Lehrstuhl für Theoretische Informationstechnik

Review Exercise Cryptography I Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier 22.02.2013, WSH 24 A 407, 9:00h

Problem 1.

RNTHAACHE

- a) What does a Friedman Test decide?
- b) Compute the expectation of the index of coincidence over the alphabet $\mathcal{A} = \{A, B, C\}$ if the sequence of characters in the ciphertext is independent and identically distributed and each character is uniformly distributed.

Consider a Vigenère cipher with message space $\mathcal{M} = \mathcal{A}^n$, $n \in \mathbb{N}$, and key space $\mathcal{K} = \mathcal{A}^w$, $w \in \mathbb{N}$, with $w \mid n$. The messages and keys are both uniformly distributed.

- c) Why has the cryptosystem perfect secrecy for w = n? Why has it no perfect secrecy for w < n?
- d) Estimate the index of coincidence $I_{\mathbf{c}}$ over the alphabet \mathcal{A} for the following ciphertext \mathbf{c} of length n = 24:

 $\mathbf{c} = \mathbf{CAAABBCACBCABACAABCCCACA}.$

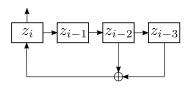
- e) Assume the characters of the plaintext occur with the following frequencies: #A = 16, #B = 5 and #C = 3. Determine the key **k** of the Vigenère cipher and decrypt the ciphertext **c** for w = 4 by identifying the frequencies from the ciphertext.
- f) State four more classical cryptosystems from the lecture.

Problem 2.

A key stream $\mathbf{z} = (z_i)_{i \in \mathbb{N}}$ is generated from a key $\mathbf{k} = (k_1 \dots k_q)$ by the following recursion:

$$\begin{aligned} z_i &= k_i, & 1 \le i \le q, \\ z_i &= \sum_{j=1}^q p_j z_{i-j}, & q < i. \end{aligned}$$

All computations are in the finite field \mathbb{F}_2 . Consider the following *linear feedback shift* register (LFSR) for stream ciphers to generate a key stream:



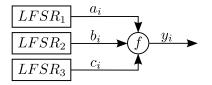
a) Derive the feedback polynomial $p(x) = 1 + \sum_{i=1}^{q} p_i x^i$ of the LFSR given in the figure above. Show that the polynomial p(x) is primitive¹ in \mathbb{F}_2 to ensure that the LFSR has the maximal period.

The plaintext symbols m_i are encrypted into the ciphertext symbols c_i as follows:

$$c_i = z_i \oplus m_i.$$

- b) A key **k** is called *weak*, if $\mathbf{c} = \mathbf{m}$ for all $m \in \mathcal{M}$ holds. Find a weak key for the given LFSR.
- c) Encrypt $\mathbf{m} = (m_1 \dots m_{10}) = (0100101101)$ with the key $\mathbf{k} = (k_1 k_2 k_3) = (100)$.
- d) What is the length of the (maximal) period of **z**? How many zeros and ones occur within one period?

Now consider the following key stream generator with three independent LFSRs of period lengths l_1, l_2, l_3 :



Answer the following questions without giving an explicit proof:

e) What is the period length of the sequence of triples $((a_i, b_i, c_i))_{i \in \mathbb{N}}$ for the key stream generator? What are the minimal and maximal period lengths? How should l_1, l_2, l_3 be chosen to maximize the period length?

The function f is defined by:

$$y_i = f(a_i, b_i, c_i) = (a_i \wedge b_i) \oplus (\overline{a_i} \wedge c_i).$$

f) Compute the probabilities $Pr(b_i | y_i)$ assuming that (a_i, b_i, c_i) is uniformly distributed over \mathbb{F}_2^3 ? Which estimate for b_i ensures a success probability of $\frac{3}{4}$, if y_i is given?

Problem 3.

In the following an RSA cryptosystem with public key (n, e) is considered.

a) Does a valid RSA public key exist with e = 2? Substantiate your answer.

The message m is encrypted by means of the public key (n, e) = (4819, 3343) resulting in the cryptogram c = 1219.

- b) Factorize n and determine the private key.
- c) What is the original message m?

¹A polynomial p(x) of degree q is called *primitive* if and only if the smallest $n \in \mathbb{N}$ for which p(x) divides the polynomial $x^n + 1$ is $n = 2^q - 1$.

In an RSA cryptosystem the public key (n', e') = (391, 7) and the corresponding private key d' = 151 are known.

- d) Compute the prime factors p and q of n' by means of the following steps:
 - i) Determine a multiple x of $\varphi(n')$, i.e., an $x \in \mathbb{Z}$ with $x = k \cdot \varphi(n')$ for a $k \in \mathbb{N}$.
 - ii) Compute the prime factorization of x.
 - iii) Use the prime factorization to determine k, p, and q.