
2 Matrix Algebra

x

Qxy

Figure 2.1: Orthogonal Projection

Definition 2.9. The matrix Q ∈ Rn×n is called projection matrix, or idempotent, if
Q2 = Q. It is called orthogonal projection if additionally QT = Q.

The linear transformation Q maps onto Im(Q), a k−dimensional subspace of Rn. Let
x ∈ Rn, and y = Qx ∈ Im(Q). Since Q is the projection matrix, Qy = y. For an
orthogonal projection, x−Qx is orthogonal to all vectors y in Im(Q) for every x ∈ Rn.
To see this, note that there is a vector z ∈ Rn such that y = Qz. Then we have:

yT (x−Qx) = zTQT (x−Qx).

Since for an orthogonal projection QT = Q then:

zTQT (x−Qx) = zTQ(x−Qx) = zT (Qx−Q2x) = zT (Qx−Qx) = 0.

Therefore yT (x−Qx) = 0 and x−Qx is orthogonal to y.

Lemma 2.10. Let M = VΛVT be spectral decomposition of M ∈ Rn×n and symmet-

ric. For k ≤ n, the matrix Q =

k�

i=1

viv
T
i is an orthogonal projection onto Im(Q) =<

v1, . . . ,vk >.

Proof. For x ∈ Rn, we have:

Qx =

k�

i=1

viv
T
i x =

k�

i=1

(vT
i x)vi =

k�

i=1

γivi ∈ Im(Q).

Moreover:

Q2 = (
k�

i=1

viv
T
i )(

k�

i=1

viv
T
i ) =

k�

i=1

viv
T
i = Q.

Finally Q is symmetric and therefore it is an orthogonal projection.
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• Let Q be an orthogonal projection on Im(Q), Then I − Qis an orthonormal pro-
jection onto ker(Q).
ker(Q) denotes the kernel of Q, and Im(Q) denotes the image of Q.

(I−Q)2 = (I−Q)(I−Q) = I− 2Q+Q2 = I−Q.

Therefore I − Q is a projection matrix. Since Q is symmetric, so is I − Q and
hence an orthogonal projection. Let y ∈ ker(Q), i.e., Qy = 0. Then:

(I−Q)y = y −Qy = y ∈ Im(I−Q).

Therefore ker(Q) ⊆ Im(I −Q). On the other hand, suppose that y ∈ Im(I −Q).
There is x ∈ Rn such that y = (I−Q)x. We have:

Qy = Q(I−Q)x = Qx−Q2x = Qx−Qx = 0.

So y ∈ ker(Q) and therefore Im(I−Q) ⊆ ker(Q). So Im(I−Q) = ker(Q).

• Define En as follows:

En = In − 1

n
1n×n =




1− 1
n − 1

n . . . − 1
n

− 1
n 1− 1

n . . . − 1
n

...
...

. . .
...

− 1
n − 1

n . . . 1− 1
n




Then En is an orthogonal projection onto 1⊥n = {x ∈ Rn : 1Tnx = 0} where 1n is
all one vector in Rn.
See that for all x ∈ Rn:

1TnEnx = 1Tn (In − 1

n
1n×n)x = (1Tn − 1Tn )x = 0.

Therefore each vector in Im(En) is orthogonal to 1n.

Note that 1
n1n×n × 1

n1n×n = 1
n1n×n and 1

n1n×n is symmetric. Therefore it is an
orthogonal projection. Moreover its image is a one dimensional subspace spanned
by 1n. From the previous item, In − 1

n1n×n is also an orthogonal projection onto
the kernel of 1

n1n×n which is 1⊥n .

Theorem 2.11 (Inverse and determinant of partitioned matrix). Let M =

�
A B
BT C

�

be a symmetric, invertible (regular) and A is also invertible (regular). Then:

(a) The inverse matrix of M is given by:

M−1 =

�
A−1 + FE−1FT −FE−1

−E−1FT E−1

�

where E is the Schur complement given by E = C−BTA−1B and F = A−1B.
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Figure 2.2: Orthogonal Projection of E2

(b) The determinant of M is given by:

det(M) = det(A) det(C−BTA−1B).

There is also an extension of this theorem for general case where M =

�
A B
C D

�
(see

[Mur12, p.118]).

Definition 2.12 (Isometry). A linear transformationM : Rn → Rn is called an isometry
if xTx = (Mx)T (Mx) for all x ∈ Rn.

Some properties of isometries are as follows:

• If U and V are isometries, then the product UV is also an isometry.

• If U is an isometry, |det(U)| = 1.

• If U is an isometry, then |λ(U)| = 1 for all eigenvalues of U.
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3 Multivariate Distributions and Moments

3.1 Random Vectors

Let X1, . . . , Xn be random variables on the same probability space (Ω,F ,P):

Xi : (Ω,F ,P) → (R,R),

where R is the Borel σ-algebra generated by the open sets of R.

• X = (X1, . . . , Xp)
T is called a random vector.

• Similarly the matrix X = (Xij)1≤i≤p,1≤j≤m with random variables Xij as its ele-
ments is called a random matrix.

• The joint distribution of a random vector is uniquely described by its multivariate
distribution function:

F (x1, . . . , xp) = P(X1 ≤ x1, . . . , Xp ≤ xp), (x1, . . . , xp) ∈ Rp.

• A random vector X = (X1, . . . , Xp)
T is called absolutely continuous if there exists

an integrable function f(x1, . . . , xn) ≥ 0 such that:

F (x1, . . . , xp) =

� xp

−∞
· · ·

� x1

−∞
f(x1, . . . , xp)dx1 . . . dxp.

f is called probability density function (pdf) and F is called cumulative distribution
function (cdf).

Example 3.1. (Multivariate normal distribution) The multivariate normal (or Gaus-
sian) distribution has the following probability density function:

f(x) =
1

(2π)p/2|Σ|1/2 exp
�
−1

2
(x− µ)TΣ−1(x− µ)

�

with parameters µ ∈ Rp, Σ ∈ Rp×p, Σ � 0.

This is denoted by X = (X1, . . . , Xp)
T ∼ Np(µ,Σ). Note that Σ must have full rank.

There exists an n−dimensional Gaussian random variable, if rk(Σ) < p, however it has
no density function with respect to p− dimensional Lebesgue measure.
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3 Multivariate Distributions and Moments

3.2 Expectation and Covariance

Suppose that a random variable X = (X1, . . . , Xp)
T is given.

Definition 3.2. (a) The expectation (vector) of a random vector X, E(X), is defined
by:

E(X) = (E(X1), . . . ,E(X1))
T .

(b) The covariance matrix of a random vector X, Cov(X), is defined by:

Cov(X) = E
�
(X− E(X))(X− E(X))T

�
.

Expectation vector is constructed component-wise of expectations E(Xi). Covariance
matrix has as its (i, j)th element, the covariance value Cov(Xi, Xj):

(Cov(X))i,j = Cov(Xi, Xj) = E ((Xi − E(Xi))(Xj − E(Xj))) .

Theorem 3.3. Given random vectors X = (X1, . . . , Xp)
T , Y = (Y1, . . . , Yp)

T , the fol-
lowing statements hold:

(a) E(AX+ b) = AE(X) + b

(b) E(X+Y) = E(X) + E(Y)

(c) Cov(AX+ b) = ACov(X)AT

(d) Cov(X+Y) = Cov(X) + Cov(Y), if X and Y are stochastically independent.

(e) Cov(X) � 0, i.e., the covariance matrix is non-negative definite.

Proof. Prove (a)-(d) as exercise. To prove the last part, let a ∈ Rp be a vector. We
have:

aTCov(X)a
(c)
= Cov(aTX) = Var(aTX) ≥ 0.

• Show that if X ∼ Np(µ,Σ), then:

E(X) = µ,Cov(X) = Σ.

Theorem 3.4 (Steiner’s rule). Given a random vector X = (X1, . . . , Xp)
T , it holds:

E
�
(X− b)(X− b)T

�
= Cov(X) + (b− E(X))(b− E(X))T .

Proof. Let µ = E(X). Note that:

E
�
(X− µ)(b− µ)T

�
= E (X− µ) (b− µ)T = 0.

Using this, we have:

E
�
(X− b)(X− b)T

�
= E

�
(X− µ+ µ− b)(X− µ+ µ− b)T

�

= E
�
(X− µ)(X− µ)T

�
+ E

�
(µ− b)(µ− b)T

�

= Cov(X) + (b− E(X))(b− E(X))T .
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3.3 Conditional Distribution

Theorem 3.5. Let X be a random vector with E(X) = µ and Cov(X) = V. Then:

P(X ∈ Im(V) + µ) = 1.

Proof. Let ker(V) = {x ∈ Rp : Vx = 0} be the kernel (or null space) of V. Assume a
basis for the kernel as ker(V) =< a1, . . . ,ar >. It holds for i = 1, . . . , r:

Var(aTi X) = Cov(aTi X) = aTi Vai = 0.

Since the variance of aTi X is equal to zero, then aTi X should be almost surely equal to
its expectation which is aTi µ. Hence P(aTi X = aTi µ) = 1, i.e., P(aTi (X − µ) = 0) = 1.
Hence:

P((X− µ) ∈ a⊥i ) = 1, ∀i = 1, . . . , r.

Using the fact that P(X ∈ A) = 1,P(X ∈ B) = 1 =⇒ P(X ∈ A ∩ B) = 1 (prove as
exercise!), it holds that:

P((X− µ) ∈ a⊥1 ∩ · · · ∩ a⊥r ) = 1.

But Im(V) = ker(V)⊥ =< a1, . . . ,ar >
⊥= a⊥1 ∩ · · · ∩ a⊥r . Therefore:

P((X− µ) ∈ Im(V)) = 1.

3.3 Conditional Distribution

Let X = (X1, . . . , Xp)
T be a random vector and X = (Y1,Y2)

T such that Y1 =
(X1, . . . , Xk) and Y2 = (Xk+1, . . . , Xp). Suppose that X is absolutely continuous with
density fX. Then the conditional density of Y1 given Y2 = y2 is given by:

fY1|Y2
(y1|y2) =

fY1,Y2(y1,y2)

fY2(y2)
, y1 ∈ Rk.

It also holds that:

P(Y1 ∈ B|Y2 = y2) =

�

B
fY1|Y2

(y1|y2)dy1, ∀B ∈ Rk.

Theorem 3.6 ([Mur12, Theorem 4.3.1]). Suppose that (Y1,Y2) = Np(µ,Σ) and:

µ =

�
µ1

µ2

�
,Σ =

�
Σ11 Σ12

Σ21 Σ22

�
,Λ = Σ−1 =

�
Λ11 Λ12

Λ21 Λ22

�
.

Then:

(a) Y1 ∼ Nk(µ1,Σ11) and Y2 ∼ Np−k(µ2,Σ22)
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3 Multivariate Distributions and Moments

(b) The conditional density fY1|Y2
(y1|y2) is given by multivariate normal distribution

Nk(µ1|2,Σ1|2) with

µ1|2 = µ1 +Σ12Σ
−1
22 (y2 − µ2)

= µ1 −Λ−1
11 Λ12(y2 − µ2)

= Σ1|2(Λ11µ1 −Λ12(y2 − µ2))

Σ1|2 = Σ11 −Σ12Σ
−1
22 Σ21 = Λ−1

11 .

Note that Σ1|2 is the Schur complement, introduced in the previous chapter.
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