Convex and Affine Sets:

C affine if: Ax;+ (1 —Naxy€C Vo, 2z €C, NER

C convex if: \x;+ (1 —Naxp € C Va2 €C, A €[0,1]
Hyperplane: {x € R" |a’z =b},a #0

Halfspace: {x € R" |a’x <b},a+#0

Polyhedron: {x € R"|ajx <b,i=1,...,m, clx=d;,j=1,...,p}

Separation Theorem: C,D C R" non-empty, convex with C N D = ().
= 3 a € R, and b € R such that a’z<b<a'yVxcC,ycD.

Supporting Hyperplane Theorem: C C R" non-empty, convex.
= 7 a supporting hyperplane at every boundary point of C.

Convex Functions:

f [strictly] convex if: f(Ax + (1 — Ny)[<] < Af(x)+ (1 -\ f(y)
f [strictly] concave if: —f [strictly] convex

Theorem (Restriction of a convex function to a line) f:C — R is convex
sg:{t|lx+tvelC} —R, t— f(x+tv)is convex (in t) for any € C,v € R".

Theorem (First-order condition) Differentiable f is convex
< fly) = fl@)+ V(@) (y-—z)Va,yeC.

Theorem (Second-order conditions) f twice differentiable.

1. f convex & V3f(x) >0V xel.
2. Vif(x) >0V x € C = f strictly convex.

Theorem: f convex < epi(f) is convex.

Theorem (Minimizing a convex function over a convex set) f convex and differentiable.
Then, equivalent are

1. «* is a global minimum.

2. ¥ is a local minimum.

3. x* is a critical point, i.e., Vf(x*) = 0.




Convex Optimization Problems:

e Optimization problem in standard form: minimize  f(x)
subject to g;(x) <0, i=1,...,s
hj (:13) =0,

j=1....m

e Convex optimization problem in standard form: f, g, convex, h;(x) = ajTa: —b;

e Linear program (LP): minimize c¢'x+d
subject to Gx < h
Ax=0b

Equivalent convex problems:

Eliminating equality constraints: F' and x, are such that Ax = b < ©* = Fz 4 x( for some z.

minimize  f(x) minimize (over z) f(Fz+ x)
=
subject to g;(x) <0,i=1,...,s subject to ¢g;(Fz+xy) <0,i=1,...,s
Ax =b

Introducing equality constraints:

minimize  f(Aox + by) o minimize (over x,y;) f(yo)
subject to ¢g;(A;x+b;) <0,i=1,...,s subject to ¢;(y;) <0,i=1,...,s
Yy=Azx+b=0i=1,...s

Introducing slack variables for linear inequalities:

minimize  f(x) PN minimize f(x)
subject to alx <b;,i=1,...,s subject to alx +s; =b;,i=1,...,s
S; 20,@'21,...,5

Epigraph form: Convex problem in standard form is equivalent to

minimize (over x,t) ¢

subject to f(x) —t <0
gilx) <0,i=1,...,s
Ax =b.

e Minimizing over some variables: f(x) = inf,, f(x1, x2)

minimize  f(xy, x2) = minimize f(x)

subject to g;(xy) <0,i=1,...,s subject to gi(x1) <0,i=1,...,s




Lagrangian Duality and KKT Conditions:

Lagrangian: L(z, A, p) = f(2) + 27 Migi(@) + 3271, pihy(e)
Lagrange dual function: Lp(X\, p) = infyep Lz, A, p)
Lower bound property: Lp(A, p) < p* for any A > 0, u € R™

Lagrange dual problem: maximize Lp(A, )
subject to A > 0.

Theorem (Weak duality): d* < p*

Strong duality: d* = p*

Slater’s constraint qualification: Problem convex, and 3 « € int D with ¢;(x) < 0Vi, Az =b
Theorem: Slater’s constraint qualification = strong duality

KKT conditions:

1. Primal constraints: g;(x) <0,i=1,....,s, hj(x)=0,7=1,...,m
2. Dual constraints: A > 0

3. Complementary slackness: \;g;(x) =0,i=1,...,s

4

. Gradient of Lagrangian with respect to & vanishes:
V@) + Y ANVgl(z)+ > 1 Vhi(x) =0
i=1 j=1

Theorem: Consider a convex optimization problem with f, g;, h; differentiable, @, X, i satisfying
the KKT conditions = &, (A, ft) primal and dual optimal with zero duality gap.

Theorem: Consider a convex optimization problem with f, g;, h; differentiable. Assume Slater’s
condition is satisfied. Then: @ optimal < 3 A, p satisfying the KKT conditions.




Unconstrained Optimization:

e Algorithm General descent method
given a starting point « € dom f
repeat

1. Determine a descent direction Azx.
2. Line search. Choose step size t via exact or backtracking line search.

3. Update. x := x + tAx.
until stopping criterion is satisfied.
e Exact line search: ¢ = argmin_, f(x + sAx).

e Backtracking line search (parameters o € (0,3), 5 € (0,1)):
starting at ¢ = 1, repeat t := St until f(z + tAz) < f(x) + atVf(z) Az.

e Gradient descent method: Az = -V f(x)
e Normalized steepest descent method: Az = Az, = argmin{V f(z)Tv | ||v| = 1}

e Algorithm Newton’s method
given a starting point * € domf, tolerance £ > 0.
repeat

1. Compute the Newton step and decrement.
Az, = —Vif(x)"'Vf(x), I :=Vflx)'Vf(x)'Vf(x)

2. Stopping criterion. quit if \?/2 < e.
3. Line search. Choose step size t via backtracking line search.

4. Update. x := x + tAx,,;.

Constrained Optimization:

e Equality Constrained Problems The solution for the problem

L 2 T _
THnIze f;(:): p  Tmay be achieved by solving (V f;(w) % > <A$nt) = ( Vg(:l:))

and executing the Newton method with step Ax,,;.

e Algorithm Barrier method
given a strictly feasible x,t :=t® > 0,v > 1, tolerance ¢ > 0.
repeat
1. Centering step. Compute x*(t) by minimizing ¢ f + ¢, subject to Ax = b.
2. Update. © = x*(t).
3. Stopping criterion. quit if s/t < e.
4

. Increase t. t := vt.




