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Introduction

Big Data: Sources

Internet, sensors, cameras, simulations, ...

Aims:

Extract information, ’knowledge’

Build predictive models

Simulate scenarios

Separate ’structure’ and ’noise’

...

Complex and high–dimensional data (’big data’)

Functional Data (discretely observed processes, measurement
curves, ...)

Image data, video data

High–dimensional (vector) correlated data

Time series structure (temporal correlations)
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Overview: Stochastics Group

Overview of Activities Related to Data Science

Questions we address:

How to monitor (possibly high–dimensional) data streams?

How to monitor image streams?

How to analyze spatial-temporal correlated data?

How to analyze high–dimensional highly-correlated vector
time series? → focus of this talk.
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Overview: Stochastics Group

Image Data (I)
Example: Preprocessing & analysis of electroluminescence images
of solar panels.
PVStatLab–Project: PV-Scan (with TÜV Rheinland, ISC
Konstanz, Wroc law UoT, BMWi funded),
http://www.pvstatlab.rwth-aachen.de

Figure: Example: Preprocessing using robust regression
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Overview: Stochastics Group

Image Data (II)
Example: Image Analysis. Image as a random field {ξij}.

Figure: Regions C and D

H0 : E(ξij) = E(ξuv ),

for all (i , j) ∈ C , (u, v) ∈ D

H1 : E(ξij) 6= E(ξuv ),

for all (i , j) ∈ C , (u, v) ∈ D

Aim: Asymptotic significance test taking into account spatial
correlations (ongoing work), detection of defects.
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Overview: Stochastics Group

Recent Related Publications:

1. Sovetkin, E. and Steland, A. (2015). On statistical
preprocessing of PV field image data using robust regression. In:
N. E. Mastorakis, A. Ding & M. V. Shitikova, Advances in
Mathematics and Statistical Sciences, Vol. 40.

2. Steland, A. (2015). Vertically weighted averages in Hilbert
spaces and applications to imaging: Fixed sample asymptotics and
efficient sequential two-stage estimation, Sequential Analysis, 34
(3), 295-323.
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Overview: Stochastics Group

Monitoring of Multivariate Data and Image Streams

Aim: Nonparametric detection of changes

Observe discretely sampled function representing the true
signal(s) resp. image(s)

Approaches: Hilbert-space valued r.e., random fields,
Shannon/Whittaker

Recent Related publications:

1. Prause, A. and Steland, A. (2015). Detecting changes in
spatial-temporal image data based on quadratic forms. In: Stochastic
Models, Statistics and Their Applications, 139-147.

2. Prause, A. and Steland, A. (2015). Sequential detection of
three-dimensional signals under dependent noise, submitted.

3. Prause, A. (2015). Ph. D. thesis (finished)
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Introduction

Large–Sample Approximations of
High–Dimensional Vector Time Series

• project with R. v. Sachs (since 11/2013)
• new DFG project just started

Setting:

Massive data set with observations on a large number of variables
(features).

Focus: Analyze Dependencies

A. Steland HD Asymptotics



Introduction

High-dimensional variance-covariance matrices play a crucial
role in those areas, since they provide information on the
dependence of the coordinates (2nd order).

The sample covariance matrix is regarded a poor estimator, since it
is not consistent w.r.t. to the operator norm if the dimension is
larger than the sample size (d/n→ c > 0).

Previous works: Banding/tapering (Bickel & Levina, 2008),
Thresholding (Chen at al., 2013), Shrinkage (Böhm and v. Sachs,
2009), ...
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Introduction

Basic problem: Observe a large number, d = dn, of variables, n
repetitions (over time).

Preliminary data analyses (preprocessing):
Frequently, e.g. by preprocessing methods, one may classify the
variables in (a small number of) groups, such that

the within-group correlation is high but

the between-group correlation is low/negligible.

We are faced with the problem to model and analyze
high-dimensional data for highly correlated variables.
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Projection-Based Analysis

Observe d = dn time series

Y
(ν)
i , . . . ,Y

(ν)
i , ν = 1, . . . , d , 1 ≤ i ≤ n,

This means, we are given a vector time series of length n,

Yni = (Y
(1)
i , . . . ,Y

(dn)
i )′, 1 ≤ i ≤ n,

of dimension dn, constituting the (n× dn)–dimensional data matrix

Yn =
(
Y

(j)
i

)
1≤i≤n,1≤j≤dn

.

We focus on second moments and thus assume E (Y
(j)
i ) = 0 for all

i = 1, . . . , n and j = 1, . . . , dn.
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Projection-Based Analysis

Assume for a moment that Yn1, . . . ,Ynn is stationary. Generic
copy:

Yn = (Y (1), . . . ,Y (dn))′

Unknown (dn × dn)-dimensional sample variance–covariance matrix

Σn = E (YnY′n) =
(
E (Y (ν)Y (µ))

)
1≤ν,µ≤dn

Sample variance-covariance matrix

Σ̂n =
1

n

n∑
i=1

YniY
′
ni =

1

n
Y ′nYn (1)

Unpleasant properties for dn >> n, when studied as a
matrix-valued estimator of Σn, i.e. in dimension dn × dn

A. Steland HD Asymptotics



Projection-Based Analysis

But typically, one is interested in a (set of) linear combination(s)
w′nYn of the coordinates. Consider projections

Tn = w′nYn

for weighting vectors

wn = (w1, . . . ,wdn)′, n ≥ 1,

of weights wj = wdnj , not necessarily non-negative, with

sup
n∈N
‖wn‖`1 = sup

n∈N

dn∑
ν=1

|wj | <∞ (2)

Amongst others (later), such projections allow to study single
covariances between coordinates.
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Projection-Based Analysis

The projection w′nYn has variance w′nΣnwn. Canonical estimator

V̂ar(w′nYn) = w′nΣ̂nwn

behaves well for weighting vectors which select a finite number of
coordinates.

Change-point problem: Test for a change in the variance of such
a projection,

σ2n(i) = Var(w′nYni ), 1 ≤ i ≤ n.

as a consequence of a change of the variance-covariance matrix Σn

in a high-dimensional setting.
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Projection-Based Analysis

To proceed, let us more generally consider the quadratic form

Qn(vn,wn) = v′nΣnwn

for such weighting vectors vn and wn.

Remark: Observe that even for Σn = σ11′ we have

|Qn(vn,wn)| = σ|v′n11′wn| = σ|
∑
i

vni
∑
i

|wni | ≤ σ‖vn‖`1‖wn‖`1 .

So, the `1 condition is a natural one and ensures that even full
covariance matrices are not mapped to ∞.
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Framework and Assumptions

Model: The coordinates are linear processes

Y
(ν)
k = Y

(ν)
nk =

∞∑
j=0

c
(ν)
nj εk−j , k = 1, . . . , n,

for coefficients {c(ν)nj : j ∈ N0}, ν = 1, . . . , dn, and mean zero
independent r.v.s. {εk} with

E |εk |4+δ <∞

for some δ > 0.

Assumption A: The sequences {c(ν)nj : j ∈ N0} satisfy

sup
n∈N

max
1≤ν≤dn

|c(ν)nj |
2 << j−3/2−θ/2 (3)

for some 0 < θ < 1/2.
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Strong Approximation

Define

Σ̂nk =

(
k∑

i=1

Y
(ν)
i Y

(µ)
i

)
1≤ν,µ≤dn

, (4)

Σnk =

(
k∑

i=1

EY
(ν)
i Y

(µ)
i

)
1≤ν,µ≤dn

, (5)

for n, k ≥ 1. To be precise, our results shall deal with

Dnk = v′n(Σ̂nk −Σnk)wn, n, k ≥ 1,

and the associated càdlàg processes

Dn(t) = v′nn
−1/2(Σ̂n,bntc −Σn,bntc)wn, t ∈ [0, 1], n ≥ 1.

If the dependence of the above quantities on vn,wn matters, we
shall indicate this in our notation and then write

Dnk(vn,wn),Dn(t; vn,wn).
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Strong Approximation

Recalling that Σ̂n = n−1Σ̂n,n, cf. (1) and (4), we have

Dn(1) = v′n
√
n(Σ̂n −Σn)wn, n ≥ 1,

is the centered and scaled version of the bilinear form

Q(vn,wn) = v′nΣ̂nwn = Ĉov(v′nYn,w
′
nYn),

where

Σn = E Σ̂n =
1

n

n∑
i=1

E (YniYni )
′,

If {Yni : 1 ≤ i ≤ n} is stationary, then Σn simplifies to
Σn = E (Yn1Y′n1) (but our result are more general).
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Strong Approximation

Result:
Within the model framework under certain additional technical
conditions, we may approximate the related processes by Brownian
motions:

|Dnt − αnBn(t)| = o(t1/2), for all t > 0 a.s.,

as n, t →∞, and

sup
t∈[0,1]

|Dn(t)− αnBn(bntc/n)| = o(1), a.s.,

as n→∞, as well as the CLT

|Dn(1)− αnBn(1)| = o(1), a.s.,

as n→∞, i.e. Dn(1) is asymptotically N (0, α2
n).
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Strong Approximation

Standardized sequential statistic:
Monitor the sequence of (standardized) deviations from an
assumed variance–covariance matrix Σn via

D∗n(t) = α−1n (vn,wn)Dn(t, vn,wn), t ∈ [s0, 1],

which can be approximated by a Brownian motion for large n.

Those results provide a basis for valid statistical inference.
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Strong Approximation

Multivariate Extension:
Needed when projecting high-dimensional data in
lower-dimensional subspaces!

Theorem

Let {vnj ,wnj : 1 ≤ j ≤ K} be weighting vectors of dimension dn
satisfying condition (7).
Then, under the assumptions of the previous theorem, there exists a
K–dimensional Brownian motion {B(n)(t) : t ∈ [0, 1]} with coordinates
Bni = Bn(t; vni ,wni ), t ∈ [0, 1], i = 1, . . . ,K , such that∥∥∥(Dn(t; vni ,wni ))Ki=1 − (Bn(bntc/n; vni ,wni ))Ki=1

∥∥∥ = o(1), (6)

a.s., as n→∞, where ‖ • ‖ denotes an arbitrary vector norm on RK .
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Strong Approximation

Corollary

Suppose that Yn1, . . . ,Ynn is a dn–dimensional vector time series
satisfying Assumption (A). Then, after redefining the series on a
new probability space, there exists a Brownian motion such that∣∣∣∣max

k≤n
|Dn(k/n)| −max

k≤n
|αnBn(k/n)|

∣∣∣∣ = o(1),

as n→∞.

The proofs rely on generalizations of Kouritzin (1995, SPA), who
applied Philipp’s (1986) results on strong approximations in Hilbert
spaces.
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Discussion

...of the `1-condition:

sup
n∈N
‖wn‖`1 = sup

n∈N

dn∑
ν=1

|wj | <∞ (7)

Ex. 1: `0-sparse vectors: wi > 0 only for i ∈ {i1, . . . , iL}, L fixed.
(classical ’low-dimensional’ case)

Ex. 2: w′n = (w1, . . . ,wdn)′ with
∑

j |wj | <∞.
(most coordinates receive a negligible weight)

Ex. 3: wni = 1/dn for i = 1, . . . , dn.
(all dn coordinates are taken into account.)
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Discussion

... of Assumption A:

sup
n∈N

max
1≤ν≤dn

|c(ν)nj |
2 << j−3/2−θ/2 (8)

for some 0 < θ < 1/2.
Assumption A...

c
(ν)
nj = c

(ν)
j : At time n we observe dn sequences (not

depending on n). But we allow for arrays.

covers various short memory processes, e.g. ARMA
processes.

covers many long-range dependent series such as
fractionally integrated noise of order d ∈ (−1/2, 1/4− θ/2),

(1− L)dXt = εt
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Discussion

Define the scaled Frobenius norm by

‖A‖∗F =
1

d
1/2
n

 dn∑
i ,j=1

a2ij

1/2

(s.th.‖Idn‖∗F = 1).

Lemma

Suppose Assumption (A) holds true and that, for fixed t, the variances
σ2
t−j , j ≥ 0, of the innovations satisfy

∞∑
j=0

j−3/2−θ/2σ2
t−j <∞.

Then, as r →∞; we have

sup
n∈N

∥∥∥∥∥∥Σn[t]−
r∑

j=1

σ2
t−jcnjcnj

′

∥∥∥∥∥∥
∗

F

= o(1).
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Applications: Portfolio Selection

Consider Assets returns Rn = (R
(1)
n , . . . ,R

(dn)
n )′ corresponding to

the time period [n − 1, n] with mean vector µ and covariance
matrix Σ = (σij)ij .

Since σij is the covariance between the return of asset i and asset
j , 1 ≤ i , j ,≤ dn, it is not restrictive to assume that the entries of Σ
neither depend on n nor dn.

An investor holds at time n − 1 the position wnj in asset j .
wnj > 0 long position, wnj < 0 short position.

W.l.o.g. the initial value (capital) at time n − 1 equals
V =

∑dn
j=1 wnj = 1.

Then the value at time instant n is w′nRn.

A. Steland HD Asymptotics



Applications: Portfolio Selection

Classical formulation of the portfolio selection problem: Risk =
Variance:

min
wn

Var(w′nRn) = w′nΣwn, subject to w′n1 = 1,

whose solution is known to be

w∗n
′ = (1′Σ−11)−11′Σ−1.

If that solution satisfies the no-short-sales condition, then
‖w∗n‖`1 = 1′w∗n = 1.

Provided the vector time series of returns satisfies our assumptions,
our results provide the asymptotics for the optimal risk

Var((w∗n)′Yn)

associated to the optimal portfolio, when estimating Σ (needed for
w∗n) from an independent learning sample.

A. Steland HD Asymptotics



Applications: Shrinkage

Shrinkage estimation is a well established approach for
regularization (Ledoit & Wolf (2004); Sancetta, 2008).

To improve properties such as E‖Σ̂n −Σn‖2F or the condition

number, one estimates Σn by a linear (convex) combination of Σ̂n

and a well-conditioned target such as the identity.

Projecting Σn onto span{idn} leads to the target Σ
(0)
n = µn idn,

where µn = tr(Σn) (shrinkage intensity).

We are led to the shrinkage estimator

Σs
n(Wn) = (1−Wn)Σ̂n + Wnµn idn .

Optimizing Wn w.r.t. the MSE

W ∗
n = argminWn∈[0,1] d

−1
n E‖Σs

n(Wn)−Σn‖2F
leads to explitic formulas for W ∗

n and ensures a true improvement

E‖Σs
n −Σn‖2F < E‖Σ̂n −Σn‖2F
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Applications: Sparse Principal Component Analysis LASSO

Let Xn be a (n × dn)–dimensional data matrix, independent from
Yn.

SCotLASS (Simplified component technique-lasso), Jolliffee
(2003): 1st principal component (pc) solves

max
v

v′X ′nXnv, subject to ‖v‖2`2 ≤ 1, ‖v‖`1 ≤ c .

Continue in this way under the additional constraints that further
components are orthogonal.
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Applications: Sparse Principal Component Analysis

LASSO (Tibshirani, 1996 & 2011): Determine `1–sparse coefficient
vector in a high-dimensional linear regression in dim. pn

Yt = X′tβ0 + εt , E (εt |Xt) = 0,

Given an estimator β̂n, πn = X′β̂n is used for prediction.
LASSO minimizes the `1–constrained least squares criterion

β 7→
∑
t

(Yt − X′tβ)2, ‖β‖`1 ≤ c,

for some bound c > 0.
Apply results with wn = β̂n estimated from indep. learning sample,
dn = pn, Y = X, Yt = Xt to infer Var(w′nX) given the learning
sample, provided {Xt} satisfies our assumptions.
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End

Related Publication:
Steland, A. and R. v. Sachs (2015). Large sample approximations
for variance-covariance matrices of high-dimensional time series,
under revision.

Thanks for your attention.
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