Review Exercise Advanced Methods of Cryptography

Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier 24.02.2012, WSH 24 A 407, 15:30h

Problem 4. Consider a parametrized hash function $h : \mathbb{N} \mapsto A$ given as

$$h(n) = \left\lfloor c f\left(\sqrt{2}n\right) \right\rfloor + d$$

with $f : \mathbb{R} \to \mathbb{R}$ as $f(x) = x - \lfloor x \rfloor$, $\lfloor x \rfloor = \max\{k \in \mathbb{Z} \mid k \leq x\}$ and parameters $c, d \in \mathbb{N}$.

- (a) Which properties should a cryptographic hash function have in general?
- (b) What is the codomain A of the above hash function h?
- (c) Find a collision for (c, d) = (99, 1).

RNTHAACHEN

Alice has digitally signed two documents m_1 and m_2 by means of the ElGamal signature scheme. The public key of Alice is (p, a, y) = (3733, 2, 1061) with p prime and a primitive element a modulo p. The documents have been hashed by the above hash function to $h(m_1) = 2138$ and $h(m_2) = 1531$, respectively. The corresponding signatures are

$$(r_1, s_1) = (557, 3153)$$
 and $(r_2, s_2) = (557, 1504)$.

- (d) Which parameters (c, d) ensure that the above hash function is appropriate for this ElGamal signature scheme?
- (e) What has Alice done wrong?
- (f) Calculate the random secrets k_1 and k_2 , respectively, and the private key x of Alice.

Problem 5. For a given prime p with p = 4k - 1, $k \in \mathbb{N}$ square roots modulo p shall be calculated. Let c be a quadratic residue modulo p.

- (a) What is Euler's criterion?
- (b) Show that $x_{1,2} \equiv \pm c^k \mod p$ solves $x^2 \equiv c \mod p$.
- (c) Calculate the square roots of 7 modulo 47 and 5 modulo 79, respectively.

Consider the Rabin cryptosystem with parameters p = 47 and q = 79. Assume that the binary representation of the message ends with 101.

(d) Decrypt the ciphertext c = 242. Hint: It holds $37 \cdot 47 - 22 \cdot 79 = 1$. Problem 6. Consider the equation

$$E: Y^2 = X^3 + b.$$

- (a) For which b does this equation describe an elliptic curve E over the field \mathbb{F}_5 .
- (b) For which b both points (3, 1) and (4, 4) are on $E(\mathbb{F}_5)$?

Now, take b = 3:

- (c) Calculate all points on $E(\mathbb{F}_5)$. What is the trace t and the order of $E(\mathbb{F}_5)$?
- (d) For each point on $E(\mathbb{F}_5)$, calculate its inverse.
- (e) Show that point (1,2) generates $E(\mathbb{F}_5)$.
- (f) Find all solutions of the equation $2P = \mathcal{O}$ in $E(\mathbb{F}_5)$.
- (g) State the problem of the discrete logarithm on elliptic curves.