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Abstract—Consider the estimation of an unknown parameter
vector in a linear measurement model. Centralized sensor selec-
tion consists in selecting a set of ks sensor measurements, from
a total number of m potential measurements. The performance
of the corresponding selection is measured by the volume of an
estimation error covariance matrix. In this work, we consider the
problem of selecting these sensors in a distributed or decentral-
ized fashion. In particular, we study the case of two leader nodes
that perform naive decentralized selections. We demonstrate
that this can degrade the performance severely. Therefore, two
heuristics based on convex optimization methods are introduced,
where we first allow one leader to make a selection, and then
to share a modest amount of information about his selection
with the remaining node. We will show that both heuristics
clearly outperform the naive decentralized selection, and achieve
a performance close to the centralized selection.

I. INTRODUCTION

Consider a linear model where a centralized collector es-

timates an n-dimensional parameter vector via an arrange-

ment of m sensors. The sensor readings are affected by

measurement noise. The noise samples are assumed to be

realizations of independent identically distributed Gaussian

random variables. Now suppose the collector is allowed to

use ks active sensors only, where n ≤ ks < m. We call

such a situation a centralized sensor selection problem. The

performance of a particular selection can be assessed by the

volume of the estimation error covariance matrix [1, Sec. II.A].

Therefore, the objective of the sensor selection problem is

to select ks sensors such that this volume is minimized. For

this purpose, the centralized collector must know the complete

measurement matrix, which is needed for calculating the error

covariance.

In contrast, consider the sensor arrangement as depicted in

Fig. 1. We have a partition of all sensors into two groups. Each

sensor group is associated with a specific leader node. The

decentralized sensor selection problem consists in selecting a

subset of sensors by the corresponding leader nodes individu-

ally. After that, the individual selections are transmitted to the

centralized collector. The main advantage of such an approach

is that we do not need to know the complete measurement

matrix at one point, i.e., at the centralized collector. This

can be motivated, for example, by limitations of the available
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transmission bandwidth in a sensor network. However, there is

no guarantee that individual selections minimize the volume of

the error covariance matrix. The reason is that the decentral-

ized leader nodes may choose jointly correlated measurements,

without even knowing it. In this work, we propose two simple

heuristic methods for decentralized sensor selection. Both

heuristics try to avoid jointly correlated measurements by

transmitting a modest amount of data between leader nodes.

We will show by numerous numerical experiments that the

performance can be very close to the centralized solution.

The mathematical form of the sensor selection used in this

paper was introduced in [1], [2]. In particular, the authors

in [1] study the sensor selection problem embedded in the

framework of convex optimization. Throughout this paper, we

will make extensive use of this approach. In [3], a multi-

step sensor selection strategies based on the Kalman filter

error covariance matrix is investigated. Other authors propose

single sensor scheduling algorithms, e.g., [4], [5]. A different,

but conceptually related approach is the selection of reliable

sensors in the context of robust sensing [6].

The remainder of the paper is organized as follows. Section

II introduces the centralized and decentralized sensor selection

problem. To the best of our knowledge, the latter was not

considered by others in this form. In Section III, two heuristics

for decentralized sensor selection are motivated and developed.

The solution of the (nonconvex) sensor selection problem is

outlined in Section IV. In Section V, extensive numerical

simulation illustrates the performance gains of the proposed

decentralized heuristics.

leader node 1

leader node 2

Fig. 1. Arrangement of different sensors and leader nodes. Sensors (•) are
associated with leader node 1, sensors (⋆) with leader node 2. Both leader
nodes may share a (very) limited amount of information.
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II. SENSOR SELECTION

A. System Model

A linear measurement model can be written as [1, Sec. II.A]

yi = aT
i x+ vi, i = 1, . . . ,m (1)

where x ∈ R
n is an unknown parameter vector that we

want to estimate, y ∈ R
m is the measurement vector, and

m > n. Throughout this paper, we will use the terms

sensor and measurement synonymously. The measurements

are corrupted by noise v1, . . . , vm that is independent and

identically distributed (iid) with N (0, σ2). The measurement

matrix

A =






aT
1

...

aT
m




 (2)

is assumed to have full column rank, i.e., rank(A) = n. The

maximum-likelihood estimate of x is then given by

xML =

(
m∑

i=1

aia
T
i

)
−1 m∑

i=1

yiai. (3)

The covariance matrix of the estimation error x−xML has the

form

Σ = σ2
(
ATA

)−1
= σ2

(
m∑

i=1

aia
T
i

)
−1

. (4)

We measure the quality of the estimation by the volume of

this matrix. It can be shown [1, Sec. II.A] that this measure is

related to the log-volume of a confidence ellipsoid given by

log vol(E) = const. −
1

2
log det

(
m∑

i=1

aia
T
i

)

. (5)

This volume is a scalar measure for how informative the

measurements are or how uncertain we have to be about our

estimate xML. In particular, a small volume corresponds to a

small uncertainty, and vice versa.

B. Centralized Sensor Selection Problem

Now suppose we have a total number of m measurements.

A central collector attempts to find a subset of ks < m
measurements that minimizes the uncertainty about xML. This

leads to the centralized sensor selection problem that is stated

in [1, Sec. II.B] as

maximize
z

fcen(z) = log det

(
m∑

i=1

ziaia
T
i

)

subject to 1T z = ks

zi ∈ {0, 1}, i = 1, . . . ,m

(6)

where 1 is a vector of appropriate dimension with all entries

equal to one. Each Boolean variable zi corresponds to a

particular choice of a measurement. Whenever zi = 1, the ith
measurement is to be used. The linear constraint 1T z = ks is

a budget constraint on the total number of active sensors. On

occasion, we will rewrite the objective as

fcen(z) = log det
(
AT diag(z)A

)
, (7)

where the matrix AT diag(z)A is assumed to be positive

definite [7, Ch. 7].

Due to the Boolean constraints in (6), the centralized sensor

selection problem is a nonconvex optimization problem and is

generally hard to solve. However, note that the objective is

a concave function for zi ≥ 0 [8, Sec. 3.1.5]. Relaxing the

Boolean constraints to 0 ≤ zi ≤ 1, the relaxed centralized

sensor selection problem has the form

maximize
z

fcen(z)

subject to 1T z = ks

0 ≤ zi ≤ 1, i = 1, . . . ,m

(8)

This problem is a convex optimization problem and hence can

be solved efficiently, where the solution is denoted as z⋆
cen. The

relaxation gives us a global upper bound for the centralized

sensor selection problem (6). The bound is given by

Ucen = fcen(z
⋆
cen), (9)

and is subsequently used as a global performance measure for

decentralized strategies.

In order to obtain a feasible solution to (6) we apply a sim-

ple rounding scheme as suggested in [1]. In this scheme, the

elements of z⋆
cen are rearranged in descending order. After that,

the ks largest elements are set equal to 1, and the remaining

elements to 0. This gives us a suboptimal solution ẑcen to (6),

along with a lower bound Lcen = fcen(ẑcen). This lower bound

and the corresponding duality gap ∆cen = Ucen −Lcen will be

used later in order to compare centralized and decentralized

methods. In particular, when this gap becomes sufficiently

small, ẑcen is nearly optimal for problem (6). Note that it

is possible to apply more sophisticated rounding schemes [1,

Sec. III.E]. Since we focus on the comparison of centralized

and decentralized strategies, we will use only the prescribed

simple rounding.

C. Decentralized Sensor Selection Problem

Selecting sensors in a centralized fashion, the full mea-

surement matrix A must be known at one point, e.g., the

centralized collector. Now suppose we have two leader nodes

that have access to half of the measurements m/2 ≥ n via the

partition

A =

[
A1

A2

]

, leader node 1: A1, leader node 2: A2.

(10)

where A1, A2 ∈ R
m/2×n, and rank(A1) = rank(A2) = n.

In the decentralized sensor selection problem considered here,

both leader nodes are only allowed to select ks/2 sensors each.

For each leader node l with l ∈ {1, 2}, we first solve the
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relaxed optimization problems

maximize
zl

fl(zl) = log det





m/2
∑

i=1

zlialia
T
li





subject to 1T zl = ks/2
0 ≤ zli ≤ 1, i = 1, . . . ,m/2

(11)

where z⋆
l is the optimal solution of (11). We call this approach

naive decentralized sensor selection or simply decentralized

sensor selection. After computing z⋆
l , both leader nodes apply

the simple rounding scheme separately in order to obtain the

selections ẑl. Finally, both nodes transmit their selections to

the centralized collector.

D. Suboptimality and Performance

The (global) performance of any decentralized method has

to be judged at the centralized collector based on the full

problem, i.e., the centralized objective fcen. The global upper

bound is given by the expression in (9). For calculating the

lower bound, we first stack the solution vectors

ẑdec =

[
ẑ1
ẑ2

]

. (12)

and insert them into the centralized objective

Ldec = fcen(ẑdec) = log det

([
A1

A2

]T [
ẑ1

ẑ2

] [
A1

A2

])

= log det
(
AT diag(ẑdec)A

)
. (13)

Our measure for any decentralized strategy is then given by

the suboptimality gap

∆dec = Ucen − Ldec. (14)

Furthermore, the set of feasible solutions of (11) is a subset

of (8). Therefore, we can also conclude that fcen(z
⋆
cen) ≥

fcen(z
⋆
dec).

Interestingly, it is not possible to make general statements

about the lower bounds Lcen and Ldec, respectively. The

reason is that the prescribed simple rounding scheme produces

one suboptimal solution for the centralized sensor selection

problem (6). In principle, it is possible that the rounding

from the decentralized leader nodes results in a different

suboptimal solution, which in turn achieves a higher lower

bound. However, as numerical evaluation suggests (see Sec. V)

this effect does not occur very often.

III. APPROACH

In this section, we will introduce two methods for solving

the centralized sensor selection problem (6) in a partially

decentralized manner. Partially decentralized means that we

are willing to transmit a negligible amount of data from

one leader node to the other. In particular, we allow the

transmission of N ≪ m vectors of dimension R
n. Without

loss of generality, we assume that leader node 1 shares some

vectors with leader node 2. These methods can be seen as

simple heuristics that attempt to improve the lower bound Ldec

and, accordingly, the suboptimality gap (14).

A. Main Idea

The main idea behind both heuristics can be described

as follows. Assume we have measurements that are approx-

imately collinear, i.e., rows from the matrix A are weakly

correlated. In the case of two rows, it follows from the error

covariance matrix (4) that

aja
T
j + aka

T
k ≈ (1 + γ)aja

T
j , γ ∈ R. (15)

In the above expression, we have the sum of two rank-1

matrices that can be approximately be rewritten as a scaled

version of one rank-1 matrix. This means, we have (effec-

tively) lost one rank. Now recall that each binary variable ẑi

corresponds to a specific selection out of all rows from A.

Since
∑m

i=1
ẑiaia

T
i is symmetric, it is orthogonally diagonal-

izable and we can rewrite the objective (6) as

log det

(
m∑

i=1

ẑiaia
T
i

)

= log det
(
UΛUT

)
=

n∑

i=1

log λi,

where λi are the (positive) eigenvalues of AT diag(ẑ)A.

Selecting many weakly correlated measurements via ẑ will

reduce the effective rank of the above matrix. This increases

the number of small eigenvalues, and therefore increases the

total volume of the corresponding confidence ellipsoid.

Unless we are allowed to use k = m measurements, the cen-

tralized sensor selection will avoid correlated measurements

since they do not add significantly to the objective in (6).

This situation is different for the decentralized sensor selection

problem. Both leader nodes maximize their own ellipsoid,

using only the local data A1 and A2, respectively. However, it

is possible and likely that their individual selections are jointly

correlated, which in turn leads to a smaller global ellipsoid.

Now suppose leader node 1 shares some information about

the largest contribution to its own ellipsoid. Leader node 2

would avoid picking the same contribution. This is the main

idea behind both heuristics.

To be more specific, suppose only leader node 1 has solved

the relaxed decentralized sensor selection problem (11). The

main contribution to the volume of the local ellipsoid is

given by the largest eigenvalues of the matrix AT
1 diag(ẑ1)A1.

Denote λ1, . . . , λN the N largest eigenvalues and u1, . . . , uN

the associated eigenvectors with that matrix. We will now

introduce two heuristics that capitalize the influence of these

eigenvalues and -vectors.

B. Focused Diversity Method

Leader node 2 modifies its data matrix A2 and selection

vector z2 such that

Afdm =








A2

λ1u
T
1

...

λNu
T
N







, z̃ =








z2
z̃m/2+1

...

z̃m/2+N







. (16)

2393



We can now rewrite objective of the decentralized sensor

selection problem for leader node 2 as

log det
(
AT

fdmdiag(z̃)Afdm

)
(17)

= log det





m/2
∑

i=1

z̃ia2ia
T
2i +

N∑

i=1

z̃i+m/2λ
2
iuiu

T
i



 . (18)

Leader node 2 must avoid the same directions or contributions

that were already made by leader node 1. One way to achieve

this is to set z̃m/2+1 = . . . = z̃m/2+N = 1. Basically, leader

node 1 has already made a decision for the second node. The

objective for leader node 2 has then the form

f2,fdm(z2) = log det





m/2
∑

i=1

z2ia2ia
T
2i +

N∑

i=1

λ2
iuiu

T
i



 . (19)

Hence the remaining relaxed optimization problem to be

solved is given by

maximize
z2

f2,fdm(z2)

subject to 1T z2 = ks/2
0 ≤ z2i ≤ 1, i = 1, . . . ,m/2

(20)

where the solution is denoted as z⋆
2,fdm := z⋆

2 . We call this

heuristic focused diversity method. Note that the underlying

maximization problem is still concave. After solving, leader

node 2 performs the simple rounding scheme in order to obtain

ẑ2,fdm. The upper and lower bounds for the focused diversity

method are then calculated based on the vectors

z⋆
fdm =

[
z⋆
1

z⋆
2,fdm

]

, ẑfdm =

[
ẑ1

ẑ2,fdm

]

. (21)

C. Linear Penalty Method

Another way to force leader node 2 to avoid the main

directions from leader node 1 is to introduce a linear penalty

for choosing similar measurements. This can be accomplished

by adding an additional term to the objective given in (11).

Consider the quantity
∣
∣
∣
∣

aT
2i

‖a2i‖2

uj

∣
∣
∣
∣

︸ ︷︷ ︸

similarity

·
λj

‖a2i‖2
︸ ︷︷ ︸

relevance

=
∣
∣aT

2iλjuj

∣
∣ ·

1

‖a2i‖2
2

, (22)

where i = 1, . . . ,m/2, and j = 1, . . . , N . Consider the LHS

first. Whenever a measurement a2i has a direction that is

similar to a main direction from leader node 1, the absolute

value of the normalized inner product between a2i and uj

will be ’large’. In order to account for a possibly higher

contribution from A2, we put an additional weight on this

similarity, which is called relevance. Note that we only need

to calculate the product λjuj . Therefore, the RHS of (22) does

not violate the restriction that only N vectors from leader node

1 can be shared.

Using the quantity (22) we can now construct a penalty

term. Denote the cost vector

ci =

N∑

j=1

∣
∣aT

2iλjuj

∣
∣ ·

1

‖a2i‖2
2

≥ 0, i = 1, . . . ,m/2. (23)

We rewrite the objective for leader node 2 as

f2,lpm(z2) = log det





m/2
∑

i=1

z2ia2ia
T
2i



−

m/2
∑

i=1

ciz2i (24)

= f2(z2) − cT z2, (25)

where cT = [c1 · · · cm/2]. The resulting heuristic is called

linear penalty method, associated with the (relaxed) concave

optimization problem

maximize
z2

f2,lpm(z2)

subject to 1T z2 = ks/2
0 ≤ z2i ≤ 1. i = 1, . . . ,m/2

(26)

The solution is called z⋆
2,lpm := z⋆

2 , and the resulting vectors

for calculating the upper and lower bound are given by

z⋆
lpm =

[
z⋆
1

z⋆
2,lpm

]

, ẑlpm =

[
ẑ1

ẑ2,lpm

]

. (27)

IV. SOLVING A SENSOR SELECTION PROBLEM

In order to solve a concave maximization problem similar

to (8), several methods are at hand. One could resort to

optimization software like CVX [9]. In our case, we have

implemented a logarithmic barrier method, see [8, Sec. 11.3].

A full implementation will be made available on our website.

The reason for choosing a barrier method is that it can be

implemented without great effort. However, other interior-

point methods, which are used in practice more often (for

example, primal-dual methods), may solve the above problems

within fewer iterations and higher accuracy.

From [1, Sec. III D], the approximate objective of the

relaxed sensor selection is given by

ψcen(z)=log det

(
m∑

i=1

ziaia
T
i

)

+κ
m∑

i=1

(log(zi)+log(1−zi))

(28)

= log det

(
m∑

i=1

ziaia
T
i

)

+ φκ(z). (29)

The authors also give explicit expressions for the gradient

∇ψcen(z) and Hessian ∇2ψcen(z). This is needed in order

to calculate the Newton step in the inner iteration of the

barrier method [8]. In our case, leader node 2 has a modified

approximate objective, depending on the method (e.g., focused

diversity or linear penalty method). For completeness, the

explicit expressions are given below.

For the focused diversity method (20), the approximate

objective of leader node 2 has the form

ψfdm(z2)=log det





m/2
∑

i=1

z2ia2ia
T
2i +

N∑

i=1

λ2
iuiu

T
i



+ φκ(z2),

(30)

where φκ : R
m/2 → R. Therefore, the gradient is given by

∇ψfdm(z2) = diag
(
AT

2 WfdmA2

)
+ ∇φκ(z2), (31)
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where

Wfdm =





m/2
∑

i=1

z2ia2ia
T
2i +

N∑

i=1

λ2
iuiu

T
i





−1

. (32)

The Hessian is given by

∇2ψfdm(z2)=−
(
AT

2 WfdmA2

)
⊙
(
AT

2 WfdmA2

)
+ ∇2φκ(z2),

(33)

where ⊙ is the Hadamard product.

In the case of the linear penalty method (26), the approxi-

mate objective reads as

ψlpm(z2) = log det





m/2
∑

i=1

z2ia2ia
T
2i



− cT z2 + φκ(z2). (34)

Hence the gradient has the form

∇ψlpm(z2) = diag
(
AT

2 WlpmA2

)
− c+ ∇φκ(z2), (35)

where

Wlpm =





m/2
∑

i=1

z2ia2ia
T
2i





−1

. (36)

Since we have a linear penalty term, the Hessian remains

unchanged when compared to [1, Sec. III D], except the

different dimension m/2 ×m/2.

V. NUMERICAL EXAMPLE

We will now compare the naive decentralized sensor se-

lection (Sec. II-C) with the proposed heuristics, e.g., focused

diversity (Sec. III-B) and linear penalty method (Sec. III-C).

Our benchmark for all comparisons is the solution from the

centralized sensor selection problem (Sec. II-B).

Throughout this section we investigate the following model-

ing setup. We use m = 100 measurements, n = 40 unknown

parameters, and a total number of ks = 40, . . . , 60 sensors.

The measurement matrix is partitioned as given in (10). The

entries of the submatrices A1 and A2 are iid with N (0, 1).
In order to create weakly correlated measurements, we pick

randomly two different rows from A1 and A2, say row i from

A1 and row j from A2. Both rows are then modified as follows

aT
1i =

√

1 − σ2 · bT + σwT
i , (37)

aT
2j =

√

1 − σ2 · bT + σwT
j , (38)

where b1, . . . , bn, wi1, . . . , win, and wj1, . . . , wjn are iid with

N (0, 1). In this formulation, σ represents of the strength of

correlation. In our simulation we modified a total number of

30 rows and used σ = 0.1.

We first fix the number of shared vectors N = 5, and vary

only the number of sensors to be used. In Fig. 2(a), the lower

bounds L are shown for this case. We can clearly see that the

focused diversity and the linear penalty method outperform

the naive decentralized selection, notably for a low number of
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(b) relative suboptimality gap ∆rel,i

Fig. 2. Lower bounds (a) and relative suboptimality gap (b) for the four
different sensor selection strategies, where N = 5. Note that the centralized
sensor selection serves as a benchmark for all decentralized strategies.

sensors. Since this gives only a lower bound we introduce the

relative suboptimality gap

∆rel,i = 100 ·
|Ucen − Li|

|Ucen|
, i ∈ {cen, dec, fdm, lpm}.

(39)

This gap measures how far we are away from the optimum of

the (nonconvex) centralized sensor selection problem (6). Note

that the relative suboptimality gap is a worst-case measure.

This means in practice we are often closer to this optimum

than suggested by this gap. The corresponding results are de-

picted in Fig. 2(b). When compared to the naive decentralized

selection, a considerable performance gain for both heuristics

can be observed.

As mentioned in Sec. II-D, it is in principle not clear

how the simple rounding scheme affects the different lower

bounds, and hence the relative suboptimality gap. In order to

get a meaningful interpretation, we run a simulation with 104

different random realizations of the aforementioned modeling
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Fig. 3. Relative suboptimality gap for the four different sensor selection
strategies, where ks = 40 and N = 5.

setup. The results for ks = 40 and N = 5 can be seen

in Fig. 3. As shown by the histograms, the linear penalty

method performs on average slightly better than the focused

diversity method. It is also evident that the decentralized sensor

selection is far away from being optimal. We have also plotted

the empirical means µi, of all relative suboptimality gaps.

The influence of the number of shared vectors on the relative

suboptimality gap is illustrated in Fig. 4. We assume that all

vectors are transmitted perfectly, i.e., no transmission errors

occur. Again, we have used total number of 104 realizations

and ks = 40 sensors. Each point in Fig. 4 corresponds to

a mean µi(N). As a reasonable deviation measure, we have

included standard deviations depicted as error bars around the

corresponding means. Note that we can not make the gap

between the centralized selection and decentralized heuristics

arbitrarily small. The reason is that leader node 1 already made

a decision, which in turn can be suboptimal from a centralized

point of view.
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Fig. 4. Influence of the number of shared vectors N on the empirical mean
of the relative suboptimality gap, where ks = 40. The error bars around the
mean values represent the corresponding standard deviations.

VI. CONCLUSION

We have introduced the decentralized sensor selection prob-

lem for a partition of m sensors between two leader nodes. A

naive decentralized solution solves the sensor selection prob-

lem separately for both leader nodes. It was shown, that this

solution is considerably worse when compared to a centralized

approach. Therefore, we proposed two simple heuristics that

allowed a very limited transmission of information from one

leader to the other. These heuristics try to avoid similar

contributions from both leader nodes, or equivalently, to ex-

ploit diversity in possible sensor selections. As suggested by

extensive numerical simulations, the heuristics outperformed

the naive decentralized selection by a substantial margin.

REFERENCES

[1] S. Joshi and S. Boyd, “Sensor selection via convex optimization,” Trans.

Sig. Proc., vol. 57, pp. 451–462, February 2009.
[2] L. Yao, W. Sethares, and D. Kammer, “Sensor placement for on-orbit

modal identification of large space structure via a genetic algorithm,” in
Systems Engineering, 1992., IEEE International Conference on, sep 1992,
pp. 332 –335.

[3] Y. Mo, R. Ambrosino, and B. Sinopoli, “A convex optimization approach
of multi-step sensor selection under correlated noise,” in Communication,

Control, and Computing, 2009. Allerton 2009. 47th Annual Allerton

Conference on, 30 2009-oct. 2 2009, pp. 186 –193.
[4] V. Gupta, T. H. Chung, B. Hassibi, and R. M. Murray, “On a stochastic

sensor selection algorithm with applications in sensor scheduling and
sensor coverage,” Automatica, vol. 42, no. 2, pp. 251 – 260, 2006.

[5] M. Vitus, W. Zhang, A. Abate, J. Hu, and C. Tomlin, “On efficient
sensor scheduling for linear dynamical systems,” in American Control

Conference (ACC), 2010, 30 2010-july 2 2010, pp. 4833 –4838.
[6] V. Kekatos and G. Giannakis, “Selecting reliable sensors via convex op-

timization,” in Signal Processing Advances in Wireless Communications

(SPAWC), 2010 IEEE Eleventh International Workshop on, june 2010, pp.
1 –5.

[7] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University
Press, 1990.

[8] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY,
USA: Cambridge University Press, 2004.

[9] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 1.22,” http://cvxr.com/cvx, Feb. 2012.

2396


