

Prioritized Throughput Maximization via Rate and Power Control for 3G CDMA: The Two Terminal Scenario

Virgilio Rodriguez, David Goodman

ECE Department Polytechnic University Brooklyn, New York, 11201

Outline

- Motivation : Variable Spread Gain CDMA
- Simple Model for Single-Cell CDMA Data
- A Generalized Frame-Success Function
- Throughput equation is defined and optimization is performed
 - Interior "stationary" point (all partial derivatives set to zero) is sought. Second order conditions (SOC) are checked.
 - Boundary stationary point is sought in which bit rate of "important" user is pre-set as high as feasible. SOC are checked.
 - Boundary stationary point is sought in which bit rate of both users are pre-set at highest feasible level. SOC are checked.
- Related/future work

Motivation : VSG-CDMA

- Modern (3G) wireless nets are expected to accommodate terminals operating at very different data transmission rates.
- Variable Spreading Gain CDMA can accommodate terminals operating at dissimilar bit rates
- In a VSG CDMA system, chip rate is common, but each terminal's spreading (processing) gain is the ratio of the common chip rate to the terminal's bit rate

CDMA Single Cell Data Comm.

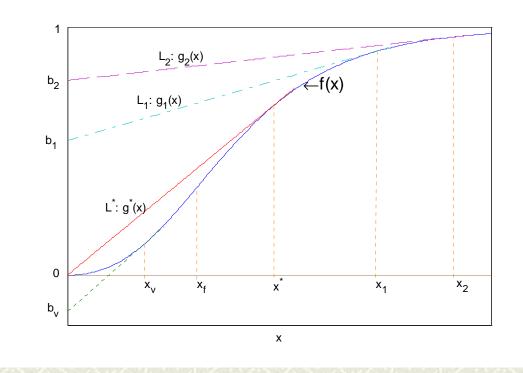
*N transceivers send data to a base station * R_c : chip rate ; R_i : data rate ; $G_i = R_c/R_i$: Proc. Gain * $f_s(\gamma_i)$: probability of correct reception of a packet * $\gamma_i = G_i \alpha_i$ is the SIR with α_i the CIR given by

$$\alpha_i = \frac{h_i P_i}{\sum_{i \neq j} h_j P_j + \sigma^2} = \frac{Q_i}{\sum_{i \neq j} Q_j + \sigma^2}$$

h_i: "gain" factor

General Frame-Success Function

General S-shaped Frame-Success Function



Objective Function

- * Want to maximize network weighted throughput: $\sum \beta_i R_i f_s(G_i \alpha_i)$
- * β_i is a priority weight
- Find for each active user, an optimal power level AND an optimal bit rate
- Power levels determined through optimal power ratios, α_i (CIR); and bit rates determined through optimal processing gains (G_i)
- ♦ CIR need to be constrained so that they lead to feasible power levels. For 2-user interference-limited system, $\alpha_1 = Q_1/Q_2 = 1/\alpha_2$ thus $\alpha_1 \alpha_2 = 1$
- ♦ Each G_i must exceed certain $G_0 \ge 1$ ($R_i \le R_M \le R_c$)

Optimization Model

Maximize
$$\frac{f(G_1\alpha_1)}{G_1} + \beta \frac{f(G_2\alpha_2)}{G_2}$$

subject to
$$\alpha_1 \alpha_2 = 1$$

 $G_1 \ge G_0$
 $G_2 \ge G_0$

First-Order Necessary Optimizing Cond.

Augmented Objective Function:

$$\phi(G_1, G_2, \alpha_1, \alpha_2) = \frac{f(G_1, \alpha_1)}{G_1} + \beta \frac{f(G_2, \alpha_2)}{G_2} + \lambda (1 - \alpha_1 \alpha_2) + \mu_1 (G_0 - G_1) + \mu_2 (G_0 - G_2)$$

First-Order Necessary Optimizing Conditions (FONOC):

$$\frac{\frac{\gamma_1 f'(\gamma_1) - f(\gamma_1)}{G_1^2} - \mu_1}{\frac{\beta(\gamma_2 f'(\gamma_2) - f(\gamma_2))}{G_2^2} - \mu_2} = \begin{bmatrix} 0\\0\\0\\0\\0 \end{bmatrix} \qquad \text{with} \begin{cases} \alpha_1 \alpha_2 = 1\\\mu_1(G_0 - G_1) = 0\\\mu_2(G_0 - G_2) = 0 \end{cases}$$
$$\qquad \text{where } \gamma_i = G_i \alpha_i$$

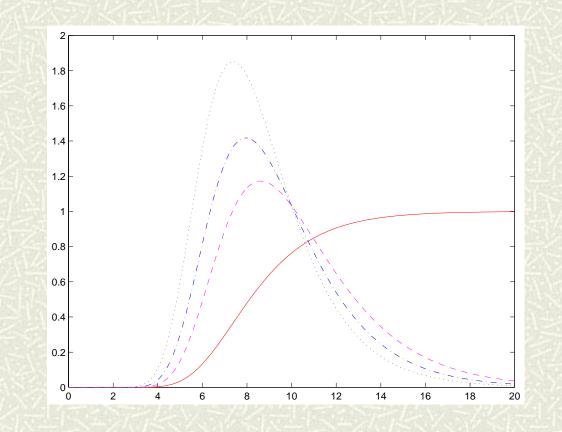
Interior stationary point

- ♦ Seek a solution to FONOC in the interior of the feasible region; i.e., suppose $G_1 > G_0$, $G_2 > G_0$ (Lagrangian coefficients $\mu_1 = \mu_2 = 0$)
- This yields closed-form solution:
 - $\alpha_1 = 1/\alpha_2 = \sqrt{\beta}$; $G_1 \alpha_1 = G_2 \alpha_2 = \gamma_0$
- * γ_0 solves xf'(x)=f(x). It's unique. (see fig.)
- Consistency requires that $G_1 = \gamma_0 / \sqrt{\beta} > G_0$
- Second order conditions indicate this solution is always a "saddle point"
- This allocation is 'fair' : both users enjoy same weighted throughput Spread Gain : G_i = R_C/R_i (Chip_rate / bit_rate) ; G₀ = R_C/R_{MAX}
 γ₀ solves xf'(x)=f(x) ; γ₀₀ solves x²f'(x)=K(G₀)²/β ; β : priority

Asymmetric-rate boundary allocation

- Seek a solution to FONOC on the boundary of the feasible region by supposing that $G_2=G_0$ ("favorite" terminal operates at highest feasible bit rate) but that $G_1>G_0$ (Lagrangian coeff. $\mu_1=0$).
- Solution exists whenever there is an x satisfying $x^2 f'(x)/f'(\gamma_0) = (G_0)^2/\beta$.
- * The left-hand side of this equation is a "bell-shaped" function. Thus, if $(G_0)^2/\beta$ is "too large" no such x exists. Otherwise, this equation has two solutions.
- ★ Let γ_{00} be the largest of the two values satisfying $x^2 f'(x) = f'(\gamma_0) (G_0)^2 / \beta$. All the optimizing values can be determined in terms of γ_{00} and γ_0 .
- * γ_{00} gives the optimal SIR of "favorite" user; i.e., $G_2 \alpha_2 = G_0 \alpha_2 = \gamma_{00}$. From this, $\alpha_2 = \gamma_{00}/G_0 = 1/\alpha_1$.
- ★ The optimal SIR of less important user is γ_0 (preceding slide). This leads to $G_1 = \gamma_0 \gamma_{00} / G_0$. If this value does not exceed G_0 as was presumed, this allocation must be discarded. Thus $G_0 < \sqrt{(\gamma_0 \gamma_{00})}$.
- Second order conditions confirm that whenever this solution exists, it is a maximizer

Form of $x^2 f'(x)$ and related functions



Scaled plots of a particular f(x) [solid], f'(x) [dotted], xf'(x) [dashdot], and $x^2f'(x)$ [dashed] Spread Gain : $G_i = R_C/R_i$ (Chip_rate / bit_rate) ; $G_0 = R_C/R_{MAX}$ γ_0 solves xf'(x)=f(x) ; γ_{00} solves $x^2f'(x)=K(G_0)^2/\beta$; β : priority

"Greedy" Allocation

- * Seek a solution to FONOC on the boundary of the feasible region by supposing that $G_2=G_1=G_0$ (both terminals operate at highest feasible bit rate)
- Solution always exists
- Second order conditions indicate that this solution may be a maximizer or a minimizer depending upon system parameters.
- * When both terminals are equally important, equal-received power allocation ($\alpha_1 = \alpha_2 = 1$) satisfies FONOC. But this is a maximizer only when G_0 is "large enough"; i.e., it exceeds a threshold determined by frame-success function (the value at which xf'(x) reaches maximum). Otherwise, allocation is a minimizer.
- ★ Generally, if the solution corresponding to the preceding case $(G_2=G_0; G_1>G_0)$ does <u>not</u> exist, this solution $(G_2=G_1=G_0)$ is a maximizer.

Summary

- On the maximization of the network weighted throughput in a 2terminal interference-limited single-cell CDMA :
 - It is always optimal for the important user to transmit at the highest feasible data rate. It may or may not be optimal for the other user to operate at this rate.
 - * When $(G_0)^2/\beta$ is "small", only the important user must operate at "full speed". This user's optimal SIR is determined by solving an equation of the form $x^2f'(x)=K(G_0)^2/\beta$. This optimal SIR immediately determines the optimal power-ratios.
 - The other terminal's data rate is determined so that its SIR (product of its processing gain by its power ratio) equals a channeldetermined constant.
 - * If maximum permitted bit rate is low enough (G_0 is large enough), it becomes optimal to allow both users to transmit at this fastest rate. Optimal power ratios are then determined by solving certain channel-determined equation.

Discussion

- On the maximization of the network weighted throughput in a 2terminal interference-limited single-cell CDMA :
 - Analysis identifies 3 allocations possibly satisfying some optimality criterion: a BALANCED ('fair') allocation, an 'UNFAIR' allocation, and a "GREEDY" allocation.
 - The balanced allocation is always sub-optimal: 'fairness' is expensive!
 - It is always optimal for the favorite terminal to operate at maximum bit rate.
 - * When $G_0/\sqrt{\beta}$ is larger than a threshold determined by the physical layer through f, both terminals should be admitted at the maximum permissible data rate.
 - The (data) "speed limit" under which the greedy allocation is optimal Decreases, as the favorite terminal grows in importance.
 - * If G_0 is small enough, the greedy allocation actually MINIMIZES the weighted throughput.

Continuing/future work

- Imposing QoS constraints (minimum throughput per terminal)
- Exploring the 'fairness' issue (saddle point)
- Considering fixed but dissimilar data rates (spread gains)
- Considering noise
- Mobility (location) issues
- Multiple cells
- Extension to "n" terminals

Related work

A paper describing the technical details of maximizing S(x)/x with S a general S-curve is available.

 Another work discusses a "robust" generalized QoS measure for wireless data, and a "game" (decentralized algorithm) in which each terminal chooses power to maximize its own QoS service
 See wireless.poly.edu