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Mathematics and Data Processing

Data processing is a constant source for mathematical problems

Some examples
I The Shannon-Nyquist sampling theorem is at the basis of

most electronic communication systems
I Computer tomography requires theory of Radon transforms
I Design of WLAN standards (OFDM) uses tools from

time-frequency / harmonic analysis
I Reducing the power consumption of base stations for mobile

communication leads to very deep problems in harmonic
analysis (peak-to-average power ratio (PAPR) problem)

I Machine learning techniques require a lot of mathematics,
both for the design of algorithms as well as for their analysis

I Compressive Sensing: Signal reconstruction from small
number of measurements

Goals: Mathematical analysis of basic data processing problems,
fundamental limits, development and analysis of algorithms
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Data, Signal and Image Processing

Medical Imaging Cosmic Microwave

Background

Wireless

communication

Image Processing A/D Conversion Massive Internet Data
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Compressive sensing

Reconstruction of signals from minimal amount of measured data
(Candès, Romberg, Tao; Donoho 2004)

Key ingredients
I Compressibility / Sparsity (small complexity of relevant

information)
I E�cient algorithms (convex optimization)
I Randomness (random matrices)

Useful whenever it is di�cult, expensive, time-consuming or
impossible to obtain a large number of measurements.

Example applications:
I Magnetic Resonance Imaging
I Radar
I Wireless communications
I Astronomical signal processing
I (High-dimensional) Statistics
I Numerical solution of (High-dimensional) parametric PDEs
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Sparsity / Compressibility

Data Compression
Most types of signals can be represented well by a sparse
expansion, i.e., with only few nonzero coe�cients in an appropriate
basis (JPEG, MPEG, MP3 etc.).

Compressive Sensing / Sparse Recovery
Sparse / Compressible signals can be recovered from only few
linear measurements via e�cient algorithms
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Sparse Representations of Images

Niels
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Wavelet Coe�cients
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Wavelet compression

98% of wavelet coe�cients are set to zero; only largest coef-
ficients are retained.
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Fourier-Coe�cients

Time-Domain Signal with 30

Samples

Traditional Reconstruction Sparse Recovery Method
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Mathematical formulation

Recover a vector x 2 CN from underdetermined linear
measurements

y = Ax, A 2 Cm⇥N ,

where m ⌧ N.

Key finding of compressive sensing:
Recovery is possible if x belongs to a set of low complexity.

I Standard compressive sensing: Sparsity (small number of
nonzero coe�cients)

I Refinements: block sparsity, joint sparsity, group sparsity

I Low rank matrix recovery (matrix completion)
I Phase retrieval

I Low rank tensor recovery
I Only partial results for tensor recovery available so far.

I Combinations of sparsity and low rank assumptions
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Sparsity and Compressibility

I coe�cient vector: x 2 CN , N 2 N
I support of x: supp x := {j , xj 6= 0}
I

s- sparse vectors: kxk
0

:= |supp x|  s.

s-term approximation error

�s(x)q := inf{kx� zkq, z is s-sparse}, 0 < q  1.

x is called compressible if �s(x)q decays quickly in s.

Here kxkq = (
PN

j=1

|xj |q)1/q
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Compressive Sensing Problem

Reconstruct an s-sparse vector x 2 CN (or a compressible vector)
from its vector y of m measurements

y = Ax, A 2 Cm⇥N .

Interesting case: s < m ⌧ N.

Preferably fast reconstruction algorithm!
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`1-minimization

`
0

-minimization is NP-hard:

min
x2CN

kxk
0

subject to Ax = y.

`
1

minimization

min
x

kxk
1

subject to Ax = y

Convex relaxation of `
0

-minimization problem.

E�cient minimization methods available.

Alternatives:
Greedy Algorithms (Matching Pursuits)
Iterative hard thresholding
Iteratively reweighted least squares
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Mathematical Questions

I Which m ⇥ N matrices A are suitable?

I How many measurements m (in terms of sparsity s and signal
length N) are needed for recovery?

So far only random matrices are known to work provably well for
sparse recovery.

Open to provide deterministic matrices A with rigorous recovery
guarantees in the optimal parameter regime.
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A typical result in compressive sensing

For a draw of a Gaussian random matrix A 2 Rm⇥N an s-sparse
vector x 2 RN can be recovered exactly via `

1

-minimization (and
other algorithms) with high probability from y = Ax provided

m � Cs ln(eN/s).

Bound optimal;

Recovery stable under passing to approximately
sparse vectors and under adding noise on the measurements.

Similar results for certain structured random matrices:
I Randomly sampled Fourier transform of sparse vectors

(Candès, Tao ’06; Rudelson, Vershynin ’08;
Rauhut ’07, ’10, ’14; Bourgain ’14; Haviv, Regev ’15)

m � Cs log2(s) log(N)

I Subsampled random convolution of sparse vectors
(Rauhut ’09, ’10; Rauhut, Romberg Tropp ’12;
Krahmer, Mendelson, Rauhut ’14)

m � Cs log2(s) log2(N)
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Application: Magnetic Resonance Imaging

Comparison of a traditional MRI reconstruction (left) and a
compressive sensing reconstruction (right). Acquisition accelerated
by a factor of 7.2 by random subsampling of the frequency domain
Image courtesy of Michael Lustig and Shreyas Vasanawala, Stanford University
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Remote sensing (radar imaging)

n antenna elements on square [0,B]2 in plane z = 0.
Targets in the plane z = z

0

on grid of resolution cells
rj 2 [�L, L]2 ⇥ {z

0

}, j = 1, . . . ,N with mesh size h.

x 2 CN : vector of reflectivities in resolution cells (rj)j=1,...,N .

Often sparse scene!
m = n

2 with n antennas
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Reconstruction via `1-minimization

Sparse scene (sparsity s = 100, 6400 grid points):

Reconstruction (n = 30 antennas, 900 noisy measurements,
SNR 20dB)

Recovery if m � Cs log2(N) (Hügel, Rauhut, Strohmer 2014)
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Low Rank Matrix Recovery

Recover X 2 Cn
1

⇥n
2 of low rank from y = A(X ) 2 Cm, where

m ⌧ n

1

n

2

!

Rank minimization problem minZ :A(Z)=y rank(X ) is NP-hard.

Observation: rank(X ) = k�(X )k
0

where �(X ) is vector of singular
values of X

Nuclear norm minimization

min kXk⇤ subject to A(X ) = y

with kXk⇤ =
P

` �`(X ).

Recovery of rank r matrix X from m subgaussian random
measurements (Fazel, Parrilo, Recht; Candès, Plan) when

m � Cr(n
1

+ n

2

).

Subgaussian assumption can be relaxed: four finite moments are
su�cient (Kabanava, Kueng, Rauhut, Terstiege ’15).
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Matrix completion

Complete missing entries of a low rank matrix:

0

BBBB@

? 10 ? 2 ? ?
3 ? ? ? 3 ?
? ? 14 ? ? 14
? 15 6 ? ? ?
6 ? 4 ? 6 4

1

CCCCA

Recovery via nuclear norm minimization under certain assumptions
on the singular vectors of X when

m � Cr(n
1

+ n

2

) ln2(n
1

+ n

2

).

Candès, Recht, Gross, ...
Application: Consumer taste prediction (Netflix prize),...
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Quantum state tomography

The state of a (finite-dimensional) quantum system is described by
symmetric positive semidefinite matrix A 2 Cn⇥n with trA = 1.

Quantum measurements often of the form

yj = A(X )j := a

⇤
j Xaj = tr(Xaja

⇤
j ), j = 1, . . . ,m

Pure states: rank(X ) = 1
mixed states: rank(X ) = r ⌧ n

Recovery via nuclear norm minimization (Kabanava, Kueng,
Rauhut, Terstiege ’15):

I
aj 2 RN independent Gaussian random vectors:

m � Crn

I
aj 2 CN chosen at random from a (weighted, approximative)
4-design:

m � Crn log(n)

Applications: quantum optical circuits, quantum computing?
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Reflections on Data Science

What is data science?

I Science of measuring, processing, manipulating, transmitting
and understanding of data.

I Extracting (relevant) information from data.

I Applications: what can be done with (large, small) data sets?

Contributions of my group:

I Analysis and development of data recovery algorithms

I Fundamental performance limits (upper and lower bounds)

I Methods: Convex optimization, approximation theory,
(structured) random matrices (via asymptotic geometric
analysis), computational harmonic analysis
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Thank you!

Questions?
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