A Survey on Wireless Full-Duplex: Research and Development Tracks

Omid Taghizadeh

Institute for Theoretical Information Technology
RWTH Aachen University, D-52074 Aachen, Germany
Outline

• Full-duplex operation
• Incorporating FD into future systems
• Our cooperation and interface
• Conclusion
Outline

- Full-duplex operation
- Incorporating FD into traditional systems
- Our cooperation and interface
- Conclusion
Full-Duplex Operation

- Full-duplex: simultaneous transmission and reception using the same channel

Full-duplex transceiver:

- Challenge: Strong loopback self-interference must be suppressed
 - Limited dynamic range in Tx and Rx
 - E.x., DAC and ADC accuracy, phase noise, I-Q imbalance,…
 - Inaccurate channel knowledge
 - Results in imperfect interference estimation

Full-duplex communication was known to be infeasible
Motivation

- **What do we gain via full-duplex?** [CHJKLM], [JCKBSSLK]
 - Bi-directional communication
 - Improved **resource efficiency** (theoretically by factor of two)
 - Effective **feedback** channel (CSI-T, Adaptive constellation,…)
 - Enhanced physical layer **security**, …
 - **Enhanced physical layer function**
 - Continuous **sensing and presence** in the environment
 - No **hidden (exposed) terminal** problem
 - Improved **primary detection**
 - **Enhanced access layer function**
 - Continuous transmission and reception ability
 - Reduced **round trip time**, reduced **network congestion**
 - **Enhanced network layer function**
Full-Duplex Operation

- Recent advances have provided reasonable isolation among Tx and RX antennas via
 - Antenna design and placement
 - RF cancellation circuit design
 - Digital processing methods
 - ...

- **Example result:** 110 dB for bandwidth of 80MHz [BMK]
 - Compliant with WiFi 802.11ac
 - Suppression down to the receiver noise floor

FD is seriously considered as a possibility for 5G and beyond!

Outline

• Full-duplex operation
• Incorporating FD into future systems
• Our cooperation and interface
• Conclusion
FD for Future Generations

Required research & development tracks to incorporate FD into future standards:

• Feasibility, hardware realization
• Where, how, and how much can this be useful?
 – Distinguish standards/usecases that benefit from FD
 – Update the classic designs for the new system
 – Theoretical bounds and achievable performance gains
• Hardware & software integration
Feasibility, Hardware Realization

• FD research tracks:
 – Feasibility, hardware realization

 Self-interference suppression

Complete interference chains

self-interference channel

RF Rx. analog (LNA,…)

ADC-Downcon.

Digital (baseband) in Rx chain

Residual self-interference

RF Tx. analog (PA, …)

DAC-Upconvert.

Digital (baseband) in Tx chain

Desired Tx signal
Lehrstuhl für Theoretische Informationstechnik

Feasibility, Hardware Realization

- Self-interference suppression – Tx chain, digital domain

- Null-steering in time and frequency domain [RBHWWW:11], [HLMCG], …

- Keep average interference power within a safe range [TM13], [ZTLH12], …

- Incorporate the spatial characteristics of the residual self-interference in Tx side [DMBS], [ZTH13W], …

Feasibility, Hardware Realization

- Self-interference suppression – Tx chain, RF domain

Antenna cancellation: Null-steering with auxiliary propagation in RF:
[SJLK], [K:10], [AKSRC:12]

Feasibility, Hardware Realization

- Self-interference suppression – Passive cancellation
 - Passive interference cancellation
 - Proper placement of Rx and Tx antennas to reduce the direct interference paths (natural isolation [DS:10], [CJLK])
 - Exploit directivity of Tx and Rx (directional diversity [EDDS:11])

Feasibility, Hardware Realization

- Self-interference suppression – Rx chain, RF domain

- Interference reconstruction via auxiliary chains
 - Rice: [DS:10], [SPS:11]
 - HHI: [AKSHK:14]

- Copying the Tx signal in RF with phase shift and delay:
 - Stanford: BALUN technique [JCKBSSLK], [BMK]

Feasibility, Hardware Realization

- Self-interference suppression – Rx chain, RF domain (cont.)
Feasibility, Hardware Realization

- Self-interference suppression – Rx chain, RF domain (cont.)

- Interference reconstruction via auxiliary chains
 - Rice: [DS:10], [SPS:11]
 - HHI: [AKSHK:14]

- Challenge: Tx noise, more cost
- Around 85dB suppression is reported
Feasibility, Hardware Realization

- Self-interference suppression – Rx chain, RF domain (cont.)

- Copying the Tx signal in RF with phase shift and delay:
 - Stanford: BALUN technique [JCKBSSLK], [BMK]

- Challenge: Accurate phase-shift & attenuation is needed

- Around 110dB suppression is reported
Feasibility, Hardware Realization

- Self-interference suppression – Rx chain, digital domain

- Dealing with remaining interference:
 - Compensating PA non-lin effect: [BMK:13], [AKSHK:14], …
 - Joint Tx-Rx strategy, Rx antenna selection: [CWRH:14], [RWW:11], …

References

[CWRH:14] Ali Cagatay Cirik, Rui Wang, Yue Rong and Yingbo Hua, MSE Based Transceiver Designs for Bi-directional Full-Duplex MIMO Systems, SPAWC

Feasibility, Hardware Realization

• Self-interference suppression – to conclude:
 – Several attempts for cancelling out the self-interference
 – Over 100 dB of suppression is feasible!
 – The cancellation must be done simultaneously in several domains.
 • Single-domain cancellation methods do not bring enough suppression

Levels of suppression in different layers, [BMK:13]

FD for Future Generations

Required research & development tracks to incorporate FD into future standards:

• Feasibility, hardware realization ✓
• Where, how, and how much can this be useful?
 – Distinguish standards/usecases that benefit from FD
 – Update the classic designs for the new system
 – Theoretical bounds and achievable performance gains
• Hardware & software integration
Example Use-Case: FD P2P

- Example FD use-case: FD point to point

 - Enhanced spectral efficiency, real-time feedback channel, improved access layer function, …
 - P2P FD modeling, achievable rates [DMBS:12]
 - Interference zero-forcing and power adjustment (HD vs FD trade-off) [ZTH13W]
 - Sum rate enhancement [ZTLH12], [CZHH:14]
 - Coping with CSI imperfection [ZTH:13], [CZHH:14]

Example Use-Case: FD P2P

• Example FD use-case: **FD point to point**
 - Update the medium access layer protocols for FD nodes
 • MAC protocol IEEE 802.11: FD-MAC [SPS11], [SGPRBK11], …
 • Access layer performance analyze for FD wireless LAN [OB12]
 • Adaptive sensing-transmission-reception: [AK:14], [CZZ:11]

Example Use-Case: FD Relaying

- Example FD use-case: FD relaying

- Reduced time slots → higher efficiency, lower delay.
- **One-way** relaying protocol → Factor of **two** in spectral efficiency, end users remain HD *(HD user-compatible)*
- **Two-way** relaying protocol → Continuous Rx, Tx in both sides, Factor of **four** in spectral efficiency, end-users need to be FD *(HD user-incompatible)*
Example Use-Case: FD Relaying

- Example FD use-case: FD relaying (cont.)

 Various FD relaying scenarios have been studied:
 - Sum rate maximization for FD, amplify-and-forward (AF) relaying [ZTH:13],
 - Sum rate maximization for FD, decode-and-forward (DF) relaying [DMBS:12],
 - Digital interference loop cancellation for FD AF relays [RWW:11], [RWW:09]
 - Efficient FD DF relaying with imperfect CSI [TM:14F], [TM:14R]

Example Use-Case: FD Relaying

- Example FD use-cases: FD relaying (cont.)
 - Multi-user operation with FD DF Relay [TM:14R],
 - Cooperative mechanisms for distributed FD AF relaying [TM:14C], [KSSC:12], [KIAS:13], …
 - Interference alignment schemes using FD relays [MM13], [MCM:14] …

Ex. Use-Case: Wiretap Channel

- Example FD use-case: FD wiretap channel

Alice
\[\text{Eavesdropper} \]
Bob

- New achievable secrecy rates with FD operation,
 - Achievable bounds and performance analyze [GKYG10],
 - Optimal power adjustment and Tx strategy [ZKLPO:13], …

Example Use-Case: FD Radar

- Example FD use-case: FD radar

- Significantly higher observation resolution with FD capability
 - Multiple object detection and classification via iterative cancellation [BJK13]

• Example FD use-case: FD operation in base-station:

FD base-station, HD users:

FD base-station, FD users:

• More flexible resource allocation, higher resource efficiency
 – Multi-user MIMO strategies for downlink and uplink: [NTPL13]

Outline

• Full-duplex operation
• Incorporating FD into traditional systems
• Our cooperation and interface
• Conclusion
Our Cooperation and Interface

• **Our expertise:** **Signal processing**
 – **System optimization** for various scenarios with FD operation
 – Theoretical bounds on system performance,
 – Rx-Tx baseband design,
 – ...

• **Main convergence points:**
 – System **model**, model verification,
 – Periodic meetings to share findings and updates,
 – Hardware, software integration.
Outline

• Full-duplex operation
• Incorporating FD into traditional systems
• Our cooperation and interface
• Conclusion
To Conclude..

• FD is a new, promising research area!
• High hopes for our cooperation!
Thanks for your attention!