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Problem 1. (15 points)

a) (8P) Suppose that P(M = 1) = p and K is uniformly distributed over the key space.
H(M),H(K),H(C). and the key equivocation H (K | C).

H(M) = —plog(p) — (1 — p) log(1 — p)

A

H(K) =log3
Note that:
A . . 1
]P’(Czl):]P’(le,K:kl):przg

or

N 1—
H(C)=log3 — glogp—

b) (4P) The key equivocation is given by:
H(K | C) "= qH(NI) + H(K) — H(C)

P, P
= —plog(p) — (1 —p)log(l - p) +log3 + T log 5

1.1 1. 1 1—p. 1-p
“log = + = log = 1
tgloggtgloggt—glg—y
2

= 5(—plog(p) — (1 —p)log(1 —p)).

H(M | C)=H(C' | M)+ H(M) — H(C)
A~ 2
= H(C| M) —log3 + S (=plog(p) — (1 - p)log(1 —p)).
But P(C' =i | M = j) = 5 for all 4 such that there is a key k for which e(j, k) = 1.

Hence: o
H(C | M) =log3.

and

H(T | €) = > (~plog(p) — (1 — p)log(1 ~ p))

¢) (3P) The system does not have a prefect secrecy since H(M | C') # H(M).

There is no perfect secrecy achieving key distribution in this case since we have always

Kol <ICil.






Problem 2. (15 points)

a) (4P) Suppose that a®> = r?( mod n). Then
pq | (a—r)(a+r).

First if p |a —r and p | a + r then p | 2r. But ged(p,2) = 1 and ged(p,r) = 1 (since
r € Z). Hence either p | a —r or p | a 4+ r but not both. Same holds for ¢.

Now suppose that both p | @ —r and ¢ | a — r. But then pq | a — r which means that
a =r( mod n). But this has been excluded. Hence either p{a —r or ¢ a — r which
means that either p |a+ 17 or ¢ |a+r.

Consider an RSA cryptosystem with two prime numbers p = 13 and ¢ = 19. The public key
is given by (n = 13 x 19 = 247, e = 59).

b) (4P) The decryption exponent d is the inverse of encryption exponent modulo ¢(n).
First
¢(pq) = (p— 1)(g — 1) = 12 x 18 = 216.

We fine d = e~ ! using extended Euclidean Algorithm.

216 =3 x 59 + 39
29 =1x39+20
39=1x20+19
20=1x19+1

Hence
1=20—1x19
=20—1x%x(39—-20)=-39+2x20
=-39+2x (59 —-39) = -3 x39+2 x 59
=2x59—-3x (216 —3x59) =11 x 59 — 3 x 216
Sod=e1=11.

c) (3P) To decrypt the ciphertext ¢ = 10, we need to find ¢'* mod 247. To use the
Square-and-Multiply Algorithm, we represent 11 in terms of powers of 2.

11=2°+2+1=(1011),

iy y> modn | y*(1+z;-(a—1)) modn
3] 1 1 1 10
21 0] 10 100 100
1| 1]100 | 100* mod 247 =120 | 120 x 10 mod 247 = 212
0] 1212|2122 mod 247 = 237 | 237 x 10 mod 247 = 147.



Algorithm 1 Square and multiply

Require: = = (24,...,29) € Nja e N
Ensure: a* mod n

1
2
3
4
5:
6
7
8

Y <—a
:for i=t—-1,7>0,i-) do

y + y* mod n

if (z; =1) then
y<y-a modn

end if

: end for
: return y

d) (2P) Suppose that the plaintext m is chosen such that ged(n,m) = p or q. Then the

ciphertext ¢ = m® mod n satisfies ged(n, c¢) = p or q. Hence given the ciphertext ¢, n
can be decomposed into p’ = ged(n, ¢) and ¢ = ;- After the decomposition ¢(n)

gcd?n,c
can be calculated. d = e! then is calculated using extended Euclidean Algorithm.

(2P) First find ged(n, c):
ged(143,22) = 11.

Using this n is decomposed by n = 11 x 13 giving ¢(n) = 120. d = e~! then is calculated
using extended Euclidean Algorithm.

120 =17 x 7+ 1.

Hence d = —17 mod 120 = 103.









Problem 3. (15 points)

Message m = (myma, ...my;), with m; € Fs.
Key k = (kika, ...ky), with k; € Fy and n < [. = Keystream z = (21, 29, ..., 21)

n .
2 = ijl S;zi—; mod 2, n<i<l

a) (2P) Decryption: m; = ¢; ® z;.
If Kk =0 = (00...0), it follows z; =0, 1 <i<n,and 2z, =0, n < i <[ and
ci =m;, 1< <. In this case, the plaintext is not encrypted at all.

b) (3P) key length n =4, key k = (0110),
addition paths s; = sy =1, s = s3 =0 = s = (1001),
stream length [ = 20

21 22 Z3 24 25 26 27 28 29 | 210
0 1 1 0 0 1 0 0 0 1

211 | ”12 | ”13 | R14 | 15 | R16 | 17 | R18 | R19 | R20
1 1 1 0 1 0 1 1 0 0

The summation simplifies to z; = Z;L:l 8j%ij = Zi—1 D@ Zi—a, 4 <1 <20

encryption:

m 1011 | 0001 | 0100 | 1101 | 0100
z 0110 | 0100 | 0111 | 1010 | 1100

| m &z [ 1101 [ 0101 | 0011 | 0111 [ 1000 |

c) (2P)

e The keystream repeats itself at z;4. Thus the period is 15;
e Number of Os in z: 7, number of 1s in z: 8.

e n provide registers 2" states. Therefore, the maximal period: pp., =2" —1=15
(Minor remark: fulfilled if z; is a primitive polynomial)

d) (8P) The given figure provides how z; is generated from z;_1, z;_o, and z;_3 in this case:
2; = Zi—2 + Zi—2
With the formula 2; = 377, s;2;;, with n <, we obtain s; =0, s = 1, s3 = 1, and
n = 3, and hence:

flz) = 1—1—2:;1 st =1+ 2% 4+ 2°

To show that f(x) is primitive, we need to check that (x9 + 1) with ¢ =23 —1 =7 can



be divided by f(z) with polynomial division without remainder:

(2" 4+1): @+ + 1) =+ 23 22 +1
. SR

2%+ 2t + 1

2%+ 2° + 2?

2+t + a2’ + 1

TR S

2?4+ 2% + 1

w3+ a? 4+ 1

0

Then we need to check that there is no smaller k < g = 7 such that (z* + 1) : p(x) has
no remainder for k = 6,5,4, 3,2, 1:

(@®+1): (@° + 22+ 1) = 2® +2? + o+ Lzt
2% 4+ 2% + 2°

2+ 1

z° + ot + 2

t+ o’ + a7+ 1

ot + 2 + 2

2+ +1#0

(2 +1): (@ + 2+ 1) =2 + o4+ 14 55
2° 4 2t + 2°

ot 2?4+ 1

R e

P+t o+l

2?4+ 2% + 1

x#0

(:104+1):(x3+m2+1)—x+1+x31;2i1
'+ 2%+
P+l
2+t 41
v +x#0

(®+1): (®+2°+1)#£0
(2 +1): (2 +2°+1) #0
(z+1):(*+22+1)#0
All divisions with k < ¢ have a non-zero remainder. Hence, the polynomial f(x) is

shown to be primitive. (Note that the division is in F, i.e., the coefficients are 0 or 1
and addition behaves equivalent to substration here.)









Problem 4. (15 points)

a) (2P) Apply the encryption function.

n=p-q=199 211 = 41989,

c=eg(32767) =m-(m+ B) modn
= 32767 - (32767 + 1357) mod 41989
= 16027 mod 41989

b) (7P) Start with the encryption function and solve for m.
c=m?’+B-m modn
2 B 2

> Em2+B-m~|—(2) mod n

2 2

B
= (m+2) mod n

S~
I

Using the Extended Euclidean Algorithm, the multiplicative inverse of 2 modulo n is
calculated as 27! = 20995 mod 41989. With
B 2
c:=c+ (2) mod n

= 16027 + (1357 - 20995)°  mod n
= 4013 mod n,

and

m:=m + bl mod n
=m+ 1357 -20995 mod n
=m + 21673 mod n,
we can conclude

2 modn

m
2

W ™
Il

401 mod n .

This form is the standard Rabin Cryptosystem. In order to find the square root modulo
n, we use Proposition 9.4. First, find

l=s-p+t-q
~ 2%



using the Extended Euclidean Algorithm.

211 =1-199 4 12
199 =16-12+7

12=1-745
7T=1-5+4+2
0=2-2+1
=1=5-2-2

=5-2-(T—1-5)=3-5—-2-7
=3.(12—-1-7)—2-7=3-12-5-7
=3.12-5-(199 —16-12) =83 - 12— 5-199
=83 (211 —1-199) — 5-199 = 83 - 211 — 88 - 199
= b=—-88-199 = —17512
a=283-211=17513

Next, we calculate the square roots modulo p and ¢ (this is Proposion 9.3).

22 =4013 =33 mod p

= 2, =33"" =33 =86 mod 199
To = —x1 = 113 mod 199,
y* =4013=4 mod ¢

=y =4 =4 =209 mod 211
Yo = —y1 =2 mod 211

Then, f;,,, = ar; + by; are solutions to f? =14013 mod n.

feigp =@ 21 +b-y1 modn
= 17513 -86 — 17512 - 209 mod 41989
= 36503 — 6965 mod 41989
= 29538 mod 41989

Jor g = 17513 -86 — 17512 -2 mod 41989
= 36503 — 35024 mod 41989
= 1479 mod 41989

Jroyn = 17513 - 113 — 17512 - 209 mod 41989
= 5486 — 6965 mod 41989
= 40510 = —f;, 4, mod 41989

faoy = 17513 - 113 — 17512 -2 mod 41989
= 5486 — 35024 mod 41989
= 12451 = — f,,,, mod 41989



With

Mg,y + 21673 = f,,,, mod n
M,y = fa,y; — 21673 mod n

the four possible messages can now be calculated.

Mg, 4 = 29538 — 21673 = 7865 mod n
My, yo = 1479 — 21673 = 21795 mod n
Mgy = 40510 — 21673 = 18837 mod n
Mgy yo = 12451 — 21673 = 32767 mod n

Message my, ,, is the original one, but, knowing only the cryptogram and the private
key, this message cannot be identified as the original one.

Shamir’s no-key protocol with the parameters: p = 31883, a = 8647,b = 10931, ¢; = 26843.
c) (6P)

c; =& mod p=26843""%1 mod 31883 = 27084
-1

cg =c%  mod p=27084%""" mod 31883 = 13230 (given by hint)

m=c  modp=13230"> mod 31883 = 15369 (Calculator-solvable)
c; =m® mod p = 15369%"" mod 31883 = 26843 (To verify the solution)

To compute ¢ we use the square-and-multiply algorithm (SAM) (in chart):
The binary representation of b = 10931 is 101010101100115.

op | exp | modulo
11 1 26843

S| 0 22732
SM | 1 30451
S| 0 10112
SM | 1 4865
S| 0 11039
SM | 1 31241
S| 0 29568
SM | 1 18408
SM | 1 10481
S| 0 14426

S| 0 9135
SM | 1 24741
SM | 1 27084

To compute a~! modulo p — 1, we first derive equations from Extended Euclidean



Algorithm (EEA) as follows:

31882 = 3 x 8647 + 5941
8647 = 5941 + 2705
5941 = 2 x 2706 + 529
2706 = 5 x 529 + 61
529 = 8 x 61 + 41
61 = 41 + 20
41 =2 x 20 + 1 = ged (31882, 8647) = 1,

then we substitute the factors backwards:

1=41-2x20
=41 -2 x (61 —41) =3 x 41 — 2 x 61
=3 x (529 —8 x 61) — 2 x 61 = 3 x 529 — 26 x 61
= 133 x 529 — 26 x 2706
= 133 x 5941 — 292 x 2706
= 425 x 5941 — 292 x 8647
= 425 - 31882 1567 x 8647

a1 a

Hence a=! = —1567 = 30315 mod (p — 1). Similarly, b~! = 35
Hint: Check if result is equal to one in each step!

The exchanged value ¢z = ¢2 ' mod p = 2708439315 mod 31883 = 13230 is given in the
question. Thus, the message is m = ¢§ ' mod p = 13230*® mod 31883 = 15369 which
can be computed by the calculator or by the SAM algorithm.
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