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Abstract— Under macro-diversity, the cellular structure is re-
moved and each transmitter is jointly decoded by all “receivers”
(base stations, or antennas in a single cell). This scheme has
been shown to increase the capacity of CDMA wireless networks.
However, the available macrodiversity capacity results rely on a
“self-interference” approximation, which may not be appropriate
in CDMA system in which the spreading gain is low for some
transmitters. This is expected in 3rd generation cellular systems.
Explicitly considering power constraints, and without recurring
to the above approximation, this note applies well established
“fixed point” theorems to derive less conservative results defining
the macrodiversity capacity region.

I. INTRODUCTION

As described by Hanly [2], macrodiversity is a scheme
in which the cellular structure of a wireless communication
network is removed and “each mobile...(is)...jointly decoded
by all receivers in the network”. Alternatively, one can think of
a single-cell network equipped with several receiving antennas,
possibly distributed in various locations throughout the cell.
Hanly [2] shows that this scheme can significantly increase
the capacity of a CDMA wireless communication network.

The macrodiversity capacity results provided by [2] assume
that the transmission power of each transmitter contributes to
its own interference. This approximation is generally appropri-
ate for a CDMA system in which each transmitter’s spreading
gain is “large”, which, normally means that its (pre-spread)
“carrier to interference ratio” is “small”.

But modern wireless networks are expected to accommodate
simultaneous transceivers operating at a wide range of data
rates. “Variable spreading gain" (VSG) CDMA is one of the
technologies through which new standards accommodate such
multi-rate traffic (see for instance, Nanda, et al.[6]). In a
VSG-CDMA system (see I and Sabnani[3]), each transceiver’s
spreading gain is determined as the ratio of the common
chip rate to the transceiver’s data rate. Thus, high data rate
sources generally operate with “low” spreading gains, and
“high” carrier-to-interference ratios. Under these conditions,
the “self-interference” approximation may not be appropriate.

Explicitly considering transmission power limits, and with-
out recurring to the “self-interference” approximation, this
note derives results determining the capacity region of a

CDMA cellular network under macrodiversity. The “complex-
ity” of applying the new results is comparable to that of the
approximated ones. The analysis is grounded on the Brouwer’s
fixed point theorem and the Banach’s contraction mapping
principle, two well established mathematical results.

Below, the basic macrodiversity relation is presented, first
in the traditional form, and subsequently in matrix form, in
terms of convenient new variables. Then, it is shown that
the basic macrodiversity capacity question is equivalent to
determining whether certain meaningful function has a fixed
point. Subsequently, conditions are identified under which
the desired solution exists. Moreover, further conditions are
explored under which this solution is unique, and can be de-
termined through an intuitive, well-behaved algorithm. Finally,
the results are interpreted and discussed. Space limitations
preclude a comprehensive comparison between the new re-
sults and those previously available. Nevertheless, some brief
contrasting comments are made, highlighting the fact that the
new results are less conservative, which can make a significant
difference in the throughput of a 3G system.

A mathematical appendix introduces the essential mathe-
matical terminology, and some technical results.

II. THE MACRO-DIVERSITY FRAMEWORK

A. Basic relation

Under macro-diversity, the cellular structure is removed and
each transmitter is jointly decoded by all “receivers” (base
stations, or antennas in a single cell). Hanly [2] argues that,
in this situation, a relevant QoS index for terminal i is the
product of its spreading gain by αi, defined as:

αi =
Pihi1∑N

j=1
j �=i
Pjhj1 + σ2

1

+ · · · +
PihiK∑N

j=1
j �=i
PjhjK + σ2

K

(1)

K is the number of “receivers” in the network, and hik is
the “path loss” coefficient in the signal from terminal i when
received at k. αi can be thought of as a desired “carrier to
interference ratio” (CIR).



B. The Capacity question

Conditions are sought under which a given N-vector of pos-
itive numbers, �α :=

[
α1 · · · αN

]t
, is such that there ex-

ists another N-vector of positive numbers,
[
P1 · · · PN

]t
,

satisfying appropriate constraints, and equation (1) for each i.
If this is the case, the system of N equations like (1) has a
feasible solution, and the vector of power ratios �α is said to
be in the “capacity region” of the system.

C. Normalizations and re-formulations

Noise normalization. Let all powers be divided by σ2
1 +

· · · + σ2
K . Also, let νk = σ2

k/(σ
2
1 + · · · + σ2

K). Although
this normalization introduces no notational change on the
power vector, it is understood that henceforth all powers are
expressed as multiple of the total noise power σ2

1 + · · · + σ2
K .

Total received power from a given transmitter. Let

Qi := Pi

K∑

k=1

hik (2)

Scaled power. Let qi := Qi/αi (The total received power
from terminal i is “scaled” by that terminal’s desired CIR αi).

Relatives losses. Let

gik :=
hik∑K

j=1 hij

(3)

The power at receiver k coming from transmitter i, Pihik =
gikαiqi.

Now, the basic macro-diversity equation can be restated as:
qigi1∑N

j=1
j �=i
αjqjgj1 + ν1

+ · · · +
qigiK∑N

j=1
j �=i
αjqjgjK + νK

= 1 (4)

Notice that Pi = αiqi/
∑K

k=1 hik, which is measured as a
multiple of the total noise power σ2

1 + · · · + σ2
K .

D. Macrodiversity matrix relations

Let

Yik(�q) :=
N∑

j=1
j �=i

αjqjgjk + νk (5)

Yik(�q) can be written as the scalar product of vectors as:
[
g1k · · · gi−1,k 0 gi+1,k · · · gNk

]
·D�q + νk

with

D :=





α1 0 0 0
0 α2 0 0

0 0
. . . 0

0 0 0 αN



 (6)

so that,

D�q =





α1q1
α2q2

...
αNqN





It will prove useful to recognize the vectors �Yi(�q) :=[
Yi1 · · · YiK

]t
.

By “stacking” these interference vectors, one arrives at a
“macro-vector” of length NK satisfying:

�Y :=





�Y1
�Y2
...

�YN−1
�YN




= GD





q1
q2
...

qN−1
qN




+





�ν
�ν
...
�ν
�ν




(7)

where G is a matrix defined as





�0 �g2 · · · �gN−1 �gN
�g1 �0 · · · �gN−1 �gN
· · · · · · · · · · · · · · ·
�g1 �g2 · · · �0 �gN
�g1 �g2 · · · �gN−1 �0




≡





G1

G2

...
GN−1

GN




(8)

with �0 the zero vector of appropriate length, and

�gi :=




gi1
...
giK



 �ν :=




ν1
...
νK



 ��ν :=




�ν
...
�ν



 (9)

The matrix GD is some times denoted as Ĝ. Gik (respect. Ĝik)
may denote the specific row of G (respect. Ĝ) “matching” Yik,
with Gi (respect. Ĝi) the corresponding sub-matrix. Thus,

Yik = Gik ·D · �q + νk ≡ Ĝik · �q + νk (10)

The preceding notational transformations can be clarified
by considering the specific case in which there are N=3
transmitters and K=2 receivers. In this case:

�q =




q1
q2
q3



 ; D =




α1 0 0
0 α2 0
0 0 α3





�Y1 ≡
[
Y11
Y12

]
=

[
0 g21 g31
0 g22 g32

] 


α1q1
α2q2
α3q3



 +
[
ν1
ν2

]

≡
[
�0 �g2 �g3

]
D�q + �ν

�Y2 ≡
[
Y21
Y22

]
=

[
g11 0 g31
g12 0 g32

] 


α1q1
α2q2
α3q3



 +
[
ν1
ν2

]

≡
[
�g1 �0 �g3

]
D�q + �ν

�Y3 ≡
[
Y31
Y32

]
=

[
g11 g21 0
g12 g22 0

] 


α1q1
α2q2
α3q3



 +
[
ν1
ν2

]

≡
[
�g1 �g2 �0

]
D�q + �ν



�Y ≡




�Y1
�Y2
�Y3



 ≡





Y11
Y12
Y21
Y22
Y31
Y32




=





0 g21 g31
0 g22 g32
g11 0 g31
g12 0 g32
g11 g21 0
g12 g22 0








α1q1
α2q2
α3q3



 +





ν1
ν2
ν1
ν2
ν1
ν2




≡




�0 �g2 �g3
�g1 �0 �g3
�g1 �g2 �0



D�q +




�ν
�ν
�ν





III. A FIXED-POINT PROBLEM

Equation (4) can now be re-written as:

qigi1
Yi1

+ · · · +
qigiK
YiK

= 1 (11)

For a fixed interference vector �Y this equation can be easily
solved for qi, to obtain the vector �q which would satisfy
the system of equations of the form (11). This suggests the
following approach. For a given �Y , define the transformation:

�T (�q) :=





(
g11

Y11(	q)
+ · · · + g1K

Y1K(	q)

)−1

...(
gN,1

YN,1(	q)
+ · · · + gN,K

YN,K(	q)

)−1



 (12)

�T (�q) yields the power vector under which each transceiver
would achieve its desired αi if the interference vector �Y
remained fixed. Of course, as the power levels are adjusted, a
new interference vector results, �Y (�q) = GD�q + ��ν. This new
vector will lead to further power adjustments, and so on, in
an iterative manner.

Under the appropriate conditions, this algorithm will “con-
verge” in the sense that a vector �q∗ exists such that �q∗ =
T (�q∗); i.e., �q∗ is a “fixed point” of the mapping �T . These
conditions determine the feasibility of the ratios αi.

IV. MATHEMATICAL RESULTS

Several well-known results useful in solving fixed point
problems are presented below. Some relevant background
material is discussed in a mathematical appendix.

A. Brouwer’s Fixed Point Theorem

Theorem(Brouwer’s): Let T : S → S be a continuous
function from a non-empty, compact, convex set S ⊂ �n into
itself. There is a x0 ∈ S such that x0 = T (x0).

Proof: See [1, p.28].

B. Banach’s result

Contraction Mappings. Let S be a vector space endowed
with the norm ‖·‖. Suppose T is a mapping from S into itself
(i.e., T : S → S). If there is a real number λ, 0 ≤ λ < 1 such
that ‖T (x) − T (y)‖ ≤ λ ‖x− y‖for all x , y ∈ S then T is
said to be a contraction mapping.

Successive approximation. For expositional convenience,
let Tm(x) for x ∈ S be defined inductively by T 0(x) = x
and Tm+1(x) = T (Tm(x)), with m ∈ {1, 2, · · ·}.

Banach’s Contraction Mapping Principle: Let S be a
closed subset of �n. Suppose that T is a mapping from S
into itself. If T is a contraction mapping on S, there is a
unique vector x0 ∈ S such that x0 = T (x0). Moreover, x0 can
be obtained by “successive approximation”, starting from an
arbitrary initial x ∈ S ; i.e., for all x ∈ S, limm→∞ Tm(x) =
x0.

Furthermore,

‖Tm(x) − x0‖ ≤ λm

1 − λ
‖T (x) − x‖

Proof: See [4, Theorem 3.1, page 41].
More general versions of this result, and many extensions

can be found in many sources, including [4].
Contraction condition for differentiable mappings. If the

considered vector space S is convex and the considered map-
ping is such that its derivative T ′(x) exists over S, then for any
x1, x2 ∈ S, and L := {x = x1 + t(x2 − x1) : 0 ≤ t ≤ 1} the
mean value inequality holds that

‖T (x1) − T (x2)‖ ≤ sup
x∈L

‖T ′(x)‖ ‖x1 − x2‖ (13)

Hence, in this situation ‖T ′(x)‖ ≤ λ < 1 implies that T is
a contraction mapping on S [5, p. 272].

V. FIXED POINTS, AND ALGORITHMS

A. From S into S

In order for the previously-mentioned results to be appli-
cable to the mapping �T (�q), it must map vectors from an
appropriate set, to vectors in the same set.

1) Scaled Power Set: In general, any feasible scaled power
vector �q must be in the set S :=

{
�q ∈ �N

+
�, 0 ≤ �q ≤ �qL

}
with

�qL the “largest” feasible total received (scaled) power vector.
If PL

i is the transmission power limit of transceiver i, qL
i =

(1/αi)PL
i

∑K
k=1 hik.

This set is closed by definition. It is straightforward to verify
that it is also convex.

2) “into” condition: It is immediate that each component
Ti(�q) is increasing in each component of �Yi. And each
component of �Yi(�q) is increasing in �q. Therefore, to verify
that �T (�q) is in S, the critical value is �T (�qL). Specifically, it
is necessary that Ti(�qL) ≤ qL

i or that, (see equation (12)),

gi1q
L
i

Yi1(�qL)
+ · · · +

giKq
L
i

YiK(�qL)
≥ 1 (14)

where, by equation (5), Yik(�qL) =
∑N

j=1
j �=i
αjq

L
j gjk + νk.



Recall that Pihik ≡ gikαiqi. Hence, the preceding condition
can be written as:

αi ≤ PL
i hi1∑N

j=1
j �=i
PL

j hj1 + ν1
+ · · · +

PL
i hiK∑N

j=1
j �=i
PL

j hjK + νK

(15)

It may be reasonable to assume that PL
i = PL ∀i, and

that νk/P
L is “very small” as compared to

∑N
j=1
j �=i
hjk. Then,

condition (15) becomes:

αi ≤ hi1∑N
j=1
j �=i
hj1

+ · · · +
hiK∑N

j=1
j �=i
hjK

(16)

B. Existence of a fixed point

Proposition: If a vector of desired CIR, �α, is such that
condition (14) is satisfied – or so is the “neater” condition
(16), under the mild assumptions under which it is valid –
then �α is feasible.

Proof: The set S of feasible (scaled) power vectors is a
closed, bounded and convex subset of �N . If condition (14)
or, when appropriate, (16) , is satisfied, the mapping �T (�q) is
into. It is considered self-evident (and can be shown) that this
mapping is continuous over the set S. Therefore, Brouwer’s
fixed-point theorem applies (see section IV-A). Hence, �T (�q)
has at least one fixed point. Q.E.D.

However, Brouwer’s theorem says nothing about the unique-
ness of the solution, or the behavior of the algorithm discussed
in section IV-B.

VI. TOWARD A UNIQUE FIXED POINT

This section explores conditions under which the norm of
the derivative of �T (�q) is less than one, so that Banach’s prin-
ciple can be applied. In this case, a unique fixed-point exists,
and it can be found via a simple, well-behaved algorithm (see
section IV-B).

A. Derivative of �T (�q)
�T ′(�q) is given by the corresponding “Jacobian” matrix of

partial derivatives, where ∂Ti/∂qj corresponds to its ith row
and jth column. From equation (12),

Ti(�q) =
(

gi1
Yi1(�q)

+ · · · +
giK
YiK(�q)

)−1

(17)

Thus,

∂Ti

∂qj
=
∂Ti

∂Yi1

∂Yi1

∂qj
+
∂Ti

∂Yi2

∂Yi2

∂qj
+ · · · +

∂Ti

∂YiK

∂YiK

∂qj
(18)

∂Ti/∂Yik is obtained as:

gikY
−2
ik

(
gi1
Yi1

+
gi2
Yi2

+ · · · +
giK
YiK

)−2

≡ gik

(
Ti

Yik

)2

(19)

Additionally, by equation (5), Yik(�q) =
∑N

j=1
j �=i
αjqjgjk + νk.

Therefore,
∂Yik

∂qj
=

{
0 for j = i
αjgjk for j �= i

(20)

Replacing equations (19) and (20) into equation (18) one
obtains that

∂Ti/∂qi ≡ 0∀i (21)

and, for j �= i, ∂Ti/∂qj =

T 2
i

(
gi1
Y 2

i1

∂Yi1

∂qj
+
gi2
Y 2

i2

∂Yi2

∂qj
+ · · · +

giK
Y 2

iK

∂YiK

∂qj

)
=

αjT
2
i

(
gi1
Y 2

i1
gj1 +

gi2
Y 2

i2
gj2 + · · · +

giK
Y 2

iK

gjK

)
=

αjT
2
i

K∑

k=1

gikgjk

Y 2
ik

(22)

B. Norm of T ′(�q)

By definition,
∥∥∥�T ′(�q)

∥∥∥
∞

is the maximum absolute row sum

of �T ′(�q) (see section A). In view of equations (21) and (22),
the ith row of �T ′(�q) adds up to

N∑

j=1

∂Ti

∂qj
= T 2

i (�q)
N∑

j=1
j �=i

αj

K∑

k=1

gikgjk

Y 2
ik(�q)

= T 2
i (�q)

K∑

k=1

gik
Y 2

ik(�q)

N∑

j=1
j �=i

αjgjk

:= fik(�q)ρik (23)

Observe that ρik :=
∑N

j=1 αjgjk − αigik is the sum of
the components of Ĝik, which is the row of the matrix
GD ≡ Ĝ associated with Yik (see equation (10)). It represents
the parameters in equation (23) which can be influenced by
limiting the vector �α. For a given �q, the function fik(�q) :=
T 2

i (�q)
∑K

k=1 gik/Y
2
ik(�q) is determined by the channel via the

various path loss coefficients.

C. Contraction condition

On the basis of the preceding development, in order for∥∥∥�T ′(�q)
∥∥∥

∞
< 1 so that �T (�q) is a contraction, �α must be such

that
max

	q
fik(�q)ρik < 1 ∀i, k (24)

with ρik the sum of the components of Ĝik(see equation
(10)) and fik(�q) given by:

fik(�q) =
gi1
Y 2

i1
+ · · · + giK

Y 2
iK(

gi1
Yi1

+ · · · + giK

YiK

)2 (25)

D. Properties of the Contraction Condition

1) Well-definedness. Condition (24) is well defined, be-
cause fik is a continuous function, for which it must
have a maximum over a closed and bounded set (see
sec. (V-A.1))

2) fik ≥ 1 . This is so because fik is of the form
(λ1φ(x1) + · · · + λKφ(xK))/φ(λ1x1 + · · · + λKxK)
with φ(x) = x2, λi ∈ [0, 1],

∑
i λi = 1 and xi positive.



The function φ(x) = x2 is easily shown to by convex.
And for any convex φ, Jensen’s inequality holds that
λ1φ(x1) + · · · + λKφ(xK) ≥ φ(λ1x1 + · · · + λKxK).
(See also section B in the appendix).

3) If �q is such that Yik(�q) = Yil(�q) ∀k, l then fik(�q) = 1.
This follows directly because

∑
k gik = 1 by definition

(see equation (3))
4) If each transceiver is “equidistant” to each “receiver”

(antenna), in the sense that hik = hil ∀i, k, l then
fik(�q) ≡ 1. This also follows directly because in this
case gik = gil ≡ 1/K ∀i, k, l (see equation (3)).
In this case, the contraction condition (24) reduces to
‖GD‖∞ ≡ ‖G�α‖∞ < 1

5) In the special case in which K=2, the maximum fik is
attained for the particular �q which creates the largest
“separation” between Yi1 and Yi2. (See section B in the
appendix).

E. A unique solution and an algorithm to find it

Proposition: If a vector of desired CIR, �α, is such that con-
dition (14) , or, when appropriate, condition (16), is satisfied,
and so is condition (24) above, then �α is feasible. Furthermore,
the power vector leading to �α is unique, and can be obtained
via the well-behaved algorithm described in section IV-B.

Proof: The “power set” S is a closed subset of �n (see sec-
tion V-A.1). If condition (14) , or, when appropriate, condition
(16), is satisfied, the transformation T (�q) is a mapping from
S into S. If condition (24) is also satisfied, T is a contraction
mapping. Therefore, under the hypothesis of this proposition,
Banach’s principle applies (see section IV-B). Q.E.D.

VII. DISCUSSION

This note provides an answer to the question of whether a
certain vector, �α, of positive numbers interpreted as desired
“carrier-to-interference ratios” is feasible in a macrodiversity
CDMA environment, in the sense that there are feasible power
levels which produce the desired ratios. The answer is in
the affirmative whenever condition (14) is satisfied. Under
mild assumptions, this condition takes the simple form αi ≤
Ai, with Ai a relatively simple function involving ratios of
the various path loss coefficients of the active transceivers.
However, not much can be said about the underlying power
vector, or the performance of any particular algorithm in
finding it.

This note also explores a more elaborate condition, (24).
Together with condition (14), condition (24) implies that the
power vector leading to �α is unique, and can be found by way
of a well-behaved simple algorithm. This algorithm can depart
from an arbitrary power vector. It is of the form xn+1 = f(xn)
with x0 arbitrary. A simple expression gives the “error” after
a given number of iterations.

In general, condition (24) depends on the maximum of a
relatively simple function. More research is needed to deter-
mine the practical implications of obtaining this maximum, or
a reasonable approximation for it. However, in special cases,
in particular when each terminal happens to be “equidistant”

from the antennas, this condition reduces to ‖G�α‖∞ < 1.
In words, this condition requires that the “largest weighted
average” of the desired αi’s be less than one. The possible
weight vectors are the rows of the “relative gains” matrix G. It
is significant that each row of this matrix always has at least
one element equal to zero, which implies that, in verifying
this condition, at most N-1 of the αi’s are simultaneously
weighted.

Space limitations preclude a comprehensive contrasting of
these results to those originally presented in [2]. Nevertheless,
some brief comments will be made.

First, condition (14) does not have an obvious “counterpart”
in [2]. The result derived in [2] under the “self-interference”
approximation is

∑N
i=1 αi < K, which limits the sum without

imposing an individual limit on each term. However, one can
make a rough comparison by assuming that condition (16)
applies and is satisfied by each i, and that each terminal
is “equidistant” from each antenna so that hik ≈ hil ≈
hi ∀i, k, l. This symmetry would practically arise, for example,
with K = 2, if the two receiving antennas are directly across
from each other in opposing sides of a road segment, and each
terminal is located along the axis of this segment. When this
symmetry exists,

N∑

i=1

αi ≤
N∑

i=1

K
hi∑N

j=1
j �=i
hj

≈ K

∑N
i=1 hi∑N
j=1
j �=i
hj

> K

This indicates that condition (16) is “less conservative” that
the approximated condition from [2].

The more elaborate condition, (24), may also be com-
pared, with caution, with the approximated result from [2],
by considering, again, the special symmetric situation. In
this case, condition (24) reduces to ‖G�α‖∞ < 1, as re-
marked above. Additionally, each gik = 1/K (see equation
(3)). Therefore, the jth row of this matrix has the form
(1/K)

[
1 · · · 1 0 1 · · · 1

]
where the only zero is

at the jth position (see equation (8)). Hence, the product of
the jth row of G by �α simply adds all the components of �α
except for αj and divide the sum by K. For example, with
3 terminals, the second row of G is (1/K)

[
1 0 1

]
and

the product of this row by �α equals (α1 + α3)/K. ‖G�α‖∞
simply picks out the largest component of the product G�α.
The jth component of G�α is a sum of the form (

∑N
i=1 αi −

αj)/K. Thus, the largest component of G�α will be the one
that leaves out of the sum the smallest component of �α.
For instance, if αN happens to be the smallest αi, then
‖G�α‖∞ = (1/K)

∑N−1
i=1 αi. Hence, in the “symmetric” case,

the approximated result demands that
∑N

i=1 αi < K, whereas
condition (24) only imposes that

∑N−1
i=1 αi < K (assuming

αN is the smallest desired CIR).
It is stressed that, in the context of a 3G network, when

relatively few high data-rate terminals may be sharing a
channel, the less conservative results could make a significant
difference. For example, suppose K=1, and that three high
data-rate sources wish to share a channel, each demanding
a CIR of 2/5. This is plausible in a VSG-CDMA situation



(see introduction). The approximated result dictates that only
2 of them can be accommodated, whereas condition (24)
indicates that all three can, “with room to spare”. In a 3G
environment, leaving, unnecessarily, out even one terminal
could be significant, if, as presumed, the additional terminal
would have transmitted megabits of data each second.
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APPENDIX

A. Background material

Let S denote a vector space (for a formal definition of these
spaces see [5, pp. 11-12]).

Norms and metrics. A norm, ‖·‖, on S is a function from S
into the non-negative real numbers �+ “generalizing” the idea
of the “Euclidean length” of a vector. It engenders a “metric”
(‘distance’), defined as d(x, y) = ‖x− y‖.

Infinity norm. ‖·‖∞ is defined as

‖�x‖∞ := max(|x1| , |x2| , · · · , |xN |) (26)

Linear operators. If T is a mapping from a vector space,
S1, into another, S2, (i.e., T : S1 → S2), it is said to be
linear if for any x , y ∈ S1 and λ1 , λ2 ∈ �, T (λ1x+λ2y) =
λ1T (x) + λ2T (y).

The operator norm of a linear operator T is defined as

‖T‖ := sup
‖x‖�=0

‖T (x)‖
‖x‖

≡ sup
‖x‖=1

‖T (x)‖ (27)

where sup denotes the supremum or least upper bound.
Matrix infinity norm. When a linear operator is expressed

as T (x) = Ax, with A a suitably dimensioned matrix, and
the underlying norm is ‖·‖∞, its “operator norm” is the
“maximum absolute row sum” of A. If aij denotes the element
corresponding to the ith row and jth column of matrix A,

‖A‖∞ := sup
‖x‖=1

|Ax| = max
i




∑

j

|aij |



 (28)

Row sum of the product of two non-negative matrices. If
A and B are suitably dimensioned non-negative matrices, the
row sum of the product, AB, can be obtained as the product
A · rsum(B), with rsum(B) the vector resulting from the sum
of the columns of B.

B. Maximum of an interesting ratio
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It is of interest to determine a supremum of the form

sup
0≤x0≤x1,x2≤x3

λx2
1 + (1 − λ)x2

2

(λx1 + (1 − λ)x2)2
(29)

where 0 ≤ λ ≤ 1 is fixed, and x1 ≤ x2 are positive real
numbers in certain interval.

The above ratio is a continuous function for which it must
necessarily have a maximum over any closed and bounded set.

Also, x12 := λx1 + (1 − λ)x2 is simply a convex combi-
nation (“mixture”) of x1 and x2; i.e., a point between x1 and
x2. Likewise, λx2

1 + (1 − λ)x2
2 is a “mixture” of x2

1 and x2
2,

with the same “mixture” parameter λ (see figure (B)).
The function f(x) := x2 is easily shown to be convex.

And, by definition, any convex function satisfies λf(x1) +
(1−λ)f(x2) ≥ f(λx1 +(1−λ)x2). Therefore, the ratio (29)
is always greater than or equal to 1.

It is straightforward to verify that the first-order optimizing
conditions for this ratio are satisfied whenever x1 = x2. But
in this case, the ratio equals 1, which is its smallest possible
value. Therefore, the maximum is attained over the boundary
of the feasible region; i.e., x1 = x0 and x2 = x3 leads to the
maximum.


