Prof. Dr. Rudolf Mathar, Dr. Arash Behboodi, Markus Rothe

Exercise 1
 - Proposed Solution -

Friday, April 20, 2018

Solution of Problem 1

a) Show that from $a \mid b$ and $b \mid c$ it follows that $a \mid c$.
$a \mid b \Rightarrow \exists k_{1} \in \mathbb{Z}: b=k_{1} \cdot a$
$b \mid c \Rightarrow \exists k_{2} \in \mathbb{Z}: c=k_{2} \cdot b$
$\Rightarrow c=k_{1} \cdot k_{2} \cdot a$
$\Rightarrow k=k_{1} \cdot k_{2}$
$\Rightarrow \exists k \in \mathbb{Z}: c=k \cdot a$
$\Rightarrow a \mid c$
b) Show that from $a \mid b$ and $c \mid d$ it follows that $(a c) \mid(b d)$.
$a \mid b \Rightarrow \exists k_{1} \in \mathbb{Z}: b=k_{1} \cdot a$
$c \mid d \Rightarrow \exists k_{2} \in \mathbb{Z}: d=k_{2} \cdot c$
$\Rightarrow b \cdot d=k_{1} \cdot a \cdot k_{2} \cdot c$
$\Rightarrow k=k_{1} \cdot k_{2}$
$\Rightarrow \exists k \in \mathbb{Z}: b \cdot d=k \cdot a \cdot c$
$\Rightarrow(a \cdot c) \mid(b \cdot d)$
c) Show that from $a \mid b$ and $a \mid c$ it follows that $a \mid(x b+y c) \forall x, y \in \mathbb{Z}$.
$a \mid b \Rightarrow \exists k_{1} \in \mathbb{Z}: b=k_{1} \cdot a$
$\Rightarrow x \in \mathbb{Z}, x \cdot b=x k_{1} \cdot a$
$a \mid c \Rightarrow \exists k_{2} \in \mathbb{Z}: c=k_{2} \cdot a$
$\Rightarrow y \in \mathbb{Z}, y \cdot c=y k_{2} \cdot a$
$x b+y c=x k_{1} \cdot a+y k_{2} \cdot a=\left(x k_{1}+y k_{2}\right) a$
$\Rightarrow k=x k_{1}+y k_{2}$
$\Rightarrow \exists k \in \mathbb{Z}:(x b+y c)=k \cdot a$
$\Rightarrow a \mid(x b+y c)$

Solution of Problem 2

a) - Try to identify common bigrams and trigrams. e.g. ch, th, nd, st, sh, sp, etc.
e.g. the, ing, and.

- Check phrases with not so frequent letters like $\mathrm{x}, \mathrm{v}, \mathrm{q}$.
- Try to guess words directly, e.g. difficult here.
- Apply the assumed permutation to the other blocks.

Ciphertext is

THISEXRE CISEISNO TDIFFICU LTEITHER

b) Permutation graph is

Therefore,

$$
\begin{gathered}
\pi=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
5 & 8 & 7 & 6 & 4 & 3 & 2 & 1
\end{array}\right) \\
\pi^{-1}=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
8 & 7 & 6 & 5 & 1 & 4 & 3 & 2
\end{array}\right)
\end{gathered}
$$

Solution of Problem 3

Let $a, b, m \in \mathbb{Z}$. Show that if $\operatorname{gcd}(a, b)=1$, then $\operatorname{gcd}(a b, m)=\operatorname{gcd}(a, m) \operatorname{gcd}(b, m)$.

Solution:

Write a and b in terms of their prime factorization:

$$
\begin{aligned}
a & =\prod_{i=1}^{k_{a}} p_{i}^{t_{i}}=a_{1} \cdot a_{2} \cdot \ldots \cdot a_{k_{a}} \\
b & =\prod_{j=1}^{k_{b}} p_{j}^{l_{j}}=b_{1} \cdot b_{2} \cdot \ldots \cdot b_{k_{b}}
\end{aligned}
$$

By assumption we have:

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}\left(\prod_{i=1}^{k_{a}} p_{i}^{t_{i}}, \prod_{i=1}^{k_{b}} p_{j}^{l_{j}}\right) \stackrel{!}{=} 1
$$

Thus those two products have no common divisor greater than 1 .
Write m in terms of its prime factorization:

$$
m=\prod_{r=1}^{k_{r}} p_{r}^{v_{r}}=m_{1} \cdot m_{2} \cdot \ldots \cdot m_{k_{r}}
$$

The greatest common divisor of interest here yields:

$$
\operatorname{gcd}(a b, m)=\operatorname{gcd}\left(\prod_{i=1}^{k_{a}} p_{i}^{t_{i}} \cdot \prod_{i=1}^{k_{b}} p_{j}^{l_{j}}, \prod_{r=1}^{k_{r}} p_{r}^{v_{r}}\right)
$$

The element m can have common divisors with either a or b, but the divisors are only common with one of the factors respectively, since $\operatorname{gcd}(a, b)=1$.
We cross out all prime factors on both sides in the argument of $\operatorname{gcd}(a b, m)$ that are not common. On the left side of the argument, there will be $\operatorname{gcd}(a, m)$ common factors between a and m (first product) and $\operatorname{gcd}(b, m)$ common factors between b and m (second product). This provides the $\operatorname{gcd}(a b, m)$ factors in total.
Hence, we may write $\operatorname{gcd}(a b, m)=\operatorname{gcd}(a, m) \cdot \operatorname{gcd}(b, m)$ as a multiplicative product if $\operatorname{gcd}(a, b)=1$.

