

Prof. Dr. Rudolf Mathar, Dr. Michael Reyer, Jose Leon, Qinwei He

Exercise 9 Friday, January 12, 2018

Problem 1. (working with elliptic curves II) Consider the following function in the field \mathbb{F}_7

 $E_{a,b}: y^2 = x^3 + ax + b$

with $a, b \in \mathbb{F}_7$.

a) Determine the parameters a, b for which $P_1 = (1, 1)$ and $P_2 = (6, 2)$ are points on the curve. Do these parameters describe an elliptic curve in the field \mathbb{F}_7 ? Give a reason.

Consider the curve $E_{6,1}$ for the remainder of this exercise.

- b) Show that $E_{6,1}$ is an elliptic curve in the field \mathbb{F}_7 . Determine all points P and their inverses -P in the \mathbb{F}_7 -rational group.
- c) What are possible group orders for any group which is generated by an arbitrary point P of the curve?
- d) Show that Q = (1, 1) is a generator of $E_{6,1}(\mathbb{F}_7)$. You know that $4 \cdot (1, 1) = (3, 2)$.

Problem 2. (elliptic curve double-and-add) Consider the cubic equation $E: y^2 = x^3 + 4x + 1$.

- a) Is E an elliptic curve over \mathbb{F}_5 ? Substantiate your answer.
- b) Determine all points on the elliptic curve E and the order of the corresponding group.
- c) Is point Q = (1, 1) a generator of the group? Substantiate your answer.

In analogy to the Square-and-Multiply algorithm in a ring \mathbb{Z}_n , the k-th multiple of P can be algorithmically computed based on doubling and addition on an elliptic curve over a field \mathbb{F}_q . You may use the binary representation of factor $k = (k_m, \ldots, k_0)_2 = \sum_{i=0}^m k_i 2^i$.

- d) Describe 45P in terms of doubling and addition of P only.
- e) Formulate an *iterative Double-and-Add* algorithm $f_{it}(P,k)$ to calculate kP.
- f) Give a recursive version $f_{\rm rec}(P,k)$ of the above Double-and-Add algorithm.