2 Matrix Algebra

Figure 2.1: Orthogonal Projection

Definition 2.9. The matrix Q € R™*" is called projection matrix, or idempotent, if
Q? = Q. It is called orthogonal projection if additionally Q7 = Q.

The linear transformation Q maps onto Im(Q), a k—dimensional subspace of R™. Let
x € R", and y = Qx € Im(Q). Since Q is the projection matrix, Qy = y. For an
orthogonal projection, x — Qx is orthogonal to all vectors y in Im(Q) for every x € R".
To see this, note that there is a vector z € R™ such that y = Qz. Then we have:

y'(x - Qx) =2"Q" (x — Qx).
Since for an orthogonal projection Q7 = Q then:
2 QN (x - Qx) =2 Q(x — Qx) =2’ (Qx — Q’x) =z' (Qx — Qx) = 0.
Therefore y* (x — Qx) = 0 and x — Qx is orthogonal to y.

Lemma 2.10. Let M = VAVT be spectral decomposition of M € R™"™ and symmet-
k

ric. For k < n, the matrix Q = Zvivg‘r is an orthogonal projection onto Im(Q) =<

i=1
Vi,...,VE >.
Proof. For x € R™, we have:
k k k
Qx = ZVz'ViTiU = Z(viTx)vi = Z%vi € Im(Q).

i=1 i=1 i=1

Moreover:
k k k
Q= _viv))Q_vivi) =D vivi =Q
i=1 i=1 i=1

Finally Q is symmetric and therefore it is an orthogonal projection. O
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e Let Q be an orthogonal projection on Im(Q), Then I — Qis an orthonormal pro-
jection onto ker(Q).
ker(Q) denotes the kernel of Q, and Im(Q) denotes the image of Q.

I1-Q*=1-Q(1-Q =1I-2Q+Q*°=1I-Q.

Therefore I — Q is a projection matrix. Since Q is symmetric, so is I — Q and
hence an orthogonal projection. Let y € ker(Q), i.e., Qy = 0. Then:

I-Qy=y-Qy=yecln(I-Q).

Therefore ker(Q) C Im(I — Q). On the other hand, suppose that y € Im(I — Q).
There is x € R™ such that y = (I — Q)x. We have:

Qy =QI-Q)x=Qx-Q’x=Qx—-Qx=0.
So y € ker(Q) and therefore Im(I — Q) C ker(Q). So Im(I — Q) = ker(Q).
e Define E, as follows:

11 _1 1
1" "1 1
En—In_*lan— .
n
1 1 1
“w T 1=

Then E,, is an orthogonal projection onto 1;- = {x € R" : 1Tx = 0} where 1,, is
all one vector in R™.
See that for all x € R™:

1
1TE,x = 11(I, — —1,,)x= (11 —1])x = 0.
n
Therefore each vector in Im(E,,) is orthogonal to 1,,.

Note that %szn X %lnxn = %]—nxn and %1n><n is symmetric. Therefore it is an
orthogonal projection. Moreover its image is a one dimensional subspace spanned
by 1,,. From the previous item, I,, — %lnxn is also an orthogonal projection onto
the kernel of %1an which is 17{;.

A B
Theorem 2.11 (Inverse and determinant of partitioned matrix). Let M = ]

BT C

be a symmetric, invertible (regular) and A is also invertible (reqular). Then:

(a) The inverse matriz of M is given by:

1 [A'+FE'FT —FE!
M= ~E'F? E-!

where E is the Schur complement given by E=C —BTA™'B and F = A~'B.
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2 Matrix Algebra

1y

Figure 2.2: Orthogonal Projection of Es

(b) The determinant of M is given by:

det(M) = det(A) det(C — BTA™'B).

A

There is also an extension of this theorem for general case where M = [ C D] (see
[Murl2, p.118]).

Definition 2.12 (Isometry). A linear transformation M : R — R" is called an isometry
if x'x = (Mx)”(Mx) for all x € R™.

Some properties of isometries are as follows:
e If U and V are isometries, then the product UV is also an isometry.
e If U is an isometry, |det(U)| = 1.

e If U is an isometry, then |A(U)| =1 for all eigenvalues of U.
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3 Multivariate Distributions and Moments

3.1 Random Vectors
Let X1,...,X, be random variables on the same probability space (2, F,P):
X;: (Q,F,P)— (R,R),
where R is the Borel g-algebra generated by the open sets of R.
e X =(Xy,...,X,)7T is called a random vector.

e Similarly the matrix X = (Xj;)i<i<p,1<j<m with random variables X;; as its ele-
ments is called a random matrix.

e The joint distribution of a random vector is uniquely described by its multivariate
distribution function:

F(xi,...,zp) =P(X1 <21,..., X, < xp), (21,...,2p) € R,

e A random vector X = (X1,...,X,)7 is called absolutely continuous if there exists
an integrable function f(x1,...,zy) > 0 such that:

Tp 1
F(:J;l,...,a:p):/ / f(x1,...,zp)dey ... day,.

f is called probability density function (pdf) and F is called cumulative distribution
function (cdf).

Example 3.1. (Multivariate normal distribution) The multivariate normal (or Gaus-
sian) distribution has the following probability density function:

f(x) = Gopzie P {—2(X —p) I (x— H)}
with parameters u € RP, X € RP*P, 3 > (.

This is denoted by X = (X1, ..., X,)T ~ N,(u, ). Note that X must have full rank.
There exists an n—dimensional Gaussian random variable, if rk(3) < p, however it has
no density function with respect to p— dimensional Lebesgue measure.
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3 Multivariate Distributions and Moments

3.2 Expectation and Covariance

Suppose that a random variable X = (X1,..., X,)T is given.

Definition 3.2. (a) The expectation (vector) of a random vector X, E(X), is defined
by:
E(X) = (E(Xl)a s 7E(X1))T :

(b) The covariance matrix of a random vector X, Cov(X), is defined by:
Cov(X) =E (X — E(X))(X — E(X))") .

Expectation vector is constructed component-wise of expectations E(X;). Covariance
matrix has as its (4, j)th element, the covariance value Cov(X;, X;):

(Cov(X))i,j = Cov(Xi, Xj) = E ((Xi — E(X;))(X; — E(X};))).

Theorem 3.3. Given random vectors X = (X1,...,X,)T, Y = (Y1,...,Y,)T, the fol-
lowing statements hold:

(a) E(AX +b) = AE(X) + b

(b) E(X +Y) = E(X) +E(Y)

(¢) Cov(AX +b) = ACov(X)AT

(d) Cov(X +Y) = Cov(X) + Cov(Y), if X and Y are stochastically independent.

(e) Cov(X) = 0, i.e., the covariance matrix is non-negative definite.

Proof. Prove (a)-(d) as exercise. To prove the last part, let a € RP be a vector. We
have:

a’Cov(X)a © Cov(a’X) = Var(a’X) > 0.

O
e Show that if X ~ N,(u,2), then:
E(X) = u, Cov(X) = X.
Theorem 3.4 (Steiner’s rule). Given a random vector X = (X1,...,Xp)T, it holds:
E ((X —b)(X - b)T) = Cov(X) + (b — E(X))(b — E(X))”.
Proof. Let u = E(X). Note that:
E(X-p)b—p)")=EX-p)(b-p"=0.
Using this, we have:
E(X-b)X-b)")=E(X-p+p-b)(X-p+p-b))
=E(X-p)(X—p)") +E((p—b)(p—b)")
= Cov(X) + (b — E(X))(b — E(X))T.
O
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3.3 Conditional Distribution

Theorem 3.5. Let X be a random vector with E(X) = p and Cov(X) = V. Then:
P(X € Im(V) + p) = 1.

Proof. Let ker(V) = {x € R? : Vx = 0} be the kernel (or null space) of V. Assume a
basis for the kernel as ker(V) =< aj,...,a, >. It holds fori =1,...,r:

Var(al X) = Cov(al X) = al Va; = 0.
Since the variance of a;fFX is equal to zero, then aiTX should be almost surely equal to
its expectation which is al u. Hence P(al X = al'p) = 1, i.e, P(al (X — p) = 0) = 1.

Hence:
P(X—-p)ca)=1,Vi=1,...,r

Using the fact that P(X € A) = 1,P(X € B) =1 = P(X € AnB) =1 (prove as
exercise!), it holds that:

P(X—-p)cain---Na})=1.
But Im(V) = ker(V)*+ =< ay,...,a, >*=aj N---Na;. Therefore:

P(X —p) e Im(V)) =1.

3.3 Conditional Distribution

Let X = (Xi,...,Xp,)T be a random vector and X = (Y1,Y2)? such that Y; =
(X1,...,Xg) and Yo = (Xp41,...,Xp). Suppose that X is absolutely continuous with
density fx. Then the conditional density of Y1 given Yo = y9 is given by:

iy, (y1,y2) i
yily2) = —2———, y1 €R"
Jxivs (Y1ly2) () 1

It also holds that:
P(Y1 € BlY2 =y2) = / iy, (ily2)dy:, VB eRF
B

Theorem 3.6 ([Murl2, Theorem 4.3.1]). Suppose that (Y1,Y2) = Np(p,X) and:

73} Y1 X2 -1 A AlZ]
e ’2 e ,A — 2 = .
H |:/*l’2:| |:221 z]22:| |:A21 A22

Then:

(a) Y1~ Ni(py,311) and Yo ~ Np g (o, X22)

15



3 Multivariate Distributions and Moments

(b) The conditional density fy,|v,(y1ly2) is given by multivariate normal distribution
Ni(p1j2: X1j2) with

Mg = py + 1035, (y2 — pa)
=H1— Af11A12(Y2 — M)
= (A — Aa(y2 — po))
Sijp = 11 — 12855 Ton = AL

Note that 3y is the Schur complement, introduced in the previous chapter.
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