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Abstract—In the present paper, we consider the Degrees-of-
Freedom (DoF) of a multiple-input multiple-output (MIMO)
3-way channel with an arbitrary number of antennas at each
user. This channel provides a particular extension of the two-
way channel to three users. Therein, three users exchange six
messages in total, i. e., there is one message from each user to
each of the two other users. We derive upper bounds on the DoF
of the channel and show that those are achievable by MIMO
interference alignment (IA) and zero-forcing beam-forming. We
show that the network has a number of 2M2 DoF where Mj

represents the number of antennas at user j, and M1 ≥M2 ≥M3.

I. INTRODUCTION

The impact of interference is a natural impairment in
wireless multi-user communication networks. Since the exact
characterization of capacity for multiple interfering users is
a very challenging task, approximate measures of the channel
capacity are used to study its asymptotic behaviour. A capacity
approximation which becomes accurate in the high signal-to-
noise ratio (SNR) regime is termed the degrees-of-freedom
(DoF) [1], which is also known as the capacity pre-log factor
or multiplexing gain.

As introduced by the seminal works [2] and [3], the concept
of interference alignment (IA) is shown to be a key method
to achieve the upper bounds on the DoF in the presence
of multi-user interference. Quite extensive work on the DoF
for various multi-user interference networks has already been
accomplished. A particular object of interest concerns the
application of IA in MIMO channels with constant channel
coefficients. For instance, the DoF of the 2-user MIMO
interference channel using zero-forcing are provided in [1],
the DoF and the DoF region of the 2-user MIMO X- channel
are considered in [4] and [5], respectively, where IA was used.

In this paper, we apply IA to a multi-way communications
scenario, i.e., a scenario where a user transmits some data to
the other users and simultaneously receives some data from the
other users. In particular, we consider a 3-way channel (Fig.
1), which can be considered as an extension of Shannon’s
two-way channel [6] to three users. Note that this mode of
communications (multi-way) is natural since a significant part
of our daily communications is two-way or multi-way (video
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Fig. 1. The MIMO 3-way channel (or ∆-channel) with Mi transmit and Mi

receive antennas at each user Ti, with i = 1,2,3.

conferences for instance). This mode also applies to the current
hot-topic of device-to-device communications [7]–[9].

Multi-way communications has been considered earlier in
the context of multi-way relay channels. For instance, the DoF
of the MIMO 3-way relay channel, known as the Y - channel,
have been studied in [10] and [11]. In this paper, we consider
multi-way communications without a dedicated relay node
(contrary to [10], [11]). We study a MIMO 3-way channel,
where three full-duplex users intend to exchange messages
with each other directly as depicted in Fig. 1. The single-
input single-output (SISO) variant of the 3-way channel has
been studied in [12], where the sum-capacity was characterized
within 2 bits. The result of [12] states that the sum-capacity
can be approached by letting the two strongest users commu-
nicate while leaving the third one silent. Note that the 3-way
channel can be obtained from the 3-user X- network [13] with
transmitters Txi and receivers Rxi, i = 1,2,3, by using the
following operations: remove the message from transmitter
Txi to receiver Rxi (setting its rate to zero) and provide a
noiseless instantaneous cooperation channel between Txi and
Rxi. This is the main difference between the 3-way channel
and the 3-user X- network. Another difference is that [13]
considers time-varying MIMO channels, while we consider
constant MIMO channels.

Contributions. In the present work, we study the DoF of
the MIMO 3-way channel with constant channel coefficients
and with an arbitrary number of Mi transmit antennas at each
transceiver and the same number of Mi receive antennas. We
derive cut-set and genie-aided upper bounds and obtain an
upper bound on the sum-DoF of the channel. We also propose
a MIMO IA and zero-forcing scheme to show that the derived
sum-DoF upper bound is achievable. We observe that the sum-
DoF is limited by the strongest channel (the one with the
largest rank), and therefore, that the sum-DoF is achievable
by letting the two strongest users communicate similar to the
SISO case [12]. Since this approach does not serve all users,
we propose an alternative scheme which also achieves the



sum-DoF upper bound while serving all users. The achievable
DoF of this alternative scheme is expressed as a linear program
which can be solved by using the simplex method.

Organization. The system model of the MIMO 3-way
channel is provided in Section II and the main result is stated
in Section III. In Section IV, the upper bounds on the DoF
are derived. The IA based transmission scheme is described
in Section V, achieving the sum-DoF of the channel.

Notation. We denote matrices by boldface upper case
letters, e. g., A, and vectors by boldface lower case letters,
e. g., a. aN denotes the length-N sequence (a(1),⋯,a(N)).
AT and A† denote the transposed matrix of A and its
left Moore-Penrose pseudo-inverse. span(A), dim(A) and
null(A) denote the column span, the dimension of the column
space, and the null space of a matrix A, respectively. An n×n
identity matrix is denoted by In and an a × b zero matrix
by 0a×b. Furthermore, let (a)+ = max{0, a}, for a ∈ R.

II. SYSTEM MODEL

The 3-way channel comprises three full-duplex1 users Ti

with user indices i in the set K = {1,2,3}. A message from
Ti to Tj is denoted by Wji and has rate Rji for i ≠ j ∈ K. Each
user Ti desires to communicate a message to Tj and another
message to Tk, for distinct i, j, k. A user Ti is equipped with
an arbitrary number of antennas Mi ∈ N, where the number
of transmit and receive antennas is assumed to be equal. We
may assume w. l. o. g. that the number of antennas is ordered
among the three users by:

M1 ≥M2 ≥M3. (1)

The signal transmitted at time-instant n from Ti is a vector
xi(n) ∈ CMi×1, satisfying a power constraint P . The channel
matrix for the MIMO channel from Ti to Tj is denoted Hji ∈
CMj×Mi . These random channel matrices are generated i.i.d
from a continuous probability distribution and are assumed to
be constant throughout the whole duration of the transmission.
The received signal at Tj is a vector yj(n) ∈ CMj×1. yj(n)
is a superposition of the transmitted signals from Ti and Tk,
weighted by Hji,Hjk, respectively, and of i.i.d. complex
additive white Gaussian noise zj ∼ CN (0Mj×1,IMj):

yj(n) =Hjixi(n) +Hjkxk(n) + zj(n), (2)

for distinct i, j, k ∈ K. After receiving yj(n), Tj constructs
xj(n + 1) as:

xj(n + 1) = Ej,n(Wij ,Wkj ,y
n
j ), (3)

where Ej,n is the encoding function of Tj at time-instant n,
and sends xj(n + 1) in the next transmission. After N
transmissions, where N is the length of one transmission block
(codeword), Tj decodes Wji and Wjk as follows:

(Wji,Wjk) = Dj(Wij ,Wkj ,y
N
j ), (4)

where Dj is the decoding function of Tj .

1We assume perfect full-duplex operation, and hence, there is no residual
loop-back self-interference at each receiving Ti.

All channel matrices are perfectly known at each user. In
the rest of the paper, we will neglect the time-instant n for
notational simplicity unless necessary.

Since the focus of the present paper is on the DoF [1] of
the network, we define the DoF of a message Wji by:

dji = lim
P→∞

Rji

log(P )
. (5)

Having defined the system model, we are ready to state the
main results of the paper provided in the next section.

III. MAIN RESULT

The main result of the paper is a sum-DoF characterization
for the MIMO 3-way channel as provided in the following
theorem.

Theorem 1. The DoF of the MIMO 3-way channel with Mi

antennas at user Ti, and M1 ≥M2 ≥M3, are given by:

dΣ = d12 + d21 + d13 + d31 + d23 + d32 = 2M2. (6)

The converse of this theorem is provided in Section IV
and the achievability in Section V. This theorem states that
the sum-DoF in this case is given by twice the rank of the
channel matrix between T1 and T2, which is the channel of
largest rank. Therefore, this DoF is achievable by letting these
two users communicate while leaving T3 silent. Albeit this
achieves 2M2 DoF, it completely excludes T3 and it does
not distribute the resources fairly between the three users. In
Section V, we provide an alternative scheme which achieves
the DoF, while maintaining non-zero DoF for all users.

IV. CONVERSE

Cut-set bounds: We begin with considering the cut-set
bounds for the MIMO 3-way channel:

dji + dki ≤ min{Mi,Mj +Mk}, (7)
dij + dik ≤ min{Mj +Mk,Mi}. (8)

The right-hand side of (7) is the rank of the MIMO channel
between Ti and a receiver formed by enabling full cooperation
between Tj and Tk, with channel matrix [HT

jiH
T
ki]T. A

similar interpretation holds for the second bound.
Similar to [10], the cut-set bounds provide bounds on the

sum of the DoF of two messages at a time. However, using
genie-aided arguments, it is possible to establish bounds on
the sum-DoF of three messages, which are tighter than the
cut-set bounds. The key idea is to allow some user to decode
one more message, in addition to its two desired messages, by
enhancing this user with some side-information.

Genie-aided bounds: Assume every node can obtain its
dedicated messages with an arbitrary small probability of error.
This means that T2 for instance can decode its dedicated
messages W21 and W23 reliably from its available informa-
tion, i. e., from its own transmitted W12,W32, and from its
received signal yN

2 . Now let us enhance T2 by providing the



message W31 as side-information. We also provide T2 with
the correction-noise signal:

z̃N
2 = zN

1 −H13H
†
23z

N
2 , (9)

as side-information2.
At this point, T2 knows W21 (decoded) and W31 (side-

information). With W21, W31, T2 can generate x1(1). By
subtracting H21x1(1) from y2(1), and multiplying the result
with H†

23, T2 can recover a noisy observation of x3(1)
given by x3(1) +H†

23z2(1). Next, T2 multiplies this noisy
observation by H13, and adds H12x2(1) and z̃2(1) to it
to obtain y1(1). Thus, T2 obtains the first instance of yN

1 .
Knowing y1(1), W21 and W31, T2 can generate x1(2) (cf.
(3)). Using x1(2) again with y2(2), T2 can generate y1(2)
and x1(3). T2 proceeds this way until all instances (up to
the N -th instance) of yN

1 have been generated. Now, having
yN

1 , W21, and W31, i. e., the same information as T1, T2 can
decode W13 (cf. (4)). Therefore, given W31 and z̃N

2 as side-
information, T2 can decode W21, W23 and W13. Hence, the
DoF of these messages are almost surely upper bounded by:

d21 + d23 + d13 ≤ rank([H21 H23]) (10)

= min{M2,M1 +M3}
(1)= M2. (11)

We can apply a similar approach to bound d31 + d32 + d12

by M2. However, in this case, we need to enhance T3 with
M2 −M3 antennas to make it as strong as T2. The effective
channel output at T3 after this enhancement becomes:

ỹ3(n) = H̃31x1(n) + H̃32x2(n) + z̃3(n), (12)

for n = 1,⋯,N , where H̃31 and H̃32 are M2 × M1 and
M2 ×M2 matrices with rank M2, respectively, and z̃3 is a
Gaussian noise vector with M2 dimensions. T3 can decode
W31, W32 having ỹN

3 , W13, W23. By providing W21 and:

z̃N
3 = zN

1 −H12H̃
−1

32z
N
3 (13)

to the enhanced T3 with M2 antennas, it can generate x1(1).
We use analogous operations as applied for (11) to obtain yN

1

and to decode W12. This leads to the upper bound:

d31 + d32 + d12 ≤ rank([H̃31 H̃32]) (14)
= min{M2,M1 +M2} =M2, (15)

almost surely. Concluding the converse proof by combining
(11) and (15) yields the sum-DoF upper bound of Theorem 1:

dΣ=d12+d21+d13+d31+d23+d32≤ 2M2. (16)

V. ACHIEVABILITY

To achieve the upper bound on the sum-DoF, we propose
a beam-forming and zero-forcing scheme using MIMO inter-
ference alignment [10].

2H†
23 exists since H23 is an M2 ×M3 matrix with M2 ≥M3.

A. Pre-coding

We consider the receive signal space at T1 at first. Note that
as T2 and T3 each have less antennas than T1, they can not
beam-form interference into the null space of T1. Instead of
zero-forcing beam-forming, we use IA. In order to minimize
the number of dimensions spanned by the interference caused
by T2 and T3 at T1, we align the interference caused by
the bidirectional communication between T2 and T3 (signals
u32 and u23, respectively) in the intersection subspace of
the spaces spanned by the columns of H12 and H13. From
Lemma 2 as given in the appendix, the columns of H12

and H13 intersect in an M̃1-dimensional subspace, where
M̃1 = (M2+M3−M1)+. To achieve this alignment, T2 and T3

pre-code the signal streams u32 ∈ Cd̃32 and u23 ∈ Cd̃32 with:

0 ≤ d̃32 = d̃23 ≤ M̃1 (17)

dimensions, into V 32u32 and V 23u23, respectively, where the
beam-forming matrices V 32 ∈ CM2×d̃32 and V 23 ∈ CM3×d̃32

satisfy the following alignment at T1:

span(H13V 23) = span(H12V 32). (18)

This accounts for a total of 2d̃32 streams that can be exchanged
by T2 and T3, while causing interference in only d̃32 dimen-
sions at T1.

Now, we consider the receive signal space at T2. As T1 has
more antennas than T2, T1 can send a signal ū31 ∈ Cd̄31 to
T3 in the null space of H21. The maximal number of such
streams that can be beam-formed to this null space is bounded
by min{M1 −M2,M3}. Thus, T1 sends streams of:

0 ≤ d̄31 ≤ min{M1 −M2,M3} (19)

dimensions beam-formed into the null space of H21. To
realize this, T1 designs a zero-forcing beam-forming matrix
V̄ 31 ∈ CM1×d̄31 that satisfies:

H21V̄ 31 = 0M2×d̄31
, (20)

and pre-codes ū31 by V̄ 31ū31. The remaining streams sent
from T1 to T3 (if any) can be aligned to the streams sent from
T3 to T1 within the receive signal space of T2. This alignment
is possible since the columns of H21 and H23 intersect in an
M3-dimensional subspace as given by Lemma 2. To this end,
T1 and T3 construct Ṽ 31ũ31 and V 13u13, respectively, where
ũ31 ∈ Cd̃31 and u13 ∈ Cd̃13 have:

0 ≤ d̃31 = d̃13 ≤M3 (21)

dimensions, and where the beam-forming matrices defined by
V 13 ∈ CM3×d̃31 and Ṽ 31 ∈ CM1×d̃31 satisfy:

span(H23V 13) = span(H21Ṽ 31). (22)

The aligned interference of ũ31 and u13 occupies d̃31 ≤ M3

dimensions at the receive signal space of T2.
Considering the interference space at T3, we see that T3

has less antennas than T1 and than T2. Thus, T1 beam-
forms a signal ū21 ∈ Cd̄21 into the null space of H31 of size



min{M2,M1 −M3}, which requires:

0 ≤ d̄21 ≤ min{M2,M1 −M3} (23)

dimensions. This is done by designing a zero-forcing beam-
forming matrix V̄ 21 ∈ CM1×d̄21 such that:

H31V̄ 21 = 0M3×d̄21
, (24)

and by pre-coding ū21 with V̄ 21ū21. Then, T2 beam-forms
ū12 ∈ Cd̄12 into the null space at T3 of size M2 −M3, where:

0 ≤ d̄12 ≤M2 −M3. (25)

To realize this, we design a zero-forcing beam-forming matrix
V̄ 12 ∈ CM2×d̄12 such that:

H32V̄ 12 = 0M3×d̄12
, (26)

and pre-code ū12 by V̄ 12ū12. The remaining streams from T1

to T2 and vice versa (if any) are aligned at T3. The spaces
spanned by H31 and H32 intersect in M3 dimensions as given
by Lemma 2. We choose the beam-forming matrices Ṽ 21 ∈
CM1×d̃21 and Ṽ 12 ∈ CM2×d̃21 such that:

span(H32Ṽ 12) = span(H31Ṽ 21), (27)

and use them to pre-code ũ21 and ũ12 with:

0 ≤ d̃21 = d̃12 ≤M3 (28)

dimensions into Ṽ 21ũ21 and Ṽ 12ũ12.
Finally, the transmitters send the following signals:

x1 = [Ṽ 21 V̄ 21] [ ũ21
ū21

] + [Ṽ 31 V̄ 31] [ ũ31
ū31

] , (29)

x2 = [Ṽ 12 V̄ 12] [ ũ12
ū12

] +V 32u32, (30)

x3 = V 13u13 +V 23u23. (31)

In total, T1 sends d21 = d̃21 + d̄21 and d31 = d̃31 + d̄31 streams
to T2 and T3, respectively, T2 sends d12 = d̃12 + d̄12 and
d32 = d̃32 streams to T1 and T3, respectively, and T3 sends
d13 = d̃12 and d23 = d̃23 streams to T1 and T2, respectively.

B. Post-coding

The received signal at T1 can be written as:

y1 =H12[Ṽ 12 V̄ 12] [ ũ12
ū12

] + [H12V 32u32 +H13V 23u23]
+H13V 13u13 + z1. (32)

The desired signals from T2 occupy d̃21 + d̄21 dimensions.
The aligned interference H12V 32u32+H13V 23u23 occupies
d̃32 dimensions, and the desired signal from T3 occupies d̃13

dimensions. The desired signals can be resolved from the
interference as long as they are linearly independent of the
interference and also among each other. Namely, the columns
of the following M1 × (d̃12 + d̄12 + d̃32 + d̃13) matrix must be
linearly independent:

[H12Ṽ 12 H12V̄ 12 H12V 32 H13V 13] , (33)

which requires:

0 ≤ d̃12 + d̄12 + d̃32 + d̃13 ≤M1. (34)

Under this condition, this linear independence can be guaran-
teed (almost surely) by designing V̄ 12 according to (26), and
choosing Ṽ 12, V 32, and V 13 randomly.

Given this linear independence, T1 can use zero-forcing
matrices N12 and N13 of d12 ×M1 and d13 ×M1 dimensions,
to zero-force the interference and to separate the two dedicated
information signals. These zero-forcing matrices must satisfy:

N12H13(V 13 +V 23) = 0d12×(d13+d23), (35)

N13H12(Ṽ 12 + V̄ 12 +V 32) = 0d13×(d12+d32). (36)

Note that by zero-forcing H13V 23, also H12V 32 is zero-
forced (and vice-versa) by (18). By using the proposed null-
space beam-forming and zero-forcing, receiver T1 obtains:

N12y1 =N12H12(Ṽ 12ũ12 + V̄ 12ū12) +N12z1, (37)
N13y1 =N13H13V 13u13 +N13z1. (38)

Thus, T1 recovers d12 linearly independent noisy observations
of ũ12 and ū12, and also d13 linearly independent noisy
observations of u13 as N1 = [NT

12N
T
13]T has sufficient

row rank d12 + d13, almost surely. Thus, T1 can decode all
dedicated signals and achieves a number of d12 + d13 DoF.

On the receiver-side of T2, we have:

y2 =H21[Ṽ 21 V̄ 21] [ ũ21
ū21

] + [H21Ṽ 31ũ31 +H23V 13u13]
+H23V 23u23 + z2. (39)

Note that ū31 is not observed by T2 due to (20). Similarly to
T1, we need the following constraint to guarantee the linear
independence of the desired signals and the interference:

0 ≤ d̃21 + d̄21 + d̃31 + d̃23 ≤M2. (40)

We use zero-forcing matrices N21 and N23 of d21 ×M2 and
d23 ×M2 dimensions, respectively, satisfying:

N21H23(V 23 +V 13) = 0d21×(d23+d13), (41)

N23H21(Ṽ 21 + V̄ 21 + Ṽ 31) = 0d23×(d21+d̃31), (42)

to zero-force the interference and to separate the two dedicated
information signals. By zero-forcing H23V 13, also H21Ṽ 31

is zero-forced (and vice-versa) by (22). With this scheme,
receiver T2 obtains:

N21y2 =N21H21(Ṽ 21ũ21 + V̄ 21ū21) +N21z2, (43)
N23y2 =N23H23V 23u23 +N23z2. (44)

T2 recovers d21 linearly independent noisy observations of
ũ21 and ū21, and d23 linearly independent noisy observations
of u23 from y2 since N2 = [NT

21N
T
23]T has sufficient row

rank d21 + d23, almost surely. Hence, T2 achieves a number
of d21 + d23 DoF.

On the receiver-side of T3, we have:

y3 =H31[Ṽ 31 V̄ 31] [ ũ31
ū31

] + [H31Ṽ 21ũ21 +H32Ṽ 12ũ12]
+H32V 32u32 + z3. (45)



At T3, the signals ū21 and ū12 are not observed due to (24)
and (26). We need the following constraint to guarantee the
linear independence of the desired signals and the interference:

0 ≤ d̃31 + d̄31 + d̃21 + d̃32 ≤M3. (46)

We use zero-forcing matrices N31 and N32 of dimensions
d31 ×M3 and d32 ×M3, satisfying:

N31H32(V 32 + Ṽ 12) = 0d31×(d32+d̃12), (47)

N32H31(Ṽ 31 + V̄ 31 + Ṽ 21) = 0d23×(d31+d̃21), (48)

to zero-force the interference space and to separate the two
dedicated information signals. Receiver T3 obtains:

N31y3 =N31H31(Ṽ 31ũ31 + V̄ 31ū31) +N31z3, (49)
N32y3 =N32H32V 32u32 +N32z3. (50)

Thus, T3 can recover d31 linearly independent noisy obser-
vations of ũ31 and ū31, and d32 linearly independent noisy
observations of u32 from y3 since N3 = [NT

31N
T
32]T has

sufficient row rank d31 + d32, almost surely. Hence, T2 can
decode its dedicated signals and achieves d31 + d32 DoF.

Assembling all constraints on the achievable DoF, yields:

d̃32 = d̃23 ≤ (M2 +M3 −M1)+,
d̄31 ≤ min{M3,M1 −M2},
d̄21 ≤ min{M2,M1 −M3},
d̄12 ≤M2 −M3,

d̃12 + d̄12 + d̃32 + d̃13 ≤M1,

d̃21 + d̄21 + d̃31 + d̃23 ≤M2,

d̃31 + d̄31 + d̃21 + d̃32 ≤M3.

Note that real-valued DoF can be approximated by using
signal-extensions over multiple time-slots [4], [10]. By maxi-
mizing dΣ subject to these non-negative constraints, we get
the maximum achievable sum-DoF of this scheme. This maxi-
mization is a linear optimization problem which can be solved
by using the simplex method. The maximization yields a sum-
DoF of 2M2. To verify this, we set:

d̃32 = d̃23 = (M2 +M3 −M1)+, (51)
d̄31 = min{M3,M1 −M2}, (52)
d̄21 = min{M2,M1 −M3}, (53)
d̄12 =M2 −M3. (54)

This allocation satisfies all the DoF constraints above, and
leads to dΣ = 2d̃32 + d̄31 + d̄21 + d̄12 = 2M2, achieving (16).

APPENDIX

The derivation of the dimensions for the intersection sub-
spaces is slightly generalized w. r. t. [11, Lem. 1].

Lemma 2. If A1 and A2 are complex N×M1 and N×M2 ran-
dom matrices, respectively, whose entries are drawn randomly
i. i. d., then there exists a (min{M1,N}+min{M2,N}−N)+-
dimensional intersection subspace between the two column
spaces of A1 and A2, almost surely.

Proof: Let an N×1 vector q lie in span(A1)∩span(A2).
Then, there exists qi ∈ CMi×1, with i = 1,2, such that:

q =A1q1 =A2q2. (55)

In matrix form this yields:

[ IN −A1 0

IN 0 −A2
]
⎛
⎜⎜
⎝

q

q1

q2

⎞
⎟⎟
⎠
=Mx = 0. (56)

Note that rank(Ai) = min{Mi,N} holds almost surely.
We compute the dimension of span(A1) ∩ span(A2) by
computing the dimension of the nullity of M . Since:

rank(M) = min{2N,min{M1,N} +min{M2,N} +N}

holds for i.i.d. matrices A1 and A2 almost surely, we can
conclude with the rank-nullity theorem of linear algebra, that:

dim(null(M))
= min{M1,N} +min{M2,N} +N − rank(M)
= (min{M1,N} +min{M2,N} −N)+ (57)

holds, almost surely.
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