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Abstract—In Long Term Evolution (LTE) systems, the quality
of service (QoS) heavily relies on the accurate feedback of channel
quality indicator (CQI). However, the time-varying channel and
transmission delay make the outdated CQI unreliable. In this
work, CQI prediction schemes based on Wiener filter, cubic spline
extrapolation and short-term average are studied. The effects of
using prediction schemes on data throughput are compared with
simulation. A simple adaptation technique is found to make the
prediction effective for both high speed and low speed mobile
stations.
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I. INTRODUCTION

In LTE systems, to enhance the QoS, in terms of data
throughput and error protection, adaptive modulation and cod-
ing scheme (AMC) is used [1]. AMC requires knowledge of
the wireless channel between eNodeB (eNB) and user equip-
ments (UE). The channel information is normally measured by
the UE and sent to eNB through a feedback channel. Accord-
ing to 3GPP standards, the feedback of channel information
consists rank indicator (RI), pre-coding matrix indicator (PMI),
and most importantly, CQI.

CQI is a 4-bit quantized value that indicates an estimation
of the modulation and coding scheme (MCS) that the UE can
receive reliably from eNB. It reflects the SINR on different
physical resource blocks. Several different feedback schemes
are introduced by 3GPP. In wideband feedback, only one CQI
is provided for the whole frequency band. To facilitate fre-
quency domain scheduling, two other CQI feedback schemes
are specified. The UE can report either the CQI for all the
subbands or a selected sub set of them. Only subband level
feedback is considered in this work. More details of CQI
signaling can be found in [2].

Due to the time spent on transmitting and processing
signals, a delay between the CQI report and its application in
eNB is inevitable. As the channel condition changes constantly
over time, the mismatched CQI could consequently result in a
reduction of the data throughput. The performance degradation
caused by CQI delay is pointed out in [3].

Numerous prediction methods have been investigated to
compensate CQI delay. In [4], the prediction error is assumed
to follow a normal distribution and the prediction process is
actually an order-one autoregressive filtering. A finite-state

This work is partially supported by UMIC, a research project in the frame
work of the German excellence initiative.

Markov chain (FSMC) model was proposed in [5], where
the states of CQI are modeled with transition probabilities.
However, the average signal to interference plus noise ratio
(SINR) of all the active UE in a cell must be known as pre-
requisite. The normalized least mean square (NLMS) filtering
was presented in [6] and further improved in [7]. The main
drawback of NLMS filtering is its computational complexity
and the necessity of training. The more frequent the channel
fluctuates, the more training sequences are needed. In addition,
NLMS filtering is ineffective when the feedback delay is large.
Another scheme, which simply takes a short-term average as
predicted value, was also given in [7]. Although seems rough,
short-term average is an effective method for high speed UE.
The reason is, that with high speed UE, the feedback delay
could be much greater than the channel coherence time, thus,
the optimal prediction converges to the mean CQI [8].

In this work, several schemes are introduced and compared.
Moreover, a prediction scheme based on extrapolation of
SINR is proposed. Cubic spline extrapolation can provide
near optimal results for low speed UE, however has serious
numerical problem when the UE speed is high. Therefore,
a simple heuristic using sample autocorrelation is adopted to
combine the extrapolation output with the historical average,
which produces an accurate prediction of CQI for high speed
UE. This approach does neither assume channel stationarity
nor require knowledge of moving speed.

II. PRELIMINARIES

A. System model

Consider a LTE downlink, where a given cell is surrounded
by Nint interfering cells. Assuming all wireless channel re-
sponses are flat in one physical resource block (PRB). Without
loss of generality, the basic time unit of PRB is assumed to
be subframe (1 ms) instead of time slot (0.5 ms). The SINR
can be written as

γk =

|h0,k|2
L0,k

P0,k

Nint∑
i=1

|hi,k|2
Li,k

Pi,k + σ2
w

, (1)

where k is the frequency domain index, P is the transmission
power, L is pathloss and h is the complex channel gain.
The noise power is denoted by σ2

w. The commonly used
Rayleigh fading model is applied to the channel response,
where the frequency correlation depends on the power-delay
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Fig. 1. (a) BLER for CQI 1-15 in AWGN channel [11]. (b) SNR to CQI
mapping.

profile (PDP) and temporal correlation depends on the Doppler
frequency [9].

Due to frequency selectivity, different PRBs generally have
different SINRs. To find a proper estimation of the CQI, SINRs
on different PRBs must be mapped into an effective SNR.
The block error rate (BLER) of the effective SNR in AWGN
channel should match the BLER of the original PRB set as

p(AWGN)
e (γs) � pe(γk, k ∈ B{s}), (2)

where B{s} is the set of PRB in subband s.

Using exponential effective signal to noise ratio mapping
(EESM) [10], the effective SNR for subband s can be calcu-
lated by

γs = −β ln

⎛
⎝1

q

∑
k∈B{s}

e−
γk
β

⎞
⎠ , (3)

where β is a parameter calibrated as a function of the MCS.
In this work, β is obtained through extensive simulations, as
shown in Tab. I. Each CQI corresponds to a unique combina-
tion of MCS, and the BLER of such MCS in AWGN channel
can be obtained from simulation, accordingly. In LTE, a BLER
smaller than 0.1 is required for AMC. Based on the BLER for
different MCS shown in Fig. 1 (a), the CQI feedback can be
determined by a step function Qs = f(γs,dB) as depicted in
Fig. 1 (b).

B. Prediction noise

The noise of the prediction procedure consists of the
following parts: (1) Estimation noise On UE side, due to
imperfect SINR estimation, the estimated SINR is deviated
from the true SINR. (2) Compression noise The SINR to
effective SNR mapping, is a lossy compression. (3)Calibration
noise In the SINR to effective SNR mapping, the parameter
β is empirically calibrated. Different implementations of the
turbo decoder could result in a calibration mismatch. (4)
Quantization noise The real valued effective SNR is mapped
to a 4-bit CQI index, with a lot of information loss. (5) Noise
caused by delay The channel is changing during the time
spent on transmitting and processing the feedback information.
Thus, the CQI value used for the scheduler might already be
outdated.

In this work, the SINR before EESM is assumed to be
noiseless. Prediction algorithms aim at minimize the inaccu-
racy caused by delay, which is a crucial problem when the

CQI index Modulation Code rate × 1024 Efficiency [bit/s/Hz] β
0 out of range

1 QPSK 78 0.1523 4.40

2 QPSK 120 0.2344 4.07

3 QPSK 193 0.3770 4.22

4 QPSK 308 0.6016 3.87

5 QPSK 449 0.8770 4.57

6 QPSK 602 1.1758 4.68

7 16QAM 378 1.4766 5.85

8 16QAM 490 1.9141 3.77

9 16QAM 616 2.4063 3.97

10 64QAM 466 2.7305 3.71

11 64QAM 567 3.3223 3.06

12 64QAM 666 3.9023 3.20

13 64QAM 772 4.5234 3.04

14 64QAM 873 5.1152 2.41

15 64QAM 948 5.5547 1.88
TABLE I. THE 4-BIT CQI TABLE IN LTE [2]

channel is changing fast or the delay is large. The prediction
algorithms can be either based on previous SINR values
or previous CQI values. For algorithms, which are based
on previous CQIs, the compression noise, calibration noise
and quantization noise can be enhanced in the prediction
procedure.

C. Objective function

The most important QoS metrics related to channel quality
feedback is throughput and error rate.

For maximizing throughput, the objective function for
SINR-based prediction in time interval [nmin, nmax] can be
written as

γ̂k(n) = argmax
γk(n)

nmax∑
n=nmin

Ts(n), (4)

where Ts(n) is the total throughput of an UE at discrete time
n. It can be calculated from

Ts(n) =

Nsub∑
s=1

NPRBNscΔfRs(n), (5)

where Nsub is the number of subbands, NPRB is the number
of PRB in each subband and Nsc is the number of subcarriers
in one PRB. The subcarrier spacing is denoted by Δf . And
spectral efficiency, denoted by Rs(n), is associated with CQI
as specified in Tab. I.

Since the error rate has a direct relationship with the
accuracy of channel information [9], the minimization of error
rate leads to the minimization of the mean square error (MSE)
of SINR E{(γk(n)− γ̂k(n))

2}.
Although intuitively, maximizing throughput and minimiz-

ing MSE are similar. They are not necessarily equivalent,
especially considering the case with hybrid automatic repeat
request (H-ARQ). Mismatched CQIs can causes occasional
retransmissions. However, retransmission with higher order
MCS could have better average throughput than constantly
successful transmissions with lower order MCS [12]. Further-
more, in multi-user systems, the throughput depends not only
on the CQI feedback but also on the scheduling algorithm.
For the sake of simplicity, this work is restricted to single user
system.

SS5/I - 89447 -1809 © SoftCOM 2013



The SINR value is only available on the UE side. Thus,
SINR-based prediction can only be conducted at the UE.
Furthermore, the limited battery life on mobile devices restrict
the computational complexity. As an alternative, the prediction
can also be based on CQI. The CQI-based prediction can be
performed on both UE and eNB side. And since Qs belongs to
a finite set with small cardinality, the computational complexity
is rather low. However, the noise enhancements discussed in
last section lead to very limited precision.

III. PREDICTION ALGORITHMS

In this section, prediction schemes based on filtering and
extrapolation are presented. The schemes are explained with
SINR prediction, but can be adapted to CQI prediction in a
straight forward manner.

A. Wiener filter

Most of the existing prediction methods assume the SINR
to be stationary and the statistics are simply available. These
are very strong assumptions, since with wide-sense stationary
(WSS) Rayleigh channels, the SINR is not stationary [13].
Moreover, considering the shift in UE location caused by
movements, the SINR varies not only temporally but also
spatially. Although the SINR is not a stationary process, it
is safe to assume it is short-term stationary, and use sample
autocorrelation instead of autocorrelation function (ACF). The
sample autocorrelation of window [n− n0, n] is

rγγ(n, τ) = E{γk(n′)γk(n′ + τ)}, n′ ∈ [n− n0, n− τ ], (6)

where τ is feedback delay and n0 > τ is essential.

The predicted SINR using a oder p Wiener filter is given
by

γ̂k,Wiener(n+ τ) =

p−1∑
l=0

w(l)γk(n− l), (7)

where w is the Wiener filter coefficient. The mean square error
(MSE) of the predicted SINR can then be written as

ε(n) = E
{
(γk(n+ τ)− γ̂k,Wiener(n+ τ))2

}
. (8)

Using the orthogonality principle, the following equation can
be obtained [14]:

E {(γk(n+ τ)− γ̂k,Wiener(n+ τ))γk(n− l)} = 0 (9)

l = 0, · · · , p− 1.

Substituting (7) into (9), the optimum prediction filter can be
obtained as

w = R−1r, (10)

where
w = [w(0), w(1), · · · , w(p− 1)]T, (11)

R =

⎛
⎜⎜⎝

rγγ(n, 0) rγγ(n, 1) · · · rγγ(n, p− 1)
rγγ(n, 1) rγγ(n, 0) · · · rγγ(n, p− 2)

...
...

. . .
...

rγγ(n, p− 1) rγγ(n, p− 2) · · · rγγ(n, 0)

⎞
⎟⎟⎠ ,

(12)
and

r = [rγγ(n, τ), rγγ(n, τ + 1) · · · , rγγ(n, τ + p− 1)]T. (13)

It is clear that the performance of Wiener filter depends
on the accuracy of the sample autocorrelation. In the ideal
case, when the UE moves slowly, or the delay is small, with
sufficiently large number of observed samples, the Wiener filter
gives minimum mean square error. The computational com-
plexity concentrates on the calculation of weighting factors.
It depends to the filter order and how often the sample ACF
needs to be updated.

B. Extrapolation

Without assuming known statistics, extrapolation is a com-
monly used tool for forecasting missing values in time-series.
The predicted SINR is a function of the measured SINR in a
finite window [n− κ, n] as

γ̂k,ext(n+ τ) = S(n+ τ), (14)

where S(·) is the extrapolation function, which can be de-
termined by γk(n − κ), γk(n − κ + 1), · · · , γk(n). Most
commonly used extrapolation functions are linear extrapolation
and cubic spline extrapolation. Linear interpolation is proved
to be effective for low UE speed and short delay [15]. In this
work, cubic spline extrapolation is considered.

Cubic spline functions are piecewise defined third degree
polynomials of the form

S(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s1(x) if x1 ≤ x < x2,

s2(x) if x2 ≤ x < x3,
...

sκ(x) if xκ ≤ x < xκ+1,

(15)

where

si(x) = ai(x− xi)
3 + bi(x− xi)

2 + ci(x− xi) + di. (16)

Assuming the spline function S(x) and its first and sec-
ond derivatives S′(x) S′′(x) are continuous on the interval
[x1, xκ+1], the unknown parameters can be solved, with the
natural boundary condition S′′(x1) = S′′(xκ+1) = 0 [16].

As shown in Fig. 2 (a), with a feedback delay of 10 ms, the
predicted SINR γ̂k,ext using cubic spline function matches the
original SINR γk perfectly, when the UE is moving at 3 km/h.
However, at higher speed, the mismatch of prediction can
be observed. Additionally, high peaks caused by insufficient
sampling rate grow, when the UE moves faster as shown in
Fig. 2 (b) and (c). The numerical errors can be reduced by
introducing additional boundary conditions.

Noticing that the differences between neighboring CQI
have small chance to be larger than 1, as shown in Tab. II, an
artificial restriction can be added to the spline extrapolation.
According to the linear relationship between γs,dB and Qs,
the difference between adjacent γs,dB should be smaller than
f−1(ΔQ) in dB. Since γs is effectively an average of γk, the
same constraint is applied to γ̂k,ext.

Speed [km/h] p(ΔQ > 1) p(ΔQ > 2)

3 9.97× 10−5 8.37× 10−7

10 1.37× 10−4 2.51× 10−6

30 7.82× 10−3 3.88× 10−4

50 4.52× 10−2 4.68× 10−3

TABLE II. STATISTICS OF DIFFERENCES BETWEEN NEIGHBORING

CQI.
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Fig. 2. (a) (b) (c) are SINR curves for UE at 3 km/h, 10 km/h, 30 km/h,
respectively. (d) is at 30 km/h with additional boundary conditions ΔQ = 1

C. Combined prediction

As mentioned before, when UE moves fast, the short-
term average offers a fairly good prediction. Thus, a proper
combination of extrapolation and short-term average should
deliver good performance for both low speed UE and high
speed UE. The weighted combination can be written as

γ̂k(n+ τ) = wext(n, τ)γ̂k,ext(n+ τ)

+wavg(n, τ)γ̄k(n− κ, n), (17)

where γ̄k is the short-term average of γk from n − κ to n,
wext and wavg are weighting factors, respectively.

As a matter of fact, the ACF is a good indicator of the
extrapolation quality. Generally speaking, when the autocor-
relation is larger, MSE of extrapolation is smaller. Thus, the
ACF can be used as weighting factors.

Consequently, the final prediction can be written as

γ̂k(n+ τ) = rγγ(n, τ)γ̂k,ext(n+ τ)

+
√

1− rγγ(n, τ)2 · γ̄k(n− κ, n), (18)

which essentially converges to γ̂k,ext(n+ τ) for stationary UE
and γ̄k(n− κ, n) for very fast UE.

IV. SIMULATION RESULTS

A single user system is simulated. The simulated area is
covered by 7 eNBs, which are located in regular hexagonal

Carrier frequency 800 MHz

Sub-carrier bandwidth 15 kHz

Nsc 12

NPRB 4

Nsub 6

Total bandwidth 4.32 MHz

Feedback delay τ 10 ms

Prediction window size t0 100 ms

H-ARQ Up to 3 retransmissions

Inter-site distance 500 meter

UE mobility model Random walk

Pathloss model L = 15.3 + 37.6 log10 d
eNB antenna 3-sector antenna

PDP Exponential

UE noise figure 9 dB

Shadow fading Not considered

Channel knowledge Perfect
TABLE III. SIMULATION PARAMETERS.
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Fig. 3. Comparison of throughput CDF at 10 km/h.
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Fig. 4. Comparison of throughput CDF at 50 km/h.

grids and each equipped with a 3-sector antenna. The most
important simulation parameters are summarized in Tab. III.
Since the channel of slow UE has less fluctuation and 50 km/h
is a common speed limit for most of the urban area, the UE
speed range of 10-50 km/h is of interest. For Wiener filter, the
sample autocorrelation is evaluated once for 1000 subframes,
the filter order is 10. For extrapolation, the prediction window
is 10 ms. The short-term average value is also compared, where
the predicted SINR is the average of the latest 10 subframes.
Another important parameter is the feedback delay. To the
authors’ best knowledge, considering all the measurement
delay, transmission delay and processing delay, the overall
feedback delay is set to 10 ms, which is quite realistic,
comparing to most of the earlier works which assume the
feedback delay to be 1-5 ms [4] [5] [6] [7].

The performance of different algorithms is evaluated by the
throughput. The throughput with perfect CQI feedback is given
as theoretical limit. The cumulative density function (CDF) of
throughput are compared for UE with speed 10 km/h in Fig. 3,
where the throughput gap between no prediction and perfect
CQI feedback is relatively small. It can be seen that Wiener
filter and extrapolation can provide a prediction gain, while the
other schemes performs even worse than no prediction. The
extrapolation approach gives a near-optimum performance.

When the UE speed increases, the throughput loss due to
feedback delay also increases. The gap between no prediction
and perfect CQI feedback is larger. The performance of Wiener
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filter degrades rapidly. When the UE speed reaches 50 km/h,
the Wiener filter performs rather poor, due to the weak and
unreliable autocorrelation of the input data. As a result of the
numerical problem discussed in Sec. III, the extrapolation also
become worse than no prediction. However, the short-term
average offers a better performance, whereas the combined
prediction delivers the highest throughput.

The problem about Wiener filter is its sensitivity to the
correlation between the filter input and output. As illustrated
in Fig. 5, for small delay of 1 ms, the correlation between the
filter input and output is strong, and the Wiener filter performs
as good as extrapolation. However, the throughput degradation
is larger, as the delay increases.

The average throughput of all the aforementioned algo-
rithms is compared in Fig. 6. According to this result, using
prediction schemes, the average throughput can be boosted by
a factor of up to 15%−25% percent. The extrapolation scheme
dominates the low speed range, while the combined prediction
is advantageous when UE is faster.

A simple conclusion can be deduced, that is, to achieve
highest throughput, the UE should choose the extrapolation
scheme or the combined prediction scheme, according to its
moving speed. And the speed can be estimated by observing
the correlation of past CQI.

V. CONCLUSION

In this paper, to improve the QoS, a number of CQI
prediction schemes for LTE are explained and compared. None
of these schemes make strong assumptions on the propagation
environment. The Wiener filter is only effective for low speed
and small delay. The extrapolation and combined prediction
scheme provide good throughput gain for low speed UEs and
high speed UEs, respectively. Therefore, an adaptive prediction
approach can be made from these two schemes.
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