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Introduction

What is it all about...

Objective:

...extract quantifiable information from corrupted, noisy data sets when

off-the-shelf methods are not available

mathematical short-cuts are essential...

Conceptual ingredients:
adaptivity
nonlinear recovery
embedding into a proper continuous framework to exploit natural
“problem metrics”
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Introduction

General “Philosophy”...

devise mathematical model...possibly simplified...

what can be achieved at best?...theoretical “benchmark”

Try to develop algorithms that realize the benchmark

...has led to “unexpected” algorithmic structures...
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3 Scenarios Electron Microscopy
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3 Scenarios Electron Microscopy

Precision in STEM Imaging scanning transmission electron microscopy

Collaborators: B. Berkels, N. Mevenkamp (AICES),
Ernst-Ruska-Center Jülich, P. Voyles (University of Wisconsin), P.
Binev, T. Vogt (Unisversity of South Carolina)

Images/Models: distributions of intensities - stochastic processes

Objectives: atom column positions with high precision (pm scale)
...in particular at material interfaces...

Obstructions:

high electron dose destroys specimen
low electron dose causes low signal-to-noise ratio
Poisson noise
multiscale locally distorted movement of specimen
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3 Scenarios Electron Microscopy

Pt nanocatalyst
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3 Scenarios Electron Microscopy

Results - sub-picometer precision

Result: improve precision by factors 5 to 10
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3 Scenarios Electron Microscopy

...before and after...Perfect Silicon

W. Dahmen (RWTH Aachen) Data and Models October 26, 2015 9 / 34



3 Scenarios Electron Microscopy

...before and after...Perfect Silicon Gallium Nitride
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3 Scenarios Electron Microscopy

Methods

Key ingredients:

multilevel variational non-rigid registration scheme
(Benjamin Berkels, AICES)

Nonlocal means - BM3D algorithm
Poisson noise removal

A. B. Yankovich, B. Berkels, W. Dahmen, P. Binev, S.I. Sanchez, S.A. Bradley, and P.M. Voyles,

Picometer precision STEM imaging of Pt Nanocatalysts, Nature Communications 5, Article

number: 4155 (2014) doi:10.1038/ncomms5155

N. Mevenkamp, P. Binev, W. Dahmen, P.M. Voyles, A.B. Yankovich, and B. Berkels, Poisson noise

removal from high-resolution STEM images based on periodic block matching, Advanced

Structural and Chemical Imaging, DOI 10.1186/s40679-015-0004-8
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3 Scenarios Spectroscopy
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3 Scenarios Spectroscopy

EELS-Images electron energy loss spectroscopy “function valued pixels”

Collaborations: B. Berkels (AICES), M. Duchamps (FZ Jülich),
C. Bajaj, ICES, University of Texas at Austin

Example task: unmixing of materials
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3 Scenarios Spectroscopy

Obstructions, Methods

Obstructions:
very large, noisy data sets

highly heterogeneous spectrum structure
noise structure ?

Methods:
nonlocal means, BMD3-algorithm

future: compressed sensing, dictionary learning, tensor
methods,...
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3 Scenarios Climate Modeling

NCARNational Center of Atmospheric Research CAMCommunity Atmospheric Model

Collaborators: P. Binev, R. DeVore, P. Lamby, (M. Fox-Rabinowitz, V. Krasnopolsky)
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3 Scenarios Climate Modeling

NCAR Model general Circulation Model
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3 Scenarios Climate Modeling

NCAR CAM

General Circulation Model: fluid dynamics equation on the sphere

∂tψ + D(ψ) = P(ψ)

ψ set of variables representing temperature, wind, pressure, moisture,
etc.;

D represents the model dynamics constituted by the processes of
motion and thermodynamics;

P stands for model physics (e.g., atmospheric radiation, turbulence,
convection and large-scale precipitations, clouds, Interactions between
land and ocean, etc.)

See: National Center of Atmospheric Research Community Atmospheric Model (NCAR CAM)

Bottleneck for numerical simulations: modeling physics/chemistry
Long Wave Radiation: 70%− 90% of total cost
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3 Scenarios Climate Modeling

Problem and Goal

∂tψ + D(ψ) = P(ψ)

“Learn” P(ψ) from data

For LWR recovery 
f : X ⊂ R220 → R33

from data z = {z i = (x i , y i) : i = 1, . . . ,N} ⊂ X × Y , where

N ∼ 105

Inputs x ∈ X consist of 10 vertical profiles of local physical properties
and gas concentrations plus a surface characteristic.

Outputs y consist of a vertical profile of heating rates and some
radiation fluxes

outputs y = f (x) are computed via solving the physical model with input x

W. Dahmen (RWTH Aachen) Data and Models October 26, 2015 19 / 34
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3 Scenarios Climate Modeling

Key Issues

Severe undersampling - Classical approximation schemes are not
feasible
Recover functions of many variables - curse of dimensionality

How to measure the quality of an approximation?
accuracy ε ↔ computational work O(ε−d/α)

Meaningful results are only possible if the data are highly
correlated - implicit lower dimensionality
Key question: How much of the structure does an algorithm have
to know in order to take advantage of it?
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3 Scenarios Climate Modeling

Procedural Definition of Function Recovery

learn f from z = {(x1, y1), . . . , (xN , yN)}

Candidates:
kernel methods, artificial neural networks
Recovery based on k nearest neighbor search
Tree based schemes: random forests, sparse occupancy trees
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3 Scenarios Climate Modeling

Sparse Occupancy Trees

Hierarchy of nested partitions of X

X = P∅ ≺ P0 ≺ P1 ≺ · · · , Xj,k ∈ Pj  Xj,k =
⋃

i∈Ij,k

Xj+1,i

.

...........

.............

..............

.. .

...........

.............

..............

..

Cost Summary:

T (X ) has at most 1 + LN nodes

O(LdN) operations to collect information about X

O(N log N) sorting operations of bitstreams of length ≤ Ld
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3 Scenarios Climate Modeling

Simulation Results

Figure: Comparison of the predicted annual zonal means of the LWR heating rates computed
with the original parameterization (1 in 1. row), a tree based emulation (2, 3 in 1. row) and a
neural network emulation (2. row). The right column plots the difference between the simulation
and the control.
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Simulation Results

Figure: Comparison of the predicted annual means of the two meter air temperatures computed with the original

parameterization (top row), a tree-based emulation (center row) and a neural network emulation (bottom row). The right column

plots the difference between the simulation and the control.
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Theoretical Performance Bounds Mathematical Learning

Outline

1 Introduction

2 3 Scenarios
Electron Microscopy
EELS Electron Energy Loss Spectroscopy

Climate Modeling

3 Theoretical Performance Bounds
Nonparametric Estimation - A Sample Result

4 Data-Assimilation - “Small Data” Problem
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Theoretical Performance Bounds Mathematical Learning

Setting - Model

Y

Xx x’

ρ unknown measure on
Z := X × Y
dρ(x , y) = dρ(y |x)dρX (x)
supp ρ(·|x) ⊆ [−M.M], x ∈ X
Goal: estimate the regression
function

fρ(x) :=

∫
Y

ydρ(y |x) = E(y |x)

Risk functional: E(f ) :=
∫
Z

(y − f (x))2dρ  

E(f ) = E(fρ) + ‖f − fρ‖2L2(X ,ρX )
, ‖ · ‖ := ‖ · ‖L2(X ,ρX )
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Theoretical Performance Bounds Mathematical Learning

Estimators

Key issue: proper balance of bias and variance
Adaptive Tree Partitioning
Greedy algorithms

 universality, i.e., realization of best rates without a priori knowledge
about the searched regression function
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Theoretical Performance Bounds Mathematical Learning

A Performance Theorem
Bench mark: f ∈ L2(X , ρX ) T (f , η) via L2(X , ρX )- projections

|f |pBs := sup
η>0

ηp#(T (f , η)), where p := (s + 1/2)−1  

‖f − Pη(f )‖ ≤ Cs|f |
1

2s+1
Bs η

2s
2s+1 ≤ Cs|f |Bs N−s, N := #(T (f , η))

THEOREM:
If fρ ∈ Bs for some s > 0 then for β > 0 (arbitrary fixed), n samples, then

Pρn

{
z : ‖fρ − f̂z‖ ≥ c

(
d log n

n

) s
2s+1
}
≤ Cn−β

⇒

E
(
‖fρ − fz‖2) ≤ C

(
d log N

N

) 2s
2s+1

Moreover, the scheme is universally consistent

and need not know s.
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Theoretical Performance Bounds Mathematical Learning

Comments

the convergence rates are best possible for a given “regularity”
order s > 0;
the smaller s the weaker the hypothesis, B0 = L2(X , ρX );
to achieve this rate the algorithm does not need to know the
property fρ ∈ Bs but automatically exploits such a property
(adaptivity universality);
for arbitrary densities ρ and piecewise polynomial estimators the
estimates in probability hold only for piecewise constants, higher
orders require restrictions on ρ, the rate in expectation holds for
higher order piecewise polynomial estimators;
analogous results are valid for tree based adaptive classifiers
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Data-Assimilation

Example: ElectronImpedanceTomography: “many parameters...”
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Data-Assimilation

Example: EIT: Model

a(ω, x) : Ω× D → R (unknown) random conductivity field

Forward problem: given I = (I1, . . . , IM) ∈ RM
0 , find (u,U) ∈ L2

ρ(Ω; X ),
X := H1(D)× RM

0 , s.t.

div(a∇u) = 0, in D, ∂nu = 0 on ∂D \ Ē

u + zma∂nu = Um on Em,

∫
Em

a∂nuds = Im, m = 1, . . . ,M

Inverse problem: find a(ω, x) = a0(x) +
∑

j∈N yjψj (x) = a(y , x)
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u + zma∂nu = Um on Em,

∫
Em

a∂nuds = Im, m = 1, . . . ,M

Inverse problem: find a(ω, x) = a0(x) +
∑

j∈N yjψj (x) = a(y , x)

W. Dahmen (RWTH Aachen) Data and Models October 26, 2015 32 / 34



Data-Assimilation

Example: EIT: Model

a(ω, x) : Ω× D → R (unknown) random conductivity field

Forward problem: given I = (I1, . . . , IM) ∈ RM
0 , find (u,U) ∈ L2

ρ(Ω; X ),
X := H1(D)× RM

0 , s.t.

div(a∇u) = 0, in D, ∂nu = 0 on ∂D \ Ē
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Data-Assimilation

Solution Manifold...

Find u ∈ H, s.t.

F (u, y) = 0, y ∈ Y  M := {u(y) ∈ H : F (u(y), y) = 0}
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Data-Assimilation

Solution Manifold...

Find u ∈ H, s.t.

F (u, y) = 0, y ∈ Y  M := {u(y) ∈ H : F (u(y), y) = 0}

data: d = `(u(y∗)) ∈ Rd find the parameters y∗ ∈ Y
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Data-Assimilation

The Role of Reduced Models...

highly underdetermined, severely ill-posed

use sparsity, smoothness ofM highly accurate certified
reduced models
better regularization?
train reduced models through conditioned sampling, MCMC
methods,
combination with classification schemes...in progress...

P.Binev, A.Cohen, W. Dahmen, R.DeVore, G. Petrova, P. Wojtaszczyk, Convergence Rates for
Greedy Algorithms in Reduced Basis Methods, SIAM J. Math. Anal., 43 (2011), 1457–1472.

W. Dahmen, C. Plesken, G. Welper, Double Greedy Algorithms: Reduced Basis Methods for
Transport Dominated Problems, ESAIM: Mathematical Modelling and Numerical Analysis, 48(3)
(2014), 623–663.
DOI 10.1051/m2an/2013103, http://arxiv.org/abs/1302.5072.

Peter Binev, Albert Cohen, Wolfgang Dahmen, Ronald DeVore, Guergana Petrova, Przemyslaw
Wojtaszczyk, Data Assimilation in Reduced Modeling, Preprint June 2015,

http://arxiv.org/abs/1506.04770 [math.NA].
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