that 0 < ah(p) <
2

π−2
, and

c) both coefficients ah(p) and bh(p) are non-negative.

Proof. The coefficient ah(p) is strictly increasing, if its first derivative with respect to
p is positive. The first derivative is given by

dah(p)

dp
= τ(p)

τ(p)− 2(p+ 1) τ ′(p)

[τ 2(p)− (p+ 1)]2
. (6.50)

Positivity is given, if the inequality

τ ′(p)

τ(p)
<

1

2(p+ 1)
⇔ ψ(p+3

2
)− ψ(p+2

2
) <

1

p+ 1
(6.51)

holds. After replacing p with 2(x− 1) we can again use [27, Theorem 3] to deduce

ψ(x+ 1
2
)− ψ(x) <

1

2x− 1
(6.52)

which proves the statement.
Considering the monotonicity ah(p), as shown above, we obtain the lower bound for

p 7→ −1 and the upper bound for p 7→ ∞. For p 7→ −1, we obtain τ(−1) = 1 from (2.32)
and hence

ah(−1) =
(−1 + 1)

τ 2(−1)− (−1 + 1)
= 0 . (6.53)

By using the limit in (2.4) and replacing p with 2(x− 1), we obtain

lim
p7→∞

ah(p) = lim
p7→∞

1
τ2(p)
p+1
− 1

= lim
x7→∞

1

π
2

(Γ(x+ 1
2

)√
xΓ(x)

)2 − 1
=

1
π
2
− 1

. (6.54)

The coefficient bh(p) is trivially non-negative by definition. Due to 0 < ah(p) <
2

π−2
,

the coefficient ah(p) is also non-negative.
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In Figure 6.1, the coefficients af (p), bf (p), ah(p) and bh(p) are depicted. We can ob-
serve additional properties of these coefficients which are not important for our purpose
and are thus not discussed further.

Corollary 6.4.8. By (6.49) the representation

h(p, x) =
1

(1 + x)
p
2

ah(p) + 1

ah(p) +
√

1 + x ah(p)+1
p+1

ah(p)
(6.55)

is obtained, which is a strictly decreasing function in ah(p).

Proof. We show that the first partial derivative of h(p, x) with respect to ah(p) is strictly
negative for all −1 < p <∞. The derivative is given by

2 (1 + x)
p
2
∂h(p, x)

∂ah(p)
=

2− x ah(p)+1
p+1

− 2
√

1 + x ah(p)+1
p+1

ah(p)
[
ah(p) +

√
1 + x ah(p)+1

p+1
ah(p)

]2√
1 + x ah(p)+1

p+1
ah(p)

. (6.56)

By simple rearrangement of the numerator, we derive the assertion from the chain of
inequalities

x
ah(p) + 1

p+ 1
+ 2

√
1 + x

ah(p) + 1

p+ 1
ah(p) ≥ 0 + 2

√
1 + x

ah(p) + 1

p+ 1
ah(p) ≥ 2

√
1 + 0 .

(6.57)

Remark 6.4.9. Because of Corollary 6.4.4, f(p, x) is monotonically increasing in af (p).
The coefficient af (p), in turn, is increasing in τ(p) due to the relationship (6.34). By
choosing an upper bound of τ(p), desirably easier to handle than τ(p) itself, also yields
an upper bound for f(p, x). By this, we also obtain a weaker upper bound of g(p, x) for
−1 < p ≤ 1 of potentially simpler form. Analogously, selecting a lower bound of τ(p)
yields a weaker lower bound of g(p, x) for 1 ≤ p <∞.

Analogously, because of Corollary 6.4.8 and relationship (6.46) any surrogate func-
tion, which is greater or less than τ(p), will provide a weaker lower or a weaker upper
bound of g(p, x) in the corresponding domain −1 < p ≤ 1 or 1 ≤ p <∞, respectively.
This is particularly attractive if the surrogate functions of τ(p) are of more tractable
form. The bounds on τ(p) from Theorem 2.5.2 may serve as an example for the above
approach. Other appropriate bounds on τ(p) may be found in [25], [26] and [27].

We will later determine the relative error between both bounds, f(p, x) and h(p, x),
and the original function g(p, x). The used method does not depend on the concrete
form of the bound on τ(p) and hence is viable also for weaker bounds, cf. (6.94)–(6.97).

In Figure 6.2, the numerical evaluation of the BeNaI lying between the bounds f(p, x)
and h(p, x) is depicted for p = 2. As we can see, the curves are very similar and closely
adjacent to one another. In Figure 6.3, the curves for different values of p are depicted.
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Figure 6.2: The double inequality f(p, x) ≤ g(p, x) ≤ h(p, x) is visualized for the range
of 0 ≤ x ≤ 5 and in the case of p = 2. The curves are closely adjacent to one another
such that without magnification the differences are not really visible. The curves are
equal at x = 0 and they approach zero as x approaches infinity.

We will mathematically discuss some general properties of the curves in the next section
having in mind that this is important for future applications.

In order to determine the quality of the bounds, we have to discuss the achievable
accuracy of the bounds and derive some of their properties in the following, as well.

For the sake of brevity, we will write af , bf , ah and bh instead of af (p), bf (p), ah(p)
and bh(p), unless their dependency to p needs to be emphasized.

6.5 Functional Properties of the Bounds
In this section, we investigate some properties of the bounds, that are given in The-
orem 6.4.1 and 6.4.5, in order to compare them with the properties of the BeNaI. In
particular, positivity, continuity, monotonicity, convexity and series expansions of both
bounds are investigated. Furthermore, we show in which cases both bounds are equal
to the BeNaI. Two of the properties are given first. As an auxiliary function we use

g̃(p, x) :=
1

(1 + x)
p
2

a+ 1

a+
√

1 + x b
(6.58)

with non-negative constants a and b, see Lemma 6.4.3 and 6.4.7.

Lemma 6.5.1. For all −1 < p <∞ and for all x ≥ 0, both functions f(p, x) and h(p, x)
are
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a) non-negative,

b) continuous in both arguments, and

c) strictly decreasing with respect to x.

Proof. The first two properties are obvious, because af (p), bf (p), ah(p) and bh(p) are
non-negative, due to Lemma 6.4.3 and 6.4.7, and because of continuity of the con-
stituent functions. To prove monotonicity, the function g̃(p, x) is differentiated, with
respect to x, to obtain

∂g̃(p, x)

∂x
= −1

2
g̃(p, x)

( b

a+
√

1 + x b

1√
1 + x b

+
p

1 + x

)
. (6.59)

For all 0 ≤ p <∞, the derivative is always negative because g̃(p, x) is positive as shown
above, and the coefficients a and b are non-negative due to Lemma 6.4.3 and 6.4.7.
Hence, f(p, x) and h(p, x) are strictly decreasing. Monotonicity seems to be much
harder to prove for the case −1 < p < 0. However, we conjecture that f(p, x) and
h(p, x) are strictly decreasing functions of x also for −1 < p < 0.
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Figure 6.3: For the case of p ∈ {−1/2, 0, 1/2, 1, 2, 5, 10, 50}, the behavior of f(p, x), g(p, x)
and h(p, x) is visualized for the range of 0 ≤ x ≤ 5. Note, that for all −1 < p ≤ 1
the double inequality h(p, x) ≤ g(p, x) ≤ f(p, x) holds, while for all 1 ≤ p <∞ the
reverse double inequality holds. All curves are non-negative, continuous, strictly de-
creasing and logarithmically convex in x. They are equal at x = 0 and they approach
zero as x approaches infinity. Furthermore, the curves are decreasing in p, as well.
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Lemma 6.5.2. For all 0 ≤ p <∞, both functions f(p, x) and h(p, x) are logarithmi-
cally convex for all arguments x ≥ 0.

Proof. In order to prove the above statement, we have to show that the inequality

g̃
(
p, λx1 + (1− λ)x2

)
≤ g̃λ(p, x1) g̃1−λ(p, x2) (6.60)

holds for all 0 ≤ p <∞, x1 ≥ 0, x2 ≥ 0 and 1 ≥ λ ≥ 0. First, we twice use the arith-
metic and geometric means inequality from Corollary 2.2.9 and subsequently the weighted
power means inequality from Lemma 2.2.7 which lead to the inequality chain

[
(1 + x1)λ(1 + x2)1−λ] p

2

[(
a+

√
1 + bx1

)λ(
a+

√
1 + bx2

)1−λ
]

≤
[
λ(1 + x1) + (1− λ)(1 + x2)

] p
2

[
λ
(
a+

√
1 + bx1

)
+ (1− λ)

(
a+

√
1 + bx2

)]

=
[
1 + λx1 + (1− λ)x2

] p
2

[
a+ λ

√
1 + bx1 + (1− λ)

√
1 + bx2

]

≤
[
1 + λx1 + (1− λ)x2

] p
2

[
a+

√
1 + bλx1 + b(1− λ)x2

]
.

(6.61)

By simple rearrangement of the last inequality and multiplying both sides by a+ 1, we
conclude

1

[1 + λx1 + (1− λ)x2]
p
2

a+ 1

a+
√

1 + b[λx1 + (1− λ)x2]

≤ 1
[
(1 + x1)λ(1 + x2)1−λ

] p
2

·
( a+ 1

a+
√

1 + bx1

)λ( a+ 1

a+
√

1 + bx2

)1−λ
, (6.62)

which is equivalent to inequality (6.60). Hence, f(p, x) and h(p, x) are logarithmically
convex as well. Convexity seems to be much harder to prove for the case −1 < p < 0.
However, we also conjecture that f(p, x) and h(p, x) are logarithmically convex in x
also for −1 < p < 0.

Lemma 6.5.3. For all a ≥ 0, b ≥ 0 and −1 < p <∞, the expansion

g̃(p, x) = 1− b+ (a+ 1)p

2(a+ 1)
x+

(a+ 3)b2 + 2(a+ 1)pb+ (a+ 1)2(p+ 2)p

8(a+ 1)2
x2 −O

(
x3
)

(6.63)
holds at x = 0.

Proof. The statement is obtained by using the general definition of the Taylor expansion
and straightforward calculation of the first three derivatives of the surrogate function.

Corollary 6.5.4. The Taylor expansion of f(p, x) at x = 0 is given by

f(p, x) = 1− (p+ 1)(p+ 2)

2(p+ 3)
x+

4(af + 3) + 4p(p+ 3) + p(p+ 2)(p+ 3)2

8(p+ 3)2
x2 −O

(
x3
)
.

(6.64)
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Proof. The assertion follows by incorporating (6.37) into (6.63).

Corollary 6.5.5. The Taylor expansion of h(p, x) at x = 0 is given by

h(p, x) = 1− ah + p(p+ 1)

2(p+ 1)
x+

(ah + 3)a2
h + 2p(p+ 1)ah + p(p+ 2)(p+ 1)2

8(p+ 1)2
x2−O

(
x3
)
.

(6.65)

Proof. The assertion follows by incorporating (6.49) into (6.63).

Remark 6.5.6. The first two elements in the Taylor expansions of f(p, x) and g(p, x)
are identical, while in the Taylor expansions of h(p, x) and g(p, x) only the both first
elements are identical. Thus, f(p, x) achieves a better approximation of g(p, x) than
h(p, x) for a sufficiently small x.

Lemma 6.5.7. For all a ≥ 0, b ≥ 0 and −1 < p <∞, the expansion

g̃(p, x) =
(a+ 1)

b
1
2x

p+1
2

− (a+ 1)a

bx
p+2
2

+
(a+ 1)(2a2 − 1− pb)

2b
3
2x

p+3
2

−O
(
x−

p+4
2

)
(6.66)

holds as x 7→ ∞.

Proof. We use the general definition of asymptotic series expansion from Definition 2.4.2
in the form

lim
x7→∞

x
n
2

[
ω(x)−

n∑

k=0

αk x
− k

2

]
= 0 , n ∈ {0, 1, 2, 3} , (6.67)

and apply it for the function

ω(x) := x
p+1
2 g̃(p, x) . (6.68)

Then we first consider the case of n = 0 and obtain the first coefficient α0 = (a+1)√
b

by

determining the limit. Second, we increment n by one, determine the limit in (6.67) by

applying l’Hospital’s rule, and obtain the second coefficient α1 = − (a+1)a
b

. The same
principe is applied to obtain the coefficient α2 and the order of the series expansion.
Note that the last three steps are straightforward, however, require intensive algebra.
Finally, the sequence

∑3
k=0 αk x

− k
2 is divided by x

p+1
2 which completes the proof.

Substituting a and b in (6.66) by the corresponding coefficients af (p), bf (p), ah(p)
and bh(p) yields the following two propositions.

Corollary 6.5.8. The asymptotic series expansion of f(p, x) for x 7→ ∞ is given by

f(p, x) =
τ(p)

x
p+1
2

− 2 τ 2(p)− (p+ 3)

2x
p+2
2

+
8 τ 4(p)− 12(p+ 2) τ 2(p) + (p+ 3)2

8 τ(p)x
p+3
2

−O
(
x−

p+4
2

)
.

(6.69)
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Corollary 6.5.9. The asymptotic series expansion of h(p, x) for x 7→ ∞ is given by

h(p, x) =
τ(p)

x
p+1
2

− (p+ 1)

x
p+2
2

+
− τ 4(p) + (p+ 2) τ 2(p) + (p+ 1)2

2 τ(p)x
p+3
2

−O
(
x−

p+4
2

)
. (6.70)

Remark 6.5.10. Only the both first elements in the asymptotic series expansions of
f(p, x) and g(p, x) are identical, while in the asymptotic series expansions of h(p, x)
and g(p, x) the first two elements are identical. Thus, h(p, x) achieves a better approx-
imation of g(p, x) than f(p, x) for a sufficiently large x.

As mentioned at the beginning of Section 6.4, the coefficients e1, e2 and e3 in (6.32)
are such chosen that Remarks 6.5.6 and 6.5.10 are fulfilled. It is near at hand to aim at
choosing the coefficients in an optimal way, namely to minimize the difference between
the bounds and the BeNaI. However, because of the analytical complexity this seems
to be out of reach.

The above statements show the general and asymptotic behavior of the bounds, while
the following ones describe the relationship to the BeNaI. In particular, it is shown in
which cases the bounds and the BeNaI are equal.

Corollary 6.5.11. If x = 0, it holds for all −1 < p <∞ that

f(p, 0) = h(p, 0) = g(p, 0) = 1 . (6.71)

Proof. The equality g(p, 0) = 1 is given by definition, see (6.4). By inserting x = 0
into (6.33) and (6.45), we obtain the equalities f(p, 0) = 1 and h(p, 0) = 1, respectively.

Corollary 6.5.12. For all −1 < p <∞, the functions f(p, x), h(p, x) and g(p, x) ap-

proach the asymptote τ(p)x−
p+1
2 as x approaches infinity. Thus, it follows that

lim
x7→∞

f(p, x) = lim
x7→∞

h(p, x) = lim
x7→∞

g(p, x) = 0 . (6.72)

Proof. The asymptote τ(p)x−
p+1
2 follows from the asymptotic expansions, which are

stated in Lemma 6.2.4, Corollary 6.5.8 and Corollary 6.5.9. From this asymptote we
derive the limit which tends towards zero.

Corollary 6.5.13. In case of p 7→ −1 and for all x ≥ 0, we observe the equality

f(−1, x) = h(−1, x) = lim
p7→−1

g(p, x) = 1 . (6.73)

Proof. By using the identity τ(−1) = 1 from (2.32), we obtain the equalities af (−1) = 0
and ah(−1) = 0 from (6.34) and (6.46), respectively. By inserting af (−1) and ah(−1)
into (6.43) and (6.55), respectively, we derive equation (6.73) by considering (6.19).

Corollary 6.5.14. If p = 0 and x ≥ 0, the double inequality

π2x

4 +
√

(π2 − 4)2 + 4π2x2
≤ arctan(x) ≤ π2x

π2 − 6 + 2
√

9 + π2x2
(6.74)

holds. For all x < 0, the reverse double inequality holds.

111



6 Error Probability for Nakagami-Distributed Fading

Proof. The double inequality (6.74) follows from equation (6.18), inequalities (6.36)
and (6.48), and by replacing x with x2.

The double inequality in Corollary 6.5.14 is tight as can be seen from Figure 6.4.
The maximum relative errors of the bounds, related to the inverse tangent function,
are approximately less than 0.23% and 0.27%. Inequality (6.74) is obtained as a side
result of the general approach in this work. A more detailed discussion may be found
in [13].
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Figure 6.4: The inverse tangent function and its bounds from Corollary 6.5.14 are
visualized for the range of 0 ≤ x ≤ 10. The curves are closely adjacent to one another
such that without magnification the differences are not really visible. The curves are
equal at zero and approach the same limit as |x| approaches infinity. Their maximum
relative errors are approximately less than 0.23% and 0.27% which shows how sharp
both bounds are.

As shown in representation (6.15b), the fractions
af (p)+1

af (p)+
√

1+x bf (p)
and ah(p)+1

ah(p)+
√

1+x bh(p)

are approximations of the hypergeometric function 2F1

(
1
2
, 1; p+3

2
;−x

)
. Thus, they can

be used as bounds for other functions that can be described in terms of the hypergeo-
metric function and its transformations.

Corollary 6.5.15. If p = 1, it holds for all x ≥ 0 that

f(1, x) = h(1, x) = g(1, x) =
2

1 + x+
√

1 + x
. (6.75)

Proof. By using the identity τ(1) = 2 from (2.32), we obtain the equalities af (1) = 1
and ah(1) = 1 from (6.34) and (6.46), respectively. By inserting af (1) and ah(1)
into (6.43) and (6.55), respectively, we derive equation (6.75) by considering (6.17).
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In the current section, we have shown some mathematical properties of the bounds
which are identical to those of the BeNaI. Unfortunately, we could not prove the mono-
tonicity and the convexity of the bounds for the case −1 < p < 0 and thus we leave the
proof as an open problem. It remains to investigate the accuracy of the bounds which
will be the main contribution of the next section.

6.6 Proof of the Bounds
We follow an idea of W. Gautschi [24] in order to prove Theorem 6.4.1 and 6.4.5. Prior
to this, we need to consider some definitions and their corresponding statements.

Definition 6.6.1. Let f(p, x) and g(p, x) be defined as in Theorem 6.4.1 and Defini-
tion 6.1.1, respectively. Then we define their difference by

df (p, x) := g(p, x)− f(p, x) , p ∈ R, −1 < p <∞, x ∈ R+ , (6.76)

and

d̃f (p, x) := x
p+1
2 df (p, x) =

p+ 1

2

x∫

0

t
p−1
2 dt

(1 + t)
p+2
2

− x
p+1
2

(1 + x)
p
2

af + 1

af +
√

1 + x bf
. (6.77)

Lemma 6.6.2. The difference df (p, x) has the properties:

a) df (p, x) is continuous without any singularity for all x ∈ R+ and −1 < p <∞,

b) the identity
lim
x7→0

df (p, x) = lim
x7→∞

df (p, x) = 0 (6.78)

holds, and

c) for suitable large x the inequalities

df (p, x)|x7→∞

{
> 0 p ∈ R, 1 < p <∞,
< 0 p ∈ R, −1 < p < 1

(6.79)

hold.

Proof. The difference df (p, x) has no singularities because af and bf are non-negative,
as mentioned in Lemma 6.4.3. Moreover, it is continuous because g(p, x) and f(p, x)
are continuous and all operations preserve continuity as stated in Lemma 6.2.1 and
Lemma 6.5.1, respectively.

By using the identities in Corollary 6.5.11 and 6.5.12, we simply obtain (6.78).
From the asymptotic expansions in Lemma 6.2.4 and in Corollary 6.5.8, we obtain

df (p, x) =
[
τ 2(p)− 3p+ 5

2

]
x−

p+2
2 +O

(
x−

p+3
2

)
. (6.80)

The first term is positive for all 1 < p <∞ and negative for all −1 < p < 1 due to
Theorem 2.5.2. Thus, the above statement follows for a suitable large x.
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Lemma 6.6.3. The difference d̃f (p, x) has no sign changes.

Proof. We consider the equation

2
p+ 3

1 + af
bf (1 + x)

p+2
2 x−

p−1
2

(
af +

√
1 + xbf

)2 ·
√

1 + xbf
∂d̃f (p, x)

∂x
, (6.81)

which is equal to

(u− 1)2
[
u
(
2(p+ 1)− (p+ 3)af

)
+ (p+ 1)− 2af

]
, (6.82)

where u =
√

1 + xbf ≥ 1, and bf = 2
af+1

p+3
is given in equation (6.37). The last equation

is a polynomial in u that has exactly three zeros. The difference d̃f (p, x) cannot change
sign for all u > 1 or equivalently for all x > 0, since the first two zeros are at u = 1, the
difference df (p, x) has no singularities based on Lemma 6.6.2, and df (p, 0) is equal to
df (p,∞) due to Lemma 6.6.2. In other words, if d̃f (p, x) had at least one sign change
for some value of x > 0, then it would have at least two stationary points for x > 0,
but this contradicts the above curve tracing.

Proof of Theorem 6.4.1. Since d̃f (p, x), and hence df (p, x) as well, have no sign
changes as stated in Lemma 6.6.3, we deduce that f(p, x) ≤ g(p, x) for all 1 ≤ p <∞
and f(p, x) ≥ g(p, x) for all −1 < p ≤ 1, both due to inequality (6.79).

Definition 6.6.4. Let h(p, x) and g(p, x) be defined as in Theorem 6.4.5 and Defini-
tion 6.1.1, respectively. Then we define their difference by

dh(p, x) := h(p, x)− g(p, x) , p ∈ R, −1 < p <∞, x ∈ R+ , (6.83)

and

d̃h(p, x) := x
p+1
2 dh(p, x) =

x
p+1
2

(1 + x)
p
2

ah + 1

ah +
√

1 + x bh
− p+ 1

2

x∫

0

t
p−1
2 dt

(1 + t)
p+2
2

. (6.84)

Lemma 6.6.5. The difference dh(p, x) has the properties:

a) dh(p, x) is continuous without any singularity for all x ∈ R+ and −1 < p <∞,

b) the identity
lim
x7→0

dh(p, x) = lim
x7→∞

dh(p, x) = 0 (6.85)

holds, and

c) for suitable small x > 0 the inequalities

dh(p, x)|x7→0

{
> 0 p ∈ R, 1 < p <∞,
< 0 p ∈ R, −1 < p < 1

(6.86)

hold.
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Proof. The difference dh(p, x) has no singularities because ah and bh are non-negative,
as mentioned in Lemma 6.4.7. Moreover, it is continuous because g(p, x) and h(p, x)
are continuous and all operations preserve continuity as stated in Lemma 6.2.1 and
Lemma 6.5.1, respectively.

By using the identities in Corollary 6.5.11 and 6.5.12, we simply obtain (6.85).
From the Taylor expansions in Lemma 6.2.3 and in Corollary 6.5.5, we obtain

dh(p, x) =
[ 2

p+ 3
− 1

τ 2(p)− (p+ 1)

]x
2

+O
(
x2
)
. (6.87)

The first term is positive for all 1 < p <∞ and negative for all −1 < p < 1 due to
Theorem 2.5.2. Thus, the above statement follows for a suitable small x.
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h(p,x)−g(p,x)
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f (p,x)−g(p,x)
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Figure 6.5: Relative errors of both bounds f(p, x) and h(p, x) are depicted for
p ∈ {1, 2, 5, 10, 20, 50, 100}. Note that for large x, all curves tend towards zero. Due
to the range 1 ≤ p <∞, the double inequality f(p, x) ≤ g(p, x) ≤ h(p, x) holds. In
general, f(p, x) achieves a better approximation of g(p, x) than h(p, x) for sufficiently
small x, while for sufficiently large x the opposite is valid. The maximum values of
relative errors over all x are about 1.2% and can be observed in Figure 6.7.

Lemma 6.6.6. The difference d̃h(p, x) has no sign changes.

Proof. We consider the equation

2
p+ 1

1 + ah
bh (1 + x)

p+2
2 x−

p−1
2

(
ah +

√
1 + xbh

)2 ·
√

1 + xbh
∂d̃h(p, x)

∂x
, (6.88)
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which is equal to

(u− 1)
[
u
(
(p+ 1) + pah − (p+ 2)a2

h

)
+ (p+ 1)− (1 + ah)ah

]
, (6.89)

where u =
√

1 + xbh ≥ 1, and bh = ah+1
p+1

ah is given in equation (6.49). The last equation

is a polynomial in u that has exactly two zeros. The difference d̃h(p, x) cannot change
sign for all u > 1 or equivalently for all x > 0, since the first zero is at u = 1, the
difference dh(p, x) has no singularities based on Lemma 6.6.5, and dh(p, 0) is equal to
dh(p,∞) due to Lemma 6.6.5. In other words, if d̃h(p, x) had at least one sign change
for some value of x > 0, then it would have at least two stationary points for x > 0,
but this contradicts the above curve tracing.

Proof of Theorem 6.4.5. Since d̃h(p, x), and hence dh(p, x) as well, have no sign
changes as stated in Lemma 6.6.6, we deduce that h(p, x) ≥ g(p, x) for all 1 ≤ p <∞
and h(p, x) ≤ g(p, x) for all −1 < p ≤ 1, both due to inequality (6.86).
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Figure 6.6: Relative errors of both bounds f(p, x) and h(p, x) are depicted for
p ∈ {−3/4,−2/4,−1/4, 0, 1/4, 2/4, 3/4}. Note that for large x, all curves tend towards
zero. Due to the range −1 < p ≤ 1, the double inequality h(p, x) ≤ g(p, x) ≤ f(p, x)
holds. In general, f(p, x) achieves a better approximation of g(p, x) than h(p, x) for
sufficiently small x, while for sufficiently large x the opposite is valid. The maximum
values of relative errors over all x are about 0.36% and can be observed in Figure 6.8.
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6.7 Analysis of the Bounds
In this section, we discuss the relative error between the upper and lower bound from
Section 6.4 and the value of the BeNaI from Definition 6.1.1. A direct calculation of the
relative error seems to be out of reach. We hence derive upper bounds on the maximum
relative errors. We start with introducing the relative error.

Definition 6.7.1. The relative errors of the bounds in Theorem 6.4.1 and in Theo-
rem 6.4.5, related to the BeNaI, are defined by

rf (p) := max

{
|g(p, x)− f(p, x)|

g(p, x)
| x ∈ R+

}
(6.90)

and by

rh(p) := max

{
|h(p, x)− g(p, x)|

g(p, x)
| x ∈ R+

}
, (6.91)

respectively. The relative error between the bounds is defined by

r(p) := max

{
|h(p, x)− f(p, x)|

g(p, x)
| x ∈ R+

}
≤ rf (p) + rh(p). (6.92)

Furthermore, we denote the relative error of the closest bound by

r̃(p) := max

{
min{|g(p, x)− f(p, x)| , |h(p, x)− g(p, x)|}

g(p, x)
| x ∈ R+

}
. (6.93)

Note that inequality (6.92) follows from triangle inequality.
In Figure 6.5 and 6.6, the relative errors are depicted with respect to x for different

values of p. The relative errors are always less than 1.2% for all 1 ≤ p <∞ or 0.36%
for all −1 < p ≤ 1. Since the relative errors rf (p) and rh(p) as well as their maximum
values are poorly accessible, we now set out to develop upper bounds on rf (p) and rh(p)
as well as on their maximum values.

Theorem 6.7.2. For all 1 ≤ p <∞, the relative error r(p) is bounded by

r(p) ≤ r̂(p) := −1 +
ah + 1

af + 1
·
afahbfbh −

√
bfbh(bh − bf )[bf (a2

h − 1)− bh(a2
f − 1)]

bh[bh + bf (a2
h − 1)]

.

(6.94)
If −1 < p ≤ 1, then the relative error is bounded by

r(p) ≤ ř(p) := −1 +
af + 1

ah + 1
·
afahbfbh −

√
bfbh(bf − bh)[bh(a2

f − 1)− bf (a2
h − 1)]

bf [bf + bh(a2
f − 1)]

.

(6.95)

Proof. See Appendix 6.8.
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The bounds in Theorem 6.7.2 have a more direct representation as

r(p) ≤ r̂(p) =
2 τ 2(p)− (3p+ 5)

2 τ(p)
[
τ(p) +

√
1− p+ 2 τ 2(p)

]
+ (3 + p)

(6.96)

for all 1 ≤ p <∞, and

r(p) ≤ ř(p) =
(3p+ 5)− 2 τ 2(p)

2 τ(p)
[
2 τ(p) +

√
1− p+ 2 τ 2(p)

]
− 2(1 + p)

(6.97)

for all −1 < p ≤ 1. This may be seen by substituting.
In Figure 6.7 and 6.8, the maximum relative errors are depicted. As we can see, r(p)

is a weak upper-bound on the maximum relative errors while r̂(p) and ř(p) are tight
upper-bounds on r(p) and thus closely adjacent to r(p).
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Figure 6.7: Maximum relative errors with respect to x are visualized for 1 ≤ p ≤ 200.
The value rf (p) is the maximum relative error between the lower bound f(p, x) and
the function g(p, x) while rh(p) is the maximum relative error between upper bound
h(p, x) and g(p, x). The value r(p) is the maximum relative error between the lower
and the upper bound while r̂(p) is an upper bound on r(p). We can calculate r(p),
rf (p) and rh(p) only numerically while the overall upper bound r̂(p) is obtained
analytically. r(p) and r̂(p) are limited by 0.0182 for all 1 ≤ p <∞.

Remark 6.7.3. By numerical analysis we observe

r(p) ≤ lim
p7→∞

r̂(p) =
π − 3

1 + π +
√

2π(π − 1)
< 0.0182 (6.98)
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for all 1 ≤ p <∞, and

r(p) ≤ ř(p ≈ −0.45974) < 0.00535 (6.99)

for all −1 < p ≤ 1.
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Figure 6.8: Maximum relative errors with respect to x are visualized for −1 < p ≤ 1.
The value rh(p) is the maximum relative error between the lower bound h(p, x) and
the function g(p, x) while rf (p) is the maximum relative error between upper bound
f(p, x) and g(p, x). The value r(p) is the maximum relative error between the lower
and the upper bound while ř(p) is an upper bound on r(p). We can calculate r(p),
rh(p) and rf (p) only numerically while the overall upper bound ř(p) is obtained
analytically. r(p) and ř(p) are limited by 0.00535 for all −1 < p ≤ 1.

Corollary 6.7.4. The relative error of the closest bound in (6.93) is bounded by

r̃(p) ≤ r̂(p)

r̂(p) + 2
≤ 0.00899 (6.100)

for all 1 ≤ p <∞, and

r̃(p) ≤ ř(p)

ř(p) + 2
≤ 0.00267 (6.101)

for all −1 < p ≤ 1.
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Proof. If we define the functions

rf (p, x) :=
|g(p, x)− f(p, x)|

g(p, x)
, (6.102)

rh(p, x) :=
|h(p, x)− g(p, x)|

g(p, x)
, (6.103)

%(p, x) :=
h(p, x)

f(p, x)
(6.104)

and

%(p) := max

{
h(p, x)

f(p, x)
| x ∈ R+

}
(6.105)

then for all 1 ≤ p <∞ the relationship

g(p, x) =
f(p, x)

1− rf (p, x)
=

h(p, x)

1 + rh(p, x)
⇔ 1 + rh(p, x)

1− rf (p, x)
= %(p, x) ≤ %(p) (6.106)

holds. In the case in which the inequality rh(p, x) ≤ rf (p, x) is valid for some values of

x and fixed p, we can shrink the ratio 1+rh(p,x)
1−rf (p,x)

by replacing rf (p, x) with rh(p, x). In

the opposite case rf (p, x) ≤ rh(p, x), we can also shrink the ratio 1+rh(p,x)
1−rf (p,x)

by replacing

rh(p, x) with rf (p, x). In both cases we derive the inequality

min
{
rf (p, x), rh(p, x)

}
≤ %(p)− 1

%(p) + 1
, (6.107)

which holds for all x. Now, we define r̂(p) by the difference %(p)− 1 for all 1 ≤ p <∞,
in order to obtain the first ratio in equation (6.100). Furthermore, the right hand side
of (6.107) is increasing in %(p) because its first derivative

d

d%(p)

%(p)− 1

%(p) + 1
=

2
(
%(p) + 1

)2 =
2

(
r̂(p) + 2

)2 (6.108)

is always positive. Thus, we can replace r̂(p) with the value in (6.98) to get the upper
limit of 0.00899.

The proof of equation (6.101) for −1 < p ≤ 1 follows analogously by exchanging the
roles of f(p, x) with h(p, x), r̂(p) with ř(p), and %(p) with 1

%(p)
.

In Figure 6.9 and 6.10, the maximum relative errors of the closest bound are depicted.
As we can see, one of the bounds has always a smaller relative error than 0.9% for
all 1 ≤ p <∞ or 0.27% for all −1 < p ≤ 1; see also the results in equation (6.100)
and (6.101).

In summary, both maximum relative errors rf (p) and rh(p) are upper-bounded by
r(p). In turn, r(p) is upper-bounded by r̂(p) or by ř(p) depending on p. Both r̂(p)
and ř(p) are sharp bounds on r(p) and have been analytically derived in closed-form.

Furthermore, r̃(p) is bounded by either r̂(p)
r̂(p)+2

or by ř(p)
ř(p)+2

depending on p, where r̃(p)
describes the relative error of the closest bound.
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6.8 Proof of Relative Errors
Definition 6.8.1. Let f(p, x) and h(p, x) be defined as in Theorem 6.4.1 and Theo-
rem 6.4.5, respectively. Then we denote their ratio by

%(p, x) :=
h(p, x)

f(p, x)
=
ah(p) + 1

af (p) + 1

af (p) +
√

1 + x bf (p)

ah(p) +
√

1 + x bh(p)
, (6.109)

for all p ∈ R, −1 < p <∞ and for all x ∈ R+.
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Figure 6.9: Maximum relative errors of the closest bound with respect to x are visualized
for 1 ≤ p ≤ 200. The value r̃(p) is the maximum relative error between g(p, x) and

the closest bound, which is either f(p, x) or h(p, x). r̂(p)
r̂(p)+2

is an upper bound on r̃(p)

and is obtained analytically, while r̃(p) can only be calculated numerically. r̃(p) and
r̂(p)
r̂(p)+2

are limited by 0.00899 for all 1 ≤ p <∞.

Lemma 6.8.2. The identity

lim
x7→0

%(p, x) = lim
x7→∞

%(p, x) = 1 (6.110)

holds.

Proof. By using Definition 6.8.1, Theorem 6.4.1 and 6.4.5, we obtain

lim
x7→0

%(p, x) =
ah(p) + 1

af (p) + 1

af (p) + 1

ah(p) + 1
= 1 (6.111)
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and

lim
x7→∞

%(p, x) =
ah(p) + 1

af (p) + 1

√
bf (p)

bh(p)
=

τ 2(p)

τ 2(p)− (p+ 1)

p+ 3

2 τ 2(p)

2 τ(p)

p+ 3

τ 2(p)− (p+ 1)

τ(p)
= 1 .

(6.112)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
x 10

−3

p
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Figure 6.10: Maximum relative errors of the closest bound with respect to x are visu-
alized for −1 < p ≤ 1. The value r̃(p) is the maximum relative error between g(p, x)

and the closest bound, which is either f(p, x) or h(p, x). ř(p)
ř(p)+2

is an upper bound on

r̃(p) and is obtained analytically, while r̃(p) can only be calculated numerically. r̃(p)

and ř(p)
ř(p)+2

are limited by 0.00267 for all −1 < p ≤ 1.

Proof of Theorem 6.7.2. By using Definition 6.7.1, Theorem 6.4.1 and Theorem 6.4.5,
we deduce

r(p) = max

{
h(p, x)− f(p, x)

g(p, x)
| x ∈ R+

}

≤ max

{
h(p, x)− f(p, x)

f(p, x)
| x ∈ R+

}
, 1 ≤ p <∞ ,

(6.113)
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and analogously

r(p) = max

{
f(p, x)− h(p, x)

g(p, x)
| x ∈ R+

}

≤ max

{
f(p, x)− h(p, x)

h(p, x)
| x ∈ R+

}
, −1 < p ≤ 1 .

(6.114)

If we use the ratio %(p, x) from Definition 6.8.1 then we obtain the corresponding
inequalities

r(p) ≤ max
{
%(p, x)− 1 | x ∈ R+

}
, 1 ≤ p <∞ , (6.115)

and

r(p) ≤ max

{
1

%(p, x)
− 1 | x ∈ R+

}
, −1 < p ≤ 1 . (6.116)

Thus, we have to maximize %(p, x) with respect to x for all 1 ≤ p <∞ and minimize
%(p, x) with respect to x for all −1 < p ≤ 1 in order to find an upper bound for r(p).
The first derivative of %(p, x) with respect to x is given by

∂%(p, x)

∂x
=
ah + 1

af + 1
·
bf
[
1 + ah

√
1 + x bh

]
− bh

[
1 + af

√
1 + x bf

]

2
[
ah +

√
1 + x bh

]2√
1 + x bf

√
1 + x bh

(6.117)

that must vanish at the extrem points. By simple calculation we conclude that the first
derivative can only have two zeros; one at x1 and one at x2. They can be calculated
by solving the quadratic equation

x2 − 2x
(a2f bh+a2hbf )(bh−bf )2−(a2f bh−a2hbf )(a2f b

2
h−a2hb2f )

bf bh(a2f bh−a2hbf )2
+

[a2f b
2
h+a2hb

2
f−(bh−bf )2]2−4a2fa

2
hb

2
f b

2
h

b2f b
2
h(a2f bh−a2hbf )2

= 0 .

(6.118)
Because of Lemma 6.8.2 the maximum of %(p, x) as well as the maximum of 1

%(p,x)
must

be greater than one, or equivalently r(p) > 0 for all −1 < p <∞. We assume, without
loss of generality, that %(p, x) attains its maximum at x = x1 for all 1 ≤ p <∞ or

1
%(p,x)

attains its maximum at x = x1 for all −1 < p ≤ 1. Then by incorporating x1 into

%(p, x) the maximum

%(p, x1) =
ah + 1

af + 1
·
afahbfbh −

√
bfbh(bh − bf )[bf (a2

h − 1)− bh(a2
f − 1)]

bh[bh + bf (a2
h − 1)]

(6.119)

follows for all 1 ≤ p <∞. By changing the roles of f(p, x) and h(p, x) we deduce the
corresponding maximum value of 1

%(p,x1)
for all −1 < p ≤ 1 by

1

%(p, x1)
=
af + 1

ah + 1
·
afahbfbh −

√
bfbh(bf − bh)[bh(a2

f − 1)− bf (a2
h − 1)]

bf [bf + bh(a2
f − 1)]

. (6.120)

Now, we incorporate af , bf , ah and bh from Theorem 6.4.1 and 6.4.5 into %(p, x1)
to obtain the bounds in (6.96) and (6.97). In order to show that x1 is the point at
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maximum for all 1 ≤ p <∞ or the point at minimum for all −1 < p ≤ 1, which are
together equivalent to r(p) > 0 for all −1 < p <∞, we minimize the bounds in (6.96)
and (6.97) by applying Theorem 2.5.2. By doing so, we see that

2 τ 2(p)− (3p+ 5)

2 τ(p)
[
τ(p) +

√
1− p+ 2 τ 2(p)

]
+ (3 + p)

≥ (3p+ 5)− (3p+ 5)

2 τ(p)
[
τ(p) +

√
1− p+ 2 τ 2(p)

]
+ (3 + p)

= 0 (6.121)

for all 1 ≤ p <∞, and

(3p+ 5)− 2 τ 2(p)

2 τ(p)
[
2 τ(p) +

√
1− p+ 2 τ 2(p)

]
− 2(1 + p)

≥ (3p+ 5)− 2 τ 2(p)

2 τ(p)
[
2 τ(p) +

√
1− p+ 2 τ 2(p)

]

≥ (3p+ 5)− (3p+ 5)

2 τ(p)
[
2 τ(p) +

√
1− p+ 2 τ 2(p)

] = 0 (6.122)

for all −1 < p ≤ 1. This confirms the statement.

6.9 Discussion of Results

As shown in Theorem 6.1.5 and subsequent statements, we are able to find new rep-
resentations for the BeNaI with considerable consequences. On the one hand, equa-
tions (6.13a) and (6.13b) do not include any special functions and are thus simpler
to handle than (6.3). On the other hand, equations (6.15a), (6.15b) and (6.15c) show
general relations to important special functions, which enable further interpretations
and discussions of the BeNaI in connection with other special functions.

In addition, we have seen that the BeNaI has some famous mathematical properties.
In particular, the BeNaI is non-negative, continuous, strictly decreasing and logarith-
mically convex with respect to x. The series expansions of the BeNaI are also derived,
especially for the limits x 7→ 0 and x 7→ ∞ in order to show its asymptotic behavior for
these limits. By studying these properties, we have been able to choose a specific class
of functions for bounding the BeNaI.

As stated in Theorem 6.4.1 and 6.4.5, we have presented two new bounds on the
BeNaI for the whole range of parameters −1 < p <∞ and x ≥ 0. Both, the lower
bound and the upper bound, are dependent on their coefficients and it is possible to
modify the coefficients in order to adapt the bounds for certain applications. This
shows that the proposed bounds are scalable and are thus universally useful.

Subsequently, we have established that some of the mathematical properties of the
bounds are identical to those of the BeNaI and there exist certain cases where both
bounds and the BeNaI are equal to each other. This reinforces the decision about
the chosen class of functions from (6.32) for generating the bounds in Theorem 6.4.1
and 6.4.5.
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In order to determine the tightness of the bounds, we have investigated the relative
error of the bounds in Section 6.7. Numerical results show that both bounds are ac-
curate and they achieve relative errors of approximately less than 1.2% for the whole
range of parameters. Since the relative errors and their maximum are hardly analyt-
ically accessible, we have upper-bounded the maximum relative errors by some new
bounds in closed-form. The new bounds show that the maximum relative errors are
approximately less than 1.8%. Hence, the bounds on the maximum relative errors are
also accurate.

6.10 Open Problems
We have not found a short proof in order to show the monotonicity and the convexity
of the bounds f(p, x) and h(p, x) for the range −1 < p < 0. Properties of completely
monotonic functions, see [95], could be of help to accomplish this task, which we leave
for future research. For the time being, both properties are claimed as conjectures.

Conjecture 6.10.1. For all −1 < p < 0 and for all x ≥ 0, both f(p, x) and h(p, x) are
strictly decreasing functions of x.

Conjecture 6.10.2. For all −1 < p < 0 and for all x ≥ 0, both f(p, x) and h(p, x) are
logarithmically convex functions of x.

6.11 Summary
In the present chapter, we have investigated the general expression of the average
symbol-error probability (BeNaI) which appears in data communication over Nakagami-
distributed fading channels. We have suggested some useful and novel identities which
allow for easy and accurate numerical calculations of the BeNaI. These identities also
facilitate the analytical analysis of the BeNaI. We hence have easily derived important
mathematical properties and further identities of the BeNaI. In addition, a new lower
and upper bound on the BeNaI have been proposed in closed-form. They are sharp
and accurate over a wide range of parameters. Their maximum relative errors over
the whole range of parameters are approximately less than 1.2%. Furthermore, we
have derived closed-form upper bounds on the maximum relative error between the
respective bounds and the BeNaI. Finally, the analytical results have been accompanied
by graphical representations throughout the chapter.
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7.1 Summary and Contributions

The content of the presented thesis is motivated at least by two facts. First, finding
optimal solutions for balancing the power consumption of the entire network and the
overall system performance becomes increasingly complex as the number of deployed
sensor nodes becomes large. Second, present numerical methods are too slow to opti-
mize the system performance for realistic network sizes in real-time. Hence, the main
goal of the presented work has been to obtain analytical solutions in closed-form in-
stead of numerical results. In particular, we have improved the performance of wireless
sensor networks that are used for target detection and classification. Although, closed-
form solutions are extremely difficult to obtain and only achievable in special cases,
this work has provided first novel results in closed-form. Major contributions concern
the optimization of the power allocation in sensor networks and the evaluation of the
corresponding classification probability.

Firstly, we have introduced the power allocation problem for distributed multiple-
radar systems. Passive and active radar systems have been investigated under sum-
power and individual power constraints per sensor node. We have presented explicit
policies for the optimal power allocation. The achieved results have shown that the
optimal strategy for power allocation in passive radar systems can be different compared
to the optimal strategy in active radar systems. In case, where the optimization problem
is only subject to individual power constraints, the optimal solution for power allocation
is identical in both passive and active radar systems. Each sensor node is active and
consumes power equal to its own output power-range limitation. In contrast, if the
optimization problem is only subject to the sum-power constraint, then the available
sum-power in passive radar systems is shared between several sensor nodes while in
active radar systems only a single sensor node consumes the whole sum-power. The
only common ground in both radar systems is the selection of active sensor nodes which
is based on a rule that includes all system parameters and is specific for each of both
radar systems. Based on this specific rule we are able to sort the sensor nodes in order
to determine the more reliable nodes and facilitate adaptive resource management in
sensor networks. Moreover, the complexity for optimizing the power allocation in very
large sensor networks can drastically be decreased, since the obtained results are in
closed-form and in addition have simple expressions.

Secondly, since the power allocation problem is optimally solved, an optimal and
simple classification rule has been proposed to improve the whole system performance.
We have applied the distance classifier and evaluated the corresponding classification
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probability in certain cases for active radar systems. As we have shown, the instanta-
neous classification probability is described by the complementary error function and
the evaluation of the average classification probability is closely related to the evaluation
of the average symbol-error probability. If the communication channels are random,
both the average classification and symbol-error probability lead to a challenging prob-
lem of integration, where the integrands are special functions and thus a closed-form
solution seems to be out of reach. However, since the integration problem, which is
named as Beta-Nakagami Integral (BeNaI), arises from many applications and hence
is interesting for investigation, we have examined it carefully.

Finally, we have first improved the Gautschi’s double inequality in order to prove our
statements for the examination of the BeNaI. Subsequently, the BeNaI has been scru-
tinized and as main results we have presented equivalent equations and mathematical
expressions. In particular, from the obtained ordinary differential equation, relation-
ships to the incomplete beta function and to the Gauss hypergeometric function has
been established. Furthermore, an infinite series representation has been developed. By
the equivalent representation of the BeNaI, we have pointed out that the BeNaI is also
equal to an integral over a broken rational function which does not include any special
functions. Moreover, the obtained results lead to more accurate numerical evaluations,
due to simple and stable form of the equivalent representation. In order to eliminate
numerical methods, we have analytically derived accurate bounds in closed-form for
the BeNaI. They yield maximum relative errors of about 1.2% and support the whole
range of parameters. A main advantage of the bounds is the simple mathematical
form, which can in addition be adapted to the particular need of users. For reinforc-
ing the appropriateness of the bounds and their particular selection, we have shown
that important mathematical properties of both bounds coincide with the properties
of the BeNaI. Since the evaluation of relative errors is a hard task, we have determined
analytical upper-bounds in closed-form on all relative errors. Numerical results have
attested the sharpness and the accuracy of the upper-bounds on the relative errors.

7.2 Future Research
As we have seen, the optimization of power allocation in distributed sensor networks
subject to well-chosen constraints is amenable in closed-form. Naturally the question
arises how to select the constraints to solve the optimization problem in closed-form,
or equivalently, is there a specific class of constraints which leads to a closed-form
allocation strategy. In order to answer to these questions, more optimization cases with
different constraints should be investigated. In particular, we point out the following
important extensions of our approach.

• Since an accurate estimation of all channel coefficients in the sensing channel is
difficult in practice, robust optimization methods against estimation inaccuracies
are of high interest.

• Instead of considering the single constraint Wk +Xk ≤ Pmax for each sensor node
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in active sensor networks, two new constraints Wk ≤ PWmax and Xk ≤ PXmax

should be regarded. These constraints are important in medical applications,
since the maximum peak-power values for diagnostic analysis of living tissues are
compulsory and should not be exceeded.

• In the considered sensor networks, we have never regarded any constraints for the
fusion center. Applying some power constraints for the fusion center can be very
interesting since the fusion center itself might be an extended sensor node with
enhanced capabilities.

The key motivation of the presented work has been to derive closed-form solutions for
the power allocation problem. We have achieved this goal by applying the composition
of minimum mean squared error as the objective, a simple system model for the entire
network, and a linear fusion rule to combine the local observations. The variation of
this composition is highly attractive for examination because by applying non-linear
fusion rules the system performance may be further improved. Furthermore, in some
applications the objective should be defined by other metrics than the mean squared
error. For example, the Kullback-Leibler distance is a crucial candidate for the objective
function.

From the viewpoint of information theory, the metric to be minimized in a sensor
network is the energy per information bit required to transmit an information bit from
source to destination. Since this metric is independent of the architecture of the entire
network, its protocols, transmission methods, and the hardware implementation, an
optimal solution in the sense of information theory is of high interest. Recently, some
relationships between the mutual information and the mean square error estimation
have been investigated. Especially, the authors in [96] have shown that minimization of
the mean square error leads to a minimized slope of the corresponding mutual informa-
tion with respect to the signal-to-noise ratio. Since mutual information is increasing and
concave with respect to the signal-to-noise ratio, a minimized mean square error results
in a maximized mutual information. As we have seen in Subsections 3.3.1 and 4.4.1,
we have analytically derived the optimal solution of both power allocation problems in
closed-form which in turn are described by signal-to-noise ratios. Integration of these
results would lead to expressions describing the maximum achievable mutual informa-
tion between the source (target) and destination (fusion center). Because of challenging
integrals and absence of mathematical concepts in this work area, this investigation is
devoted for future.

In the present work, we have investigated the average symbol-error probability for
communication over Nakagami-distributed fading channels. In future works, Rice-
distributed fading channels could be investigated, due to their diverse applications.
Moreover, the evaluation and approximation of both integrals (5.19) and (5.20) are
still open problems. Maybe, the approach of approximation in the presented work can
be extended and used for approximation of other integrals and difficult functions.
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Glossary

List of general Symbols

D Sets are denoted by double stroked uppercase letters.
N, N0 Sets of positive integers (natural numbers) and non-negative integers.

Z Set of integers.
R, R+ Sets of real and non-negative real numbers.

C Set of complex numbers.
FN A subset of N defined as FN := {1, . . . , N} for any given N ∈ N.
K The subset Klin ∪Ksat of all sensor nodes which are active and are

allocated with transmission power.
Klin A subset of K, including all sensor nodes which operate within their

power range.
Ksat A subset of K, including all sensor nodes which operate at their power

range limitation.

j The imaginary unit.
<(z), =(z) Real and imaginary part of a real or complex-valued number z.

v Vectors are denoted by boldface lowercase letters.
M Matrices are denoted by boldface uppercase letters.
M̄ Complex conjugate of a matrix M.
M′ Transpose of a matrix M.
M̄′ Complex-conjugate transpose of a matrix M.

x � y Vector x is majorized by vector y.

E [v], E [v] Expected value of a random variable v and a random vector v.
P [A] Probability of an event A.

P [A | B] Conditional probability of A given B.
Z ∼ R(σ2) A Rayleigh distributed random variable with the Rayleigh parameter

σ2.
G(κ, σ) Gamma distribution with the parameters κ and σ.
O(·) Landau symbol, defining asymptotical behavior of functions.
V ? Optimal value of an optimization variable V .

|z| Absolute value of some real or complex number z.
‖z‖ Euclidean norm of some real or complex vector z.
|D| Cardinality (number of elements) of any finite set D.
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List of Symbols Concerning Power Allocation for Passive and Active
Networks

K Number of all sensor nodes.

K̃ Number of active sensor nodes.
gk, hk Complex-valued channel coefficients.
mk, nk Complex-valued zero-mean AWGN.
uk, vk Non-negative amplification factors and complex-valued weights.

ϑk Phase of vk.
φk Phase of the product gkhk.
yk Input signals of the combiner.
Xk Communication power of kth sensor node.
Ptot Sum-power constraint.

ck, c̃k Disturbance-intensity and reliability-function.
SNRS

k, SNRC
k Signal-to-noise ratios for the communication over sensing and

communication channels.
SNRk, SNRtot Signal-to-noise ratios at the input and the output of the fusion

center.
σ2
s , σ

2
c Expected values of the signal-to-noise ratio for sensing and

communication.

List of Symbols Concerning Power Allocation only for Passive Networks

r, R Target signal and its quadratic absolute mean.
r̃ Estimate of actual r.

Mk, Nk Variances of mk and nk.
Pk Output power-range constraint of kth sensor node.

χ, χ̃ Water-level and normalized water-level.

J̃k The slope of the objective with respect to the power of kth sensor node.
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List of Symbols Concerning Power Allocation only for Active Networks

I Number of different reflection coefficients.
ri Reflection coefficient of ith target object.

rrms Root mean squared absolute value of reflection coefficients.
r̃ Estimate of the actual reflection coefficient ri.

M0, N0 Variances of each mk and nk.
wk Non-negative amplification factors.
Wk Sensing power of kth sensor node.

Pmax Output power-range constraint of each sensor node.
(σ, τ, ω), (σk, τk, ωk) A point in the Cartesian coordinates and the position of the

kth sensor node.
(0, 0, 0), (σ0, 0, 0) The position of the fusion center and the target object.

dgk , dhk Euclidean distances between the kth sensor node and the
target object as well as between kth sensor node and the
fusion center.

S A 3-d subspace of R3 in which all active sensor nodes are
located.

λ Wavelength of the signal.
ρ The density of sensor nodes per volume unit.

List of Symbols Concerning Nakagami-distributed Fading

Γ, ψ Gamma and digamma (psi) function.
B(a, b;x), B(a, b) Incomplete beta and the beta function.

erfc Complementary error function.

2F1 Hypergeometric function.
arctan Inverse tangent function.

τ Ratio of two gamma functions, see (2.31).

P Symbol-error probability.
Pavg Average symbol-error probability (AEP).
g Beta-Nakagami Integral (BeNaI).
g̃ Approximation of BeNaI.

f , h Bounds on the BeNaI.
af , bf Constants used for the bound f .
ah, bh Constants used for the bound h.
rf , rh Maximum relative errors of the bounds f and h.

r, Maximum relative error between the bounds f and h.
r̂, ř Upper bounds on r.
r̃ Maximum relative error of the closest bound.
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Glossary

List of Abbreviations

AEP Average symbol-error probability
BER Bit error rate
SER Symbol error rate

AWGN Additive white Gaussian noise
BeNaI Beta-Nakagami Integral, see Definition 6.1.1
BPSK Binary phase-shift keying

FSK Frequency-shift keying
PAM Pulse amplitude modulation
PSK Phase-shift keying

QAM Quadrature amplitude modulation
QPSK Quadrature phase-shift keying

SN Sensor node
SNR Signal-to-noise ratio

134



Bibliography

[1] G. Alirezaei, “Channel capacity related power allocation for ultra-wide bandwidth
sensor networks with application in object detection,” in IEEE International Con-
ference on Ultra-Wideband (ICUWB’12), Syracuse, NY, USA, Sep. 2012, pp. 115–
119.

[2] G. Alirezaei and R. Mathar, “Channel capacity related power allocation for dis-
tributed sensor networks with application in object classification,” in Interna-
tional Conference on Computing, Networking and Communications (ICNC’13),
San Diego, California, USA, Jan. 2013, pp. 502–507.

[3] ——, “Power allocation for power-limited sensor networks with application in ob-
ject classification,” in Global Information Infrastructure Symposium (GIIS’12),
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