Discussion of "Capacity Regions for Wireless Ad Hoc Networks"

Published at IEEE-ICC 2002

by S. Toumpis and A. Goldsmith, Stanford Univ. Discussant: V. Rodriguez, Polytech. Univ.

Outline

- Ad Hoc Nets Special Challenges
- System Model
- Transmission Schemes and Schedules
- Rate Matrices
- Capacity regions
- Results for Specific Configurations

Special Challenges of Ad Hoc Nets

- No infrastructure
- Decentralized control (power, routing, data rates, etc)
- Dynamic topology
- Wireless channel impairments

System Model-1

nodes : $A_1 \dots A_n$

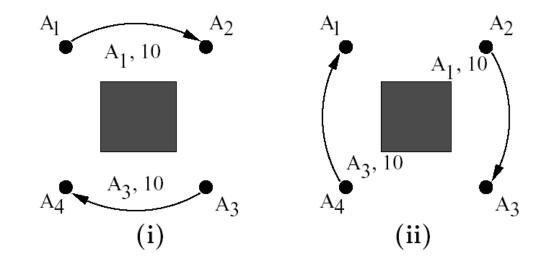
Each A_i

has transceiver with infinite buffer

maximal power output is P_i

canNOT simultaneously send and receive

may send data to any A_j (multihop routing possible)

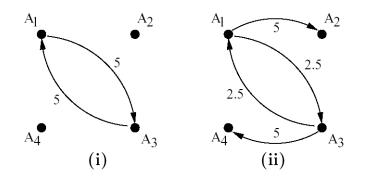

occupy ALL bandwidth (W) while transmitting
 NO broadcast

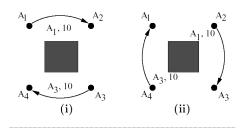
System Model 2

Gains: $G = \{G_{ij}\}$; AWGN: $H = [\eta_1 \cdots \eta_n]$ Each node knows "everything": G, H, P $I \in \mathcal{I} \Rightarrow A_t$ is transmitting with power P_t If A_i $(i \in \mathcal{I})$ transmits to A_i $(j \notin \mathcal{I})$, SINR: $\gamma_{ij} = \frac{G_{ij}P_i}{\eta_j W + \sum_{k \in \mathcal{J}, k \neq i} G_{kj}P_k}$ data rate: $R_{ij} = f(\gamma_{ij})$ pre-agreed for performance; e.g., $f(\gamma_{ii}) = W \log_2(1 + \gamma_{ii})$

Transmission Schemes

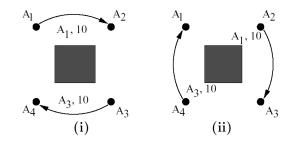
- T-scheme \mathcal{S} : describes info flow at given time
- all transmit-receive node pairs, and data ratesoriginating node of data



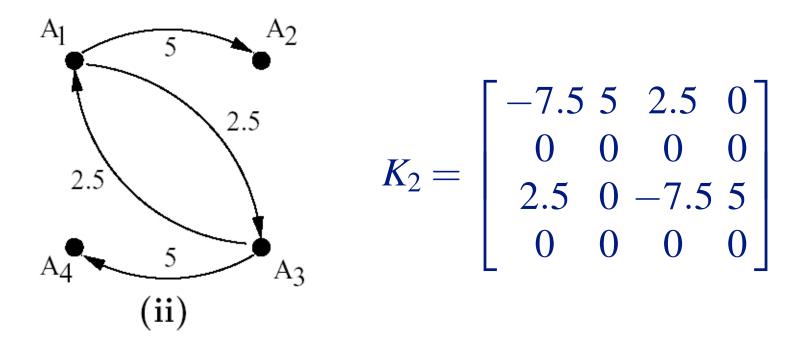

Time Division Schedules

Network may alternate various schemes. Ex:

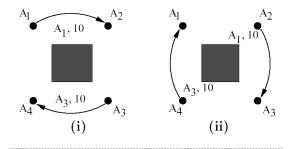
(i) $T_1 = 0.5S_1 + 0.5S_2$ or (ii) $T_2 = 0.75S_1 + 0.25S_2$


See resulting info flow:

Rate Matrices–1


For given scheme S, R(S) is $n \times n$ matrix such that $R_{ij} = \pm r \Rightarrow A_j$ receives/send r bps originating at A_i

Rate Matrices–2


They work for time-division schedules also:

 $K_2 = R(\mathcal{T}_2 = 0.75\mathcal{S}_1 + 0.25\mathcal{S}_2) = 0.75R_1 + 0.25R_2$

Protocols and basic matrices

- Trans. protocol: rules for transmitting nodes Ex: only transmit own info; use max power; simultaneous trans. OK; etc.
- Given a protocol, many schemes are possible

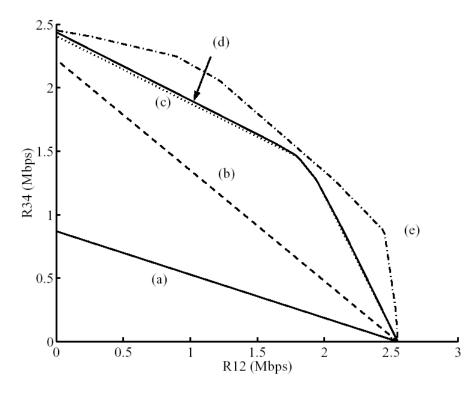
Each has a rate matrix \Rightarrow "basic matrices"

Capacity Region : Definition

- Capacity region: Convex Hull of all basic rate matrices such that the weighted sums have NO negative off-diagonal elements
- Uniform Capacity, $C_u = R_{max} \times n(n-1)$ with R_{max} largest *R* s.t. this matrix is in the capacity region:

$$\begin{bmatrix} -(n-1)R & R & \cdots & R \\ R & -(n-1)R & \cdots & R \\ \vdots & \vdots & \ddots & \vdots \\ R & R & \cdots & -(n-1)R \end{bmatrix}$$

Specific physical parameters


Nodes: 5 uniformly distributed in box [-10m , 10m]×[-10m , 10m]
G_{ij} = 10²d_{ij}^{-α}S_{ij}
S_{ij} (shadowing) lognormal with μ = 1 and σ= 8 db
P_i = 1W ; η_i = 10⁻¹¹ W/Hz
bandwidth W = 10⁶ Hz

Capacity: No multi-hopping, No spatial reuse

- Only one transmits \Rightarrow # of schemes is $N^a = n(n-1) + 1$
- Choose rates by $f(\gamma_{ij}) = W \log_2(1 + \gamma_{ij})$
- Associated rate matrices : R_k^a , $k = 1 \dots N^a$
- uniform capacity : $C_u^a = 0.83$ Mbps

Slice of capacity region ($R_{ij} = 0$ if $(i, j) \neq (1, 2)$, (3,4)) (see fig)

Several capacity results

- (a) Single-hop, No spatial reuse
- (b) Multihop, no spatial reuse
- (c) Multihop, spatial reuse
- (d) 2-levl power cntrl added to (c)
- (e) Succs. interference cancellation

	а	b	С	d	е
C_u	0.83	2.85	3.58	3.61	4.31