Signal recovery from incomplete data

Holger Rauhut
Lehrstuhl C für Mathematik (Analysis) RWTH Aachen

Data Science: Theory and Applications
RWTH Aachen
October 26, 2015

European Research Council

Mathematics and Data Processing

Data processing is a constant source for mathematical problems
Some examples

- The Shannon-Nyquist sampling theorem is at the basis of most electronic communication systems
- Computer tomography requires theory of Radon transforms
- Design of WLAN standards (OFDM) uses tools from time-frequency / harmonic analysis
- Reducing the power consumption of base stations for mobile communication leads to very deep problems in harmonic analysis (peak-to-average power ratio (PAPR) problem)
- Machine learning techniques require a lot of mathematics, both for the design of algorithms as well as for their analysis
- Compressive Sensing: Signal reconstruction from small number of measurements

Goals: Mathematical analysis of basic data processing problems, fundamental limits, development and analysis of algorithms

Data, Signal and Image Processing

Medical Imaging

Image Processing

Cosmic Microwave
Background

A/D Conversion

Wireless
communication

Massive Internet Data

Compressive sensing

Reconstruction of signals from minimal amount of measured data (Candès, Romberg, Tao; Donoho 2004)

Key ingredients

- Compressibility / Sparsity (small complexity of relevant information)
- Efficient algorithms (convex optimization)
- Randomness (random matrices)

Compressive sensing

Reconstruction of signals from minimal amount of measured data (Candès, Romberg, Tao; Donoho 2004)

Key ingredients

- Compressibility / Sparsity (small complexity of relevant information)
- Efficient algorithms (convex optimization)
- Randomness (random matrices)

Useful whenever it is difficult, expensive, time-consuming or impossible to obtain a large number of measurements.
Example applications:

- Magnetic Resonance Imaging
- Radar
- Wireless communications
- Astronomical signal processing
- (High-dimensional) Statistics
- Numerical solution of (High-dimensional) parametric PDEs

Sparsity / Compressibility

Data Compression

Most types of signals can be represented well by a sparse expansion, i.e., with only few nonzero coefficients in an appropriate basis (JPEG, MPEG, MP3 etc.).

Sparsity / Compressibility

Data Compression
Most types of signals can be represented well by a sparse expansion, i.e., with only few nonzero coefficients in an appropriate basis (JPEG, MPEG, MP3 etc.).

Compressive Sensing / Sparse Recovery
Sparse / Compressible signals can be recovered from only few linear measurements via efficient algorithms

Sparse Representations of Images

Niels

Wavelet Coefficients

Wavelet compression

98% of wavelet coefficients are set to zero; only largest coefficients are retained.

Fourier-Coefficients

Fourier-Coefficients

Time-Domain Signal with 30 Samples

Fourier-Coefficients

Traditional Reconstruction

Time-Domain Signal with 30 Samples

Fourier-Coefficients

Traditional Reconstruction

Time-Domain Signal with 30 Samples

Sparse Recovery Method

Mathematical formulation

Recover a vector $\mathbf{x} \in \mathbb{C}^{N}$ from underdetermined linear measurements

$$
\mathbf{y}=A \mathbf{x}, \quad A \in \mathbb{C}^{m \times N}
$$

where $m \ll N$.

Mathematical formulation

Recover a vector $\mathbf{x} \in \mathbb{C}^{N}$ from underdetermined linear measurements

$$
\mathbf{y}=A \mathbf{x}, \quad A \in \mathbb{C}^{m \times N}
$$

where $m \ll N$.
Key finding of compressive sensing:
Recovery is possible if \mathbf{x} belongs to a set of low complexity.

Mathematical formulation

Recover a vector $\mathbf{x} \in \mathbb{C}^{N}$ from underdetermined linear measurements

$$
\mathbf{y}=A \mathbf{x}, \quad A \in \mathbb{C}^{m \times N}
$$

where $m \ll N$.
Key finding of compressive sensing:
Recovery is possible if \mathbf{x} belongs to a set of low complexity.

- Standard compressive sensing: Sparsity (small number of nonzero coefficients)

Mathematical formulation

Recover a vector $\mathbf{x} \in \mathbb{C}^{N}$ from underdetermined linear measurements

$$
\mathbf{y}=A \mathbf{x}, \quad A \in \mathbb{C}^{m \times N}
$$

where $m \ll N$.
Key finding of compressive sensing:
Recovery is possible if \mathbf{x} belongs to a set of low complexity.

- Standard compressive sensing: Sparsity (small number of nonzero coefficients)
- Refinements: block sparsity, joint sparsity, group sparsity

Mathematical formulation

Recover a vector $\mathbf{x} \in \mathbb{C}^{N}$ from underdetermined linear measurements

$$
\mathbf{y}=A \mathbf{x}, \quad A \in \mathbb{C}^{m \times N}
$$

where $m \ll N$.
Key finding of compressive sensing:
Recovery is possible if \mathbf{x} belongs to a set of low complexity.

- Standard compressive sensing: Sparsity (small number of nonzero coefficients)
- Refinements: block sparsity, joint sparsity, group sparsity
- Low rank matrix recovery (matrix completion)

Mathematical formulation

Recover a vector $\mathbf{x} \in \mathbb{C}^{N}$ from underdetermined linear measurements

$$
\mathbf{y}=A \mathbf{x}, \quad A \in \mathbb{C}^{m \times N}
$$

where $m \ll N$.
Key finding of compressive sensing:
Recovery is possible if \mathbf{x} belongs to a set of low complexity.

- Standard compressive sensing: Sparsity (small number of nonzero coefficients)
- Refinements: block sparsity, joint sparsity, group sparsity
- Low rank matrix recovery (matrix completion)
- Phase retrieval

Mathematical formulation

Recover a vector $\mathbf{x} \in \mathbb{C}^{N}$ from underdetermined linear measurements

$$
\mathbf{y}=A \mathbf{x}, \quad A \in \mathbb{C}^{m \times N}
$$

where $m \ll N$.
Key finding of compressive sensing:
Recovery is possible if \mathbf{x} belongs to a set of low complexity.

- Standard compressive sensing: Sparsity (small number of nonzero coefficients)
- Refinements: block sparsity, joint sparsity, group sparsity
- Low rank matrix recovery (matrix completion)
- Phase retrieval
- Low rank tensor recovery
- Only partial results for tensor recovery available so far.
- Combinations of sparsity and low rank assumptions

Sparsity and Compressibility

- coefficient vector: $\mathrm{x} \in \mathbb{C}^{N}, N \in \mathbb{N}$
- support of $\mathbf{x}: \operatorname{supp} \mathbf{x}:=\left\{j, x_{j} \neq 0\right\}$
- s - sparse vectors: $\|\mathbf{x}\|_{0}:=|\operatorname{supp} \mathbf{x}| \leq s$.

Sparsity and Compressibility

- coefficient vector: $\mathrm{x} \in \mathbb{C}^{N}, N \in \mathbb{N}$
- support of \mathbf{x} : supp $\mathbf{x}:=\left\{j, x_{j} \neq 0\right\}$
- s - sparse vectors: $\|\mathbf{x}\|_{0}:=|\operatorname{supp} \mathbf{x}| \leq s$.
s-term approximation error

$$
\sigma_{s}(\mathbf{x})_{q}:=\inf \left\{\|\mathbf{x}-\mathbf{z}\|_{q}, \mathbf{z} \text { is } s \text {-sparse }\right\}, \quad 0<q \leq \infty
$$

\mathbf{x} is called compressible if $\sigma_{s}(\mathbf{x})_{q}$ decays quickly in s.
Here $\|\mathbf{x}\|_{q}=\left(\sum_{j=1}^{N}\left|x_{j}\right|^{q}\right)^{1 / q}$

Compressive Sensing Problem

Reconstruct an s-sparse vector $\mathrm{x} \in \mathbb{C}^{N}$ (or a compressible vector) from its vector \mathbf{y} of m measurements

$$
\mathbf{y}=A \mathbf{x}, \quad A \in \mathbb{C}^{m \times N}
$$

Interesting case: $s<m \ll N$.

Preferably fast reconstruction algorithm!

ℓ_{1}-minimization

ℓ_{0}-minimization is NP-hard:

$$
\min _{\mathbf{x} \in \mathbb{C}^{N}}\|\mathbf{x}\|_{0} \quad \text { subject to } \quad A \mathbf{x}=\mathbf{y}
$$

ℓ_{1}-minimization

ℓ_{0}-minimization is NP-hard:

$$
\min _{\mathbf{x} \in \mathbb{C}^{N}}\|\mathbf{x}\|_{0} \quad \text { subject to } \quad A \mathbf{x}=\mathbf{y}
$$

ℓ_{1} minimization

$$
\min _{x}\|\mathbf{x}\|_{1} \quad \text { subject to } \quad A \mathbf{x}=\mathbf{y}
$$

ℓ_{1}-minimization

ℓ_{0}-minimization is NP-hard:

$$
\min _{\mathbf{x} \in \mathbb{C}^{N}}\|\mathbf{x}\|_{0} \quad \text { subject to } \quad A \mathbf{x}=\mathbf{y}
$$

ℓ_{1} minimization

$$
\min _{x}\|\mathbf{x}\|_{1} \quad \text { subject to } \quad A \mathbf{x}=\mathbf{y}
$$

Convex relaxation of ℓ_{0}-minimization problem.
Efficient minimization methods available.

ℓ_{1}-minimization

ℓ_{0}-minimization is NP-hard:

$$
\min _{\mathbf{x} \in \mathbb{C}^{N}}\|\mathbf{x}\|_{0} \quad \text { subject to } \quad A \mathbf{x}=\mathbf{y}
$$

ℓ_{1} minimization

$$
\min _{x}\|\mathbf{x}\|_{1} \quad \text { subject to } \quad A \mathbf{x}=\mathbf{y}
$$

Convex relaxation of ℓ_{0}-minimization problem.
Efficient minimization methods available.
Alternatives:
Greedy Algorithms (Matching Pursuits) Iterative hard thresholding
Iteratively reweighted least squares

Mathematical Questions

- Which $m \times N$ matrices A are suitable?
- How many measurements m (in terms of sparsity s and signal length N) are needed for recovery?

Mathematical Questions

- Which $m \times N$ matrices A are suitable?
- How many measurements m (in terms of sparsity s and signal length N) are needed for recovery?

So far only random matrices are known to work provably well for sparse recovery.

Open to provide deterministic matrices A with rigorous recovery guarantees in the optimal parameter regime.

A typical result in compressive sensing

For a draw of a Gaussian random matrix $A \in \mathbb{R}^{m \times N}$ an s-sparse vector $x \in \mathbb{R}^{N}$ can be recovered exactly via ℓ_{1}-minimization (and other algorithms) with high probability from $y=A x$ provided

$$
m \geq C s \ln (e N / s)
$$

Bound optimal;

A typical result in compressive sensing

For a draw of a Gaussian random matrix $A \in \mathbb{R}^{m \times N}$ an s-sparse vector $x \in \mathbb{R}^{N}$ can be recovered exactly via ℓ_{1}-minimization (and other algorithms) with high probability from $y=A x$ provided

$$
m \geq C s \ln (e N / s)
$$

Bound optimal; Recovery stable under passing to approximately sparse vectors and under adding noise on the measurements.

A typical result in compressive sensing

For a draw of a Gaussian random matrix $A \in \mathbb{R}^{m \times N}$ an s-sparse vector $x \in \mathbb{R}^{N}$ can be recovered exactly via ℓ_{1}-minimization (and other algorithms) with high probability from $y=A x$ provided

$$
m \geq C s \ln (e N / s)
$$

Bound optimal; Recovery stable under passing to approximately sparse vectors and under adding noise on the measurements.

Similar results for certain structured random matrices:

- Randomly sampled Fourier transform of sparse vectors (Candès, Tao '06; Rudelson, Vershynin '08; Rauhut '07, '10, '14; Bourgain '14; Haviv, Regev '15)

$$
m \geq C s \log ^{2}(s) \log (N)
$$

- Subsampled random convolution of sparse vectors (Rauhut '09, '10; Rauhut, Romberg Tropp '12; Krahmer, Mendelson, Rauhut '14)

$$
m \geq C s \log ^{2}(s) \log ^{2}(N)
$$

Application: Magnetic Resonance Imaging

Comparison of a traditional MRI reconstruction (left) and a compressive sensing reconstruction (right). Acquisition accelerated by a factor of 7.2 by random subsampling of the frequency domain

[^0]
Remote sensing (radar imaging)

n antenna elements on square $[0, B]^{2}$ in plane $z=0$.
Targets in the plane $z=z_{0}$ on grid of resolution cells $r_{j} \in[-L, L]^{2} \times\left\{z_{0}\right\}, j=1, \ldots, N$ with mesh size h.
$\mathbf{x} \in \mathbb{C}^{N}$: vector of reflectivities in resolution cells $\left(r_{j}\right)_{j=1, \ldots, N}$.
Often sparse scene!
$m=n^{2}$ with n antennas

Reconstruction via ℓ_{1}-minimization

Sparse scene (sparsity $s=100,6400$ grid points):

Reconstruction ($n=30$ antennas, 900 noisy measurements, SNR 20dB)

Recovery if $m \geq C s \log ^{2}(N)$ (Hügel, Rauhut, Strohmer 2014)

Low Rank Matrix Recovery

Recover $X \in \mathbb{C}^{n_{1} \times n_{2}}$ of low rank from $y=\mathcal{A}(X) \in \mathbb{C}^{m}$, where $m \ll n_{1} n_{2}$!

Low Rank Matrix Recovery

Recover $X \in \mathbb{C}^{n_{1} \times n_{2}}$ of low rank from $y=\mathcal{A}(X) \in \mathbb{C}^{m}$, where $m \ll n_{1} n_{2}$!
Rank minimization problem $\min _{Z: \mathcal{A}(Z)=y} \operatorname{rank}(X)$ is NP-hard.

Low Rank Matrix Recovery

Recover $X \in \mathbb{C}^{n_{1} \times n_{2}}$ of low rank from $y=\mathcal{A}(X) \in \mathbb{C}^{m}$, where $m \ll n_{1} n_{2}$!
Rank minimization problem $\min _{Z: \mathcal{A}(Z)=y} \operatorname{rank}(X)$ is NP-hard.
Observation: $\operatorname{rank}(X)=\|\sigma(X)\|_{0}$ where $\sigma(X)$ is vector of singular values of X

Nuclear norm minimization

$$
\min \|X\|_{*} \quad \text { subject to } \mathcal{A}(X)=y
$$

with $\|X\|_{*}=\sum_{\ell} \sigma_{\ell}(X)$.
Recovery of rank r matrix X from m subgaussian random measurements (Fazel, Parrilo, Recht; Candès, Plan) when

$$
m \geq \operatorname{Cr}\left(n_{1}+n_{2}\right)
$$

Low Rank Matrix Recovery

Recover $X \in \mathbb{C}^{n_{1} \times n_{2}}$ of low rank from $y=\mathcal{A}(X) \in \mathbb{C}^{m}$, where $m \ll n_{1} n_{2}$!
Rank minimization problem $\min _{Z: \mathcal{A}(Z)=y} \operatorname{rank}(X)$ is NP-hard.
Observation: $\operatorname{rank}(X)=\|\sigma(X)\|_{0}$ where $\sigma(X)$ is vector of singular values of X

Nuclear norm minimization

$$
\min \|X\|_{*} \quad \text { subject to } \mathcal{A}(X)=y
$$

with $\|X\|_{*}=\sum_{\ell} \sigma_{\ell}(X)$.
Recovery of rank r matrix X from m subgaussian random measurements (Fazel, Parrilo, Recht; Candès, Plan) when

$$
m \geq \operatorname{Cr}\left(n_{1}+n_{2}\right) .
$$

Subgaussian assumption can be relaxed: four finite moments are sufficient (Kabanava, Kueng, Rauhut, Terstiege '15).

Matrix completion

Complete missing entries of a low rank matrix:

$$
\left(\begin{array}{cccccc}
? & 10 & ? & 2 & ? & ? \\
3 & ? & ? & ? & 3 & ? \\
? & ? & 14 & ? & ? & 14 \\
? & 15 & 6 & ? & ? & ? \\
6 & ? & 4 & ? & 6 & 4
\end{array}\right)
$$

Recovery via nuclear norm minimization under certain assumptions on the singular vectors of X when

$$
m \geq \operatorname{Cr}\left(n_{1}+n_{2}\right) \ln ^{2}\left(n_{1}+n_{2}\right)
$$

Candès, Recht, Gross, ...
Application: Consumer taste prediction (Netflix prize), ...

Quantum state tomography

The state of a (finite-dimensional) quantum system is described by symmetric positive semidefinite matrix $A \in \mathbb{C}^{n \times n}$ with $\operatorname{tr} A=1$.

Quantum measurements often of the form

$$
y_{j}=\mathcal{A}(X)_{j}:=a_{j}^{*} X a_{j}=\operatorname{tr}\left(X a_{j} a_{j}^{*}\right), \quad j=1, \ldots, m
$$

Pure states: $\operatorname{rank}(X)=1$ mixed states: $\operatorname{rank}(X)=r \ll n$

Quantum state tomography

The state of a (finite-dimensional) quantum system is described by symmetric positive semidefinite matrix $A \in \mathbb{C}^{n \times n}$ with $\operatorname{tr} A=1$.

Quantum measurements often of the form

$$
y_{j}=\mathcal{A}(X)_{j}:=a_{j}^{*} X a_{j}=\operatorname{tr}\left(X a_{j} a_{j}^{*}\right), \quad j=1, \ldots, m
$$

Pure states: $\operatorname{rank}(X)=1$ mixed states: $\operatorname{rank}(X)=r \ll n$

Recovery via nuclear norm minimization (Kabanava, Kueng, Rauhut, Terstiege '15):

- $a_{j} \in \mathbb{R}^{N}$ independent Gaussian random vectors:

$$
m \geq C r n
$$

- $a_{j} \in \mathbb{C}^{N}$ chosen at random from a (weighted, approximative) 4-design:

$$
m \geq C r n \log (n)
$$

Applications: quantum optical circuits, quantum computing?

Reflections on Data Science

What is data science?

Reflections on Data Science

What is data science?

- Science of measuring, processing, manipulating, transmitting and understanding of data.

Reflections on Data Science

What is data science?

- Science of measuring, processing, manipulating, transmitting and understanding of data.
- Extracting (relevant) information from data.

Reflections on Data Science

What is data science?

- Science of measuring, processing, manipulating, transmitting and understanding of data.
- Extracting (relevant) information from data.
- Applications: what can be done with (large, small) data sets?

Reflections on Data Science

What is data science?

- Science of measuring, processing, manipulating, transmitting and understanding of data.
- Extracting (relevant) information from data.
- Applications: what can be done with (large, small) data sets?

Contributions of my group:

- Analysis and development of data recovery algorithms

Reflections on Data Science

What is data science?

- Science of measuring, processing, manipulating, transmitting and understanding of data.
- Extracting (relevant) information from data.
- Applications: what can be done with (large, small) data sets?

Contributions of my group:

- Analysis and development of data recovery algorithms
- Fundamental performance limits (upper and lower bounds)

Reflections on Data Science

What is data science?

- Science of measuring, processing, manipulating, transmitting and understanding of data.
- Extracting (relevant) information from data.
- Applications: what can be done with (large, small) data sets?

Contributions of my group:

- Analysis and development of data recovery algorithms
- Fundamental performance limits (upper and lower bounds)
- Methods: Convex optimization, approximation theory, (structured) random matrices (via asymptotic geometric analysis), computational harmonic analysis

Reflections on Data Science

What is data science?

- Science of measuring, processing, manipulating, transmitting and understanding of data.
- Extracting (relevant) information from data.
- Applications: what can be done with (large, small) data sets?

Contributions of my group:

- Analysis and development of data recovery algorithms
- Fundamental performance limits (upper and lower bounds)
- Methods: Convex optimization, approximation theory, (structured) random matrices (via asymptotic geometric analysis), computational harmonic analysis

Thank you!

Questions?

Simon Foucart
Holger Rauhut
A Mathematical
Introduction to
Compressive
Sensing

[^0]: Image courtesy of Michael Lustig and Shreyas Vasanawala, Stanford University

