
Advanced Methods of Cryptography

Dr. Michael Reyer

Tutorial 7
- Proposed Solution -

Friday, December 7, 2018

Solution of Problem 1

a) In order to break Lamport’s protocol we need to compute the (A, i + 1, wi+1) given
(A, i, wi) from the previous transmission i. Since the computation of A and i + 1 is
trivial, we only need to compute the following inverse hash function:

wi+1 = H t−i−1(w) = H−1(H t−i(w)) = H−1(wi).

If H is a secret one-way function, this step is clearly infeasible. However, even for a
public one-way function, this step is also infeasible, since the computing wi+1 and H−1

is infeasible given H and w. Hence, using a secret function is not required.

b) Check if each of the four basic requirements on hash functions is necessary:

1. H is easy to compute:
Recall: Given m ∈M, H(m) is easy to compute.
This not required, but still a very useful property to provide an efficient protocol.

2. H is preimage resistant: (required X)
Recall: Given y ∈ Y, it is infeasible to find m, such that H(m) = y.
Otherwise, wi = H(wi+1) could be broken, see a).

3. H is second preimage resistant: (required X)
Recall: Given m ∈M, it is infeasible to find m′ 6= m, such that H(m) = H(m′).
Otherwise, the attacker would be able to find a w′ such that H(w′) = H(wi+1).

4. H is collision-free:
Recall: It is infeasible to find m 6= m′ ∈M with H(m) = H(m′).
Although finding an arbitrary collision would indeed break the system, it will affect
a random chain of passwords in this scheme with negligible probability.

c) The discrete logarithm problem is hard to solve in Z∗p:
It is hard to determine x in ax ≡ y mod p for given values of the primitive element a
modulo p and y.
Lamport’s protocol in terms of the discrete logarithm problem is described by:

• Functions and Parameters:
Use the one-way function f : Zp → Z∗p with w → aw mod p.
Choose a secret value w ∈ {2, ..., p− 2} and a primitive element a mod p.
Choose t, the maximal number of identifications.
Select the initial value w0 = f t(w).

• Protocol steps:
Compute next session key f t−i(w) = wi.
Session authentication A→ B : (A, i, wi).
B checks if i = iA and wi−1 = awi mod p is true.
If correct, B accepts, sets iA ← iA + 1 and stores wi for the next sesssion.

d) Man-in-the-middle attack on Lamport’s protocol:
Let E intercept the current key wi from A. E uses it for authentication as A at B.
Furthermore, if E gains access to the initial value w and knows the current session
number i, the protocol is completely broken.

Solution of Problem 2

a) Claimant Alice (A) wants to prove her identity to verifier Bob (B). This identification
is done for a fixed password by comparing its hash value to a stored hash value. The
password pwd is sent without protection. B calculates h(pwd) and compares it with the
stored hash value, to verify the identity of A.

In a replay attack, eavesdropper Eve (E) intercepts the password and impersonates A
by reusing the password in a later session:

A→ E : pwd (plain password transmission interecpted by E)
E → B : pwd (impersonating A)

By encrypting the password E still may impersonate A. However, E will not know the
password pwd.

b) Consider the following authentication protocol:

1) A→ B : rA (A challenges B)
2) B → A : EK(rA, rB) (B responds to A and challenges A)
3) A→ B : rB (A responds to B)

In the reflection attack, E uses A to reveal the correct responds:

A→ E : rA (challenge)
E → A : rA (the same challenge back)
A→ E : EK(rA, rA′) (response)
E → A : EK(rA, rA′) (the same response back)
A→ E : rA′ (second response)
E → A : rA′ (the same second response back)

Remark: No user B is involved here, only the ’reflection’ of A.
Such an attack can be easily avoided by checking, if a challenge has been used already.
Then it obviously cannot be reused. If in step 3) A sends EK(rB) or h(rB) then a
reflection attack is not prevented, but rB, which might be used as joint secret key, is
not known by E.

c) Consider the following mutual authentication protocol:

1) A→ B : rA (challenge)
2) B → A : rB, SB(rB, rA, A) (response and 2nd challenge)
3) A→ B : r′A, SA(r′A, rB, B) (2nd response)

The interleaving attack uses the information of simultaneous sessions:

E → B : rA (1st session 1))
B → E : rB, SB(rB, rA, A) (1st session 2))
E → A : rB (2nd session 1))
A→ E : r′A, SA(r′A, rB, B) (2nd session 2))
E → B : r′A, SA(r′A, rB, B) (1st session 3))

Now E can impersonate as A to B. Remark: In this case the sessions of two protocols
are interleaved (overlapped) like in a man-in-the-middle attack. This attack can be
avoided by exchanging 2) by

2’) B → A : h(rB), SB(EA(rB), rA, A).

EA is an encryption with A’s public key, i.e., A might calculate rB and check, if h(rB)
is correct. The roles of h and EA might be exchanged.

Solution of Problem 3
Useful sources to study the Kerberos protocol are, e.g.:

• Trappe, Washington - Introduction to Cryptography with Coding theory

• http: // en. wikipedia. org/ wiki/ Kerberos_ (protocol)

Unilateral authentication by the Kerberos protocol with a ticket granting server:

(1) User logon, A requests client authentication at T to use G:
A→ T : A, G

(2) T grants client authentication for A at G:
T generates session key kAG.
T generates a ticket granting ticket (TGT): TGT = G, EkT G

(A, t1, l1, kAG).
T → A : EkAT

(kAG), TGT

(3) A requests client authentication for service at G:
A recovers kAG using the shared key kAT .
A generates an authenticator aAG = EkAG

(A, t2).
A→ G : aAG, TGT, B

http://en.wikipedia.org/wiki/Kerberos_(protocol)

(4) G grants service to A:
G recovers A, t1, l1, kAG from the TGT using kT G.
G recovers A, t2 from aAG using kAG.
G checks if the time stamp is within the validity period (t2 − t1) < l1.
G verifies A if authenticator and the ticket are correct.
G generates session key kAB and service ticket ST using kBG: ST = EkBG

(A, t3, l2, kAB).
G→ A : ST, EkAG

(kAB)

(5) A communicates with B with the authenticated service of G:
A recovers kAB using kAG.
A generates authenticator aAB = EkAB

(A, t4).
A→ B : aAB, ST
B recovers A, t3, l2, kAB from ST using kBG.
B recovers A and t4 from aAB using kAB.
B checks if the time stamp is within the validity period (t4 − t3) < l2.
B verifies A if authenticator and service ticket are correct.
Then, A is successfully authenticated to B.

(6) Optional extension to mutual authentication
B → A : EkAB

(t4)

