Large Sample Approximations for Variance-Covariance Matrices of High-Dimensional Time Series

Ansgar Steland
RWTH Aachen University

(with R. v. Sachs, Universite catholique Louvain, Belgium)

Workshop on Data Science 2015, Aachen

Outline

(1) Introduction and Overview of Actitivities Related to Data Science
(2) Projection-Based Analysis
(3) Framework and Assumptions
(9) Large Sample Approximation
(6) Applications

Introduction

Big Data: Sources

- Internet, sensors, cameras, simulations, ...

Aims:

- Extract information, 'knowledge'
- Build predictive models
- Simulate scenarios
- Separate 'structure' and 'noise'
- ...

Complex and high-dimensional data ('big data')

- Functional Data (discretely observed processes, measurement curves, ...)
- Image data, video data
- High-dimensional (vector) correlated data
- Time series structure (temporal correlations)

Overview: Stochastics Group

Overview of Activities Related to Data Science

Questions we address:

- How to monitor (possibly high-dimensional) data streams?
- How to monitor image streams?
- How to analyze spatial-temporal correlated data?
- How to analyze high-dimensional highly-correlated vector time series? \rightarrow focus of this talk.

Overview: Stochastics Group

Image Data (I)

Example: Preprocessing \& analysis of electroluminescence images of solar panels.
PVStatLab-Project: PV-Scan (with TÜV Rheinland, ISC Konstanz, Wrocław UoT, BMWi funded), http://www.pvstatlab.rwth-aachen.de

Figure: Example: Preprocessing using robust regression

Overview: Stochastics Group

Image Data (II)

Example: Image Analysis. Image as a random field $\left\{\xi_{i j}\right\}$.

$$
\begin{aligned}
& \qquad \begin{array}{c}
H_{0}: \mathrm{E}\left(\xi_{i j}\right)=\mathrm{E}\left(\xi_{u v}\right), \\
\text { for all }(i, j) \in C,(u, v) \in D \\
\\
H_{1}: \mathrm{E}\left(\xi_{i j}\right) \neq \mathrm{E}\left(\xi_{u v}\right), \\
\text { for all }(i, j) \in C,(u, v) \in D
\end{array}
\end{aligned}
$$

Figure: Regions C and D
Aim: Asymptotic significance test taking into account spatial correlations (ongoing work), detection of defects.

Overview: Stochastics Group

Recent Related Publications:

1. Sovetkin, E. and Steland, A. (2015). On statistical preprocessing of PV field image data using robust regression. In:
N. E. Mastorakis, A. Ding \& M. V. Shitikova, Advances in Mathematics and Statistical Sciences, Vol. 40.
2. Steland, A. (2015). Vertically weighted averages in Hilbert spaces and applications to imaging: Fixed sample asymptotics and efficient sequential two-stage estimation, Sequential Analysis, 34 (3), 295-323.

Overview: Stochastics Group

Monitoring of Multivariate Data and Image Streams

- Aim: Nonparametric detection of changes
- Observe discretely sampled function representing the true signal(s) resp. image(s)
- Approaches: Hilbert-space valued r.e., random fields, Shannon/Whittaker

Recent Related publications:

1. Prause, A. and Steland, A. (2015). Detecting changes in spatial-temporal image data based on quadratic forms. In: Stochastic Models, Statistics and Their Applications, 139-147.
2. Prause, A. and Steland, A. (2015). Sequential detection of three-dimensional signals under dependent noise, submitted.
3. Prause, A. (2015). Ph. D. thesis (finished)

Introduction

Large-Sample Approximations of High-Dimensional Vector Time Series

- project with R. v. Sachs (since $11 / 2013$)
- new DFG project just started

Setting:

Massive data set with observations on a large number of variables (features).
Focus: Analyze Dependencies

Introduction

High-dimensional variance-covariance matrices play a crucial role in those areas, since they provide information on the dependence of the coordinates (2nd order).

The sample covariance matrix is regarded a poor estimator, since it is not consistent w.r.t. to the operator norm if the dimension is larger than the sample size $(d / n \rightarrow c>0)$.
Previous works: Banding/tapering (Bickel \& Levina, 2008), Thresholding (Chen at al., 2013), Shrinkage (Böhm and v. Sachs, 2009), ...

Introduction

Basic problem: Observe a large number, $d=d_{n}$, of variables, n repetitions (over time).

Preliminary data analyses (preprocessing):

Frequently, e.g. by preprocessing methods, one may classify the variables in (a small number of) groups, such that

- the within-group correlation is high but
- the between-group correlation is low/negligible.

We are faced with the problem to model and analyze high-dimensional data for highly correlated variables.

Projection-Based Analysis

Observe $d=d_{n}$ time series

$$
Y_{i}^{(\nu)}, \ldots, Y_{i}^{(\nu)}, \quad \nu=1, \ldots, d, 1 \leq i \leq n
$$

This means, we are given a vector time series of length n,

$$
\mathbf{Y}_{n i}=\left(Y_{i}^{(1)}, \ldots, Y_{i}^{\left(d_{n}\right)}\right)^{\prime}, \quad 1 \leq i \leq n
$$

of dimension d_{n}, constituting the $\left(n \times d_{n}\right)$-dimensional data matrix

$$
\mathcal{Y}_{n}=\left(Y_{i}^{(j)}\right)_{1 \leq i \leq n, 1 \leq j \leq d_{n}}
$$

We focus on second moments and thus assume $E\left(Y_{i}^{(j)}\right)=0$ for all $i=1, \ldots, n$ and $j=1, \ldots, d_{n}$.

Projection-Based Analysis

Assume for a moment that $\mathbf{Y}_{n 1}, \ldots, \mathbf{Y}_{n n}$ is stationary. Generic copy:

$$
\mathbf{Y}_{n}=\left(Y^{(1)}, \ldots, Y^{\left(d_{n}\right)}\right)^{\prime}
$$

Unknown $\left(d_{n} \times d_{n}\right)$-dimensional sample variance-covariance matrix

$$
\boldsymbol{\Sigma}_{n}=E\left(\mathbf{Y}_{n} \mathbf{Y}_{n}^{\prime}\right)=\left(E\left(Y^{(\nu)} Y^{(\mu)}\right)\right)_{1 \leq \nu, \mu \leq d_{n}}
$$

Sample variance-covariance matrix

$$
\begin{equation*}
\widehat{\boldsymbol{\Sigma}}_{n}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{Y}_{n i} \mathbf{Y}_{n i}^{\prime}=\frac{1}{n} \mathcal{Y}_{n}^{\prime} \mathcal{Y}_{n} \tag{1}
\end{equation*}
$$

Unpleasant properties for $d_{n} \gg n$, when studied as a matrix-valued estimator of $\boldsymbol{\Sigma}_{n}$, i.e. in dimension $d_{n} \times d_{n}$

Projection-Based Analysis

But typically, one is interested in a (set of) linear combination(s) $\mathbf{w}_{n}^{\prime} \mathbf{Y}_{n}$ of the coordinates. Consider projections

$$
T_{n}=\mathbf{w}_{n}^{\prime} \mathbf{Y}_{n}
$$

for weighting vectors

$$
\mathbf{w}_{n}=\left(w_{1}, \ldots, w_{d_{n}}\right)^{\prime}, \quad n \geq 1
$$

of weights $w_{j}=w_{d_{n} j}$, not necessarily non-negative, with

$$
\begin{equation*}
\sup _{n \in \mathbb{N}}\left\|\mathbf{w}_{n}\right\|_{\ell_{1}}=\sup _{n \in \mathbb{N}} \sum_{\nu=1}^{d_{n}}\left|w_{j}\right|<\infty \tag{2}
\end{equation*}
$$

Amongst others (later), such projections allow to study single covariances between coordinates.

Projection-Based Analysis

The projection $\mathbf{w}_{n}^{\prime} \mathbf{Y}_{n}$ has variance $\mathbf{w}_{n}^{\prime} \boldsymbol{\Sigma}_{n} \mathbf{w}_{n}$. Canonical estimator

$$
\widehat{\operatorname{Var}}\left(\mathbf{w}_{n}^{\prime} \mathbf{Y}_{n}\right)=\mathbf{w}_{n}^{\prime} \widehat{\boldsymbol{\Sigma}}_{n} \mathbf{w}_{n}
$$

behaves well for weighting vectors which select a finite number of coordinates.

Change-point problem: Test for a change in the variance of such a projection,

$$
\sigma_{n}^{2}(i)=\operatorname{Var}\left(\mathbf{w}_{n}^{\prime} \mathbf{Y}_{n i}\right), \quad 1 \leq i \leq n
$$

as a consequence of a change of the variance-covariance matrix $\boldsymbol{\Sigma}_{n}$ in a high-dimensional setting.

Projection-Based Analysis

To proceed, let us more generally consider the quadratic form

$$
Q_{n}\left(\mathbf{v}_{n}, \mathbf{w}_{n}\right)=\mathbf{v}_{n}^{\prime} \boldsymbol{\Sigma}_{n} \mathbf{w}_{n}
$$

for such weighting vectors \mathbf{v}_{n} and \mathbf{w}_{n}.
Remark: Observe that even for $\boldsymbol{\Sigma}_{n}=\sigma \mathbf{1 1}^{\prime}$ we have

$$
\left|Q_{n}\left(\mathbf{v}_{n}, \mathbf{w}_{n}\right)\right|=\sigma\left|\mathbf{v}_{n}^{\prime} \mathbf{1 1 ^ { \prime }} \mathbf{w}_{n}\right|=\sigma\left|\sum_{i} v_{n i} \sum_{i}\right| w_{n i} \mid \leq \sigma\left\|\mathbf{v}_{n}\right\|_{\ell_{1}}\left\|\mathbf{w}_{n}\right\|_{\ell_{1}}
$$

So, the ℓ_{1} condition is a natural one and ensures that even full covariance matrices are not mapped to ∞.

Framework and Assumptions

Model: The coordinates are linear processes

$$
Y_{k}^{(\nu)}=Y_{n k}^{(\nu)}=\sum_{j=0}^{\infty} c_{n j}^{(\nu)} \epsilon_{k-j}, \quad k=1, \ldots, n
$$

for coefficients $\left\{c_{n j}^{(\nu)}: j \in \mathbb{N}_{0}\right\}, \nu=1, \ldots, d_{n}$, and mean zero independent r.v.s. $\left\{\epsilon_{k}\right\}$ with

$$
E\left|\epsilon_{k}\right|^{4+\delta}<\infty
$$

for some $\delta>0$.
Assumption A: The sequences $\left\{c_{n j}^{(\nu)}: j \in \mathbb{N}_{0}\right\}$ satisfy

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \max _{1 \leq \nu \leq d_{n}}\left|c_{n j}^{(\nu)}\right|^{2} \ll j^{-3 / 2-\theta / 2} \tag{3}
\end{equation*}
$$

for some $0<\theta<1 / 2$.

Strong Approximation

Define

$$
\begin{align*}
& \widehat{\boldsymbol{\Sigma}}_{n k}=\left(\sum_{i=1}^{k} Y_{i}^{(\nu)} Y_{i}^{(\mu)}\right)_{1 \leq \nu, \mu \leq d_{n}}, \tag{4}\\
& \boldsymbol{\Sigma}_{n k}=\left(\sum_{i=1}^{k} E Y_{i}^{(\nu)} Y_{i}^{(\mu)}\right)_{1 \leq \nu, \mu \leq d_{n}}, \tag{5}
\end{align*}
$$

for $n, k \geq 1$. To be precise, our results shall deal with

$$
D_{n k}=\mathbf{v}_{n}^{\prime}\left(\widehat{\boldsymbol{\Sigma}}_{n k}-\boldsymbol{\Sigma}_{n k}\right) \mathbf{w}_{n}, \quad n, k \geq 1
$$

and the associated càdlàg processes

$$
\mathcal{D}_{n}(t)=\mathbf{v}_{n}^{\prime} n^{-1 / 2}\left(\widehat{\boldsymbol{\Sigma}}_{n,\lfloor n t\rfloor}-\boldsymbol{\Sigma}_{n,\lfloor n t\rfloor}\right) \mathbf{w}_{n}, \quad t \in[0,1], n \geq 1 .
$$

If the dependence of the above quantities on $\mathbf{v}_{n}, \mathbf{w}_{n}$ matters, we shall indicate this in our notation and then write

$$
D_{n k}\left(\mathbf{v}_{n}, \mathbf{w}_{n}\right), \mathcal{D}_{n}\left(t ; \mathbf{v}_{n}, \mathbf{w}_{n}\right) .
$$

Strong Approximation

Recalling that $\widehat{\boldsymbol{\Sigma}}_{n}=n^{-1} \widehat{\boldsymbol{\Sigma}}_{n, n}$, cf. (1) and (4), we have

$$
\mathcal{D}_{n}(1)=\mathbf{v}_{n}^{\prime} \sqrt{n}\left(\widehat{\boldsymbol{\Sigma}}_{n}-\boldsymbol{\Sigma}_{n}\right) \mathbf{w}_{n}, \quad n \geq 1
$$

is the centered and scaled version of the bilinear form

$$
Q\left(\mathbf{v}_{n}, \mathbf{w}_{n}\right)=\mathbf{v}_{n}^{\prime} \widehat{\boldsymbol{\Sigma}}_{n} \mathbf{w}_{n}=\widehat{\operatorname{Cov}}\left(\mathbf{v}_{n}^{\prime} \mathbf{Y}_{n}, \mathbf{w}_{n}^{\prime} \mathbf{Y}_{n}\right)
$$

where

$$
\boldsymbol{\Sigma}_{n}=E \widehat{\boldsymbol{\Sigma}}_{n}=\frac{1}{n} \sum_{i=1}^{n} E\left(\mathbf{Y}_{n i} \mathbf{Y}_{n i}\right)^{\prime}
$$

If $\left\{\mathbf{Y}_{n i}: 1 \leq i \leq n\right\}$ is stationary, then $\boldsymbol{\Sigma}_{n}$ simplifies to $\boldsymbol{\Sigma}_{n}=E\left(\mathbf{Y}_{n 1} \mathbf{Y}_{n 1}^{\prime}\right)$ (but our result are more general).

Strong Approximation

Result:

Within the model framework under certain additional technical conditions, we may approximate the related processes by Brownian motions:

$$
\left|D_{n t}-\alpha_{n} B_{n}(t)\right|=o\left(t^{1 / 2}\right), \quad \text { for all } t>0 \text { a.s. }
$$

as $n, t \rightarrow \infty$, and

$$
\sup _{t \in[0,1]}\left|\mathcal{D}_{n}(t)-\alpha_{n} B_{n}(\lfloor n t\rfloor / n)\right|=o(1), \quad \text { a.s. }
$$

as $n \rightarrow \infty$, as well as the CLT

$$
\left|\mathcal{D}_{n}(1)-\alpha_{n} B_{n}(1)\right|=o(1), \quad \text { a.s. }
$$

as $n \rightarrow \infty$, i.e. $\mathcal{D}_{n}(1)$ is asymptotically $\mathcal{N}\left(0, \alpha_{n}^{2}\right)$.

Strong Approximation

Standardized sequential statistic:

Monitor the sequence of (standardized) deviations from an assumed variance-covariance matrix $\boldsymbol{\Sigma}_{n}$ via

$$
\mathcal{D}_{n}^{*}(t)=\alpha_{n}^{-1}\left(\mathbf{v}_{n}, \mathbf{w}_{n}\right) \mathcal{D}_{n}\left(t, \mathbf{v}_{n}, \mathbf{w}_{n}\right), \quad t \in\left[s_{0}, 1\right]
$$

which can be approximated by a Brownian motion for large n.
Those results provide a basis for valid statistical inference.

Strong Approximation

Multivariate Extension:

Needed when projecting high-dimensional data in lower-dimensional subspaces!

Theorem

Let $\left\{\mathbf{v}_{n j}, \mathbf{w}_{n j}: 1 \leq j \leq K\right\}$ be weighting vectors of dimension d_{n} satisfying condition (7).
Then, under the assumptions of the previous theorem, there exists a K-dimensional Brownian motion $\left\{\mathbf{B}^{(n)}(t): t \in[0,1]\right\}$ with coordinates $B_{n i}=B_{n}\left(t ; \mathbf{v}_{n i}, \mathbf{w}_{n i}\right), t \in[0,1], i=1, \ldots, K$, such that

$$
\begin{equation*}
\left\|\left(\mathcal{D}_{n}\left(t ; \mathbf{v}_{n i}, \mathbf{w}_{n i}\right)\right)_{i=1}^{K}-\left(B_{n}\left(\lfloor n t\rfloor / n ; \mathbf{v}_{n i}, \mathbf{w}_{n i}\right)\right)_{i=1}^{K}\right\|=o(1), \tag{6}
\end{equation*}
$$

a.s., as $n \rightarrow \infty$, where $\|\bullet\|$ denotes an arbitrary vector norm on \mathbb{R}^{K}.

Strong Approximation

Corollary

Suppose that $\mathbf{Y}_{n 1}, \ldots, \mathbf{Y}_{n n}$ is a d_{n}-dimensional vector time series satisfying Assumption (A). Then, after redefining the series on a new probability space, there exists a Brownian motion such that

$$
\left|\max _{k \leq n}\right| \mathcal{D}_{n}(k / n)\left|-\max _{k \leq n}\right| \alpha_{n} B_{n}(k / n)| |=o(1)
$$

as $n \rightarrow \infty$.
The proofs rely on generalizations of Kouritzin (1995, SPA), who applied Philipp's (1986) results on strong approximations in Hilbert spaces.

Discussion

...of the ℓ_{1}-condition:

$$
\begin{equation*}
\sup _{n \in \mathbb{N}}\left\|\mathbf{w}_{n}\right\|_{\ell_{1}}=\sup _{n \in \mathbb{N}} \sum_{\nu=1}^{d_{n}}\left|w_{j}\right|<\infty \tag{7}
\end{equation*}
$$

Ex. 1: ℓ_{0}-sparse vectors: $w_{i}>0$ only for $i \in\left\{i_{1}, \ldots, i_{L}\right\}, L$ fixed. (classical 'low-dimensional' case)
Ex. 2: $w_{n}^{\prime}=\left(w_{1}, \ldots, w_{d_{n}}\right)^{\prime}$ with \sum_{j} (most coordinates receive a negligible weight)
Ex. 3: $w_{n i}=1 / d_{n}$ for $i=1, \ldots, d_{n}$.
(all d_{n} coordinates are taken into account.)

Discussion

...of the ℓ_{1}-condition:

$$
\begin{equation*}
\sup _{n \in \mathbb{N}}\left\|\mathbf{w}_{n}\right\|_{\ell_{1}}=\sup _{n \in \mathbb{N}} \sum_{\nu=1}^{d_{n}}\left|w_{j}\right|<\infty \tag{7}
\end{equation*}
$$

Ex. 1: ℓ_{0}-sparse vectors: $w_{i}>0$ only for $i \in\left\{i_{1}, \ldots, i_{L}\right\}, L$ fixed. (classical 'low-dimensional' case)
Ex. 2: $\mathbf{w}_{n}^{\prime}=\left(w_{1}, \ldots, w_{d_{n}}\right)^{\prime}$ with $\sum_{j}\left|w_{j}\right|<\infty$. (most coordinates receive a negligible weight)
Ex. 3: $w_{n i}=1 / d_{n}$ for $i=1, \ldots, d_{n}$. (all d_{n} coordinates are taken into account.)

Discussion

...of the ℓ_{1}-condition:

$$
\begin{equation*}
\sup _{n \in \mathbb{N}}\left\|\mathbf{w}_{n}\right\|_{\ell_{1}}=\sup _{n \in \mathbb{N}} \sum_{\nu=1}^{d_{n}}\left|w_{j}\right|<\infty \tag{7}
\end{equation*}
$$

Ex. 1: ℓ_{0}-sparse vectors: $w_{i}>0$ only for $i \in\left\{i_{1}, \ldots, i_{L}\right\}, L$ fixed. (classical 'low-dimensional' case)
Ex. 2: $\mathbf{w}_{n}^{\prime}=\left(w_{1}, \ldots, w_{d_{n}}\right)^{\prime}$ with $\sum_{j}\left|w_{j}\right|<\infty$. (most coordinates receive a negligible weight)
Ex. 3: $w_{n i}=1 / d_{n}$ for $i=1, \ldots, d_{n}$.
(all d_{n} coordinates are taken into account.)

Discussion

... of Assumption A:

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \max _{1 \leq \nu \leq d_{n}}\left|c_{n j}^{(\nu)}\right|^{2} \ll j^{-3 / 2-\theta / 2} \tag{8}
\end{equation*}
$$

for some $0<\theta<1 / 2$.
Assumption A...

- $c_{n j}^{(\nu)}=c_{j}^{(\nu)}$: At time n we observe d_{n} sequences (not depending on n). But we allow for arrays.
- covers various short memory processes, e.g. ARMA processes.
- covers many long-range dependent series such as fractionally integrated noise of order $d \in(-1 / 2,1 / 4-\theta / 2)$,

$$
(1-L)^{d} X_{t}=\epsilon_{t}
$$

Discussion

Define the scaled Frobenius norm by

$$
\|\mathbf{A}\|_{F}^{*}=\frac{1}{d_{n}^{1 / 2}}\left(\sum_{i, j=1}^{d_{n}} a_{i j}^{2}\right)^{1 / 2} \quad\left(\text { s.th. }\left\|\mathbf{I}_{d_{n}}\right\|_{F}^{*}=1\right)
$$

Lemma

Suppose Assumption (A) holds true and that, for fixed t, the variances $\sigma_{t-j}^{2}, j \geq 0$, of the innovations satisfy

$$
\sum_{j=0}^{\infty} j^{-3 / 2-\theta / 2} \sigma_{t-j}^{2}<\infty
$$

Then, as $r \rightarrow \infty$; we have

$$
\sup _{n \in \mathbb{N}}\left\|\boldsymbol{\Sigma}_{n}[t]-\sum_{j=1}^{r} \sigma_{t-j}^{2} \mathbf{c}_{n j} \mathbf{c}_{n j}\right\|^{\prime} \|_{F}^{*}=o(1) .
$$

Applications: Portfolio Selection

Consider Assets returns $\mathbf{R}_{n}=\left(R_{n}^{(1)}, \ldots, R_{n}^{\left(d_{n}\right)}\right)^{\prime}$ corresponding to the time period $[n-1, n]$ with mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}=\left(\sigma_{i j}\right)_{i j}$.
Since $\sigma_{i j}$ is the covariance between the return of asset i and asset $j, 1 \leq i, j, \leq d_{n}$, it is not restrictive to assume that the entries of $\boldsymbol{\Sigma}$ neither depend on n nor d_{n}.
An investor holds at time $n-1$ the position $w_{n j}$ in asset j. $w_{n j}>0$ long position, $w_{n j}<0$ short position.
W.I.o.g. the initial value (capital) at time $n-1$ equals $V=\sum_{j=1}^{d_{n}} w_{n j}=1$.
Then the value at time instant n is $\mathbf{w}_{n}^{\prime} \mathbf{R}_{n}$.

Applications: Portfolio Selection

Classical formulation of the portfolio selection problem: Risk $=$ Variance:

$$
\min _{\mathbf{w}_{n}} \operatorname{Var}\left(\mathbf{w}_{n}^{\prime} \mathbf{R}_{n}\right)=\mathbf{w}_{n}^{\prime} \boldsymbol{\Sigma} \mathbf{w}_{n}, \quad \text { subject to } \mathbf{w}_{n}^{\prime} \mathbf{1}=1
$$

whose solution is known to be

$$
\mathbf{w}_{n}^{* \prime}=\left(\mathbf{1}^{\prime} \Sigma^{-1} \mathbf{1}\right)^{-1} \mathbf{1}^{\prime} \Sigma^{-1}
$$

If that solution satisfies the no-short-sales condition, then $\left\|\mathbf{w}_{n}^{*}\right\|_{\ell_{1}}=\mathbf{1}^{\prime} \mathbf{w}_{n}^{*}=1$.
Provided the vector time series of returns satisfies our assumptions, our results provide the asymptotics for the optimal risk

$$
\operatorname{Var}\left(\left(\mathbf{w}_{n}^{*}\right)^{\prime} \mathbf{Y}_{n}\right)
$$

 \mathbf{w}_{n}^{*}) from an independent learning sample.

Applications: Shrinkage

Shrinkage estimation is a well established approach for regularization (Ledoit \& Wolf (2004); Sancetta, 2008).
To improve properties such as $E\left\|\widehat{\boldsymbol{\Sigma}}_{n}-\boldsymbol{\Sigma}_{n}\right\|_{F}^{2}$ or the condition number, one estimates $\boldsymbol{\Sigma}_{n}$ by a linear (convex) combination of $\widehat{\boldsymbol{\Sigma}}_{n}$ and a well-conditioned target such as the identity.
Projecting $\boldsymbol{\Sigma}_{n}$ onto span $\left\{\mathrm{id}_{n}\right\}$ leads to the target $\boldsymbol{\Sigma}_{n}^{(0)}=\mu_{n} \mathrm{id}_{n}$, where $\mu_{n}=\operatorname{tr}\left(\boldsymbol{\Sigma}_{n}\right)$ (shrinkage intensity).

We are led to the shrinkage estimator

$$
\boldsymbol{\Sigma}_{n}^{s}\left(W_{n}\right)=\left(1-W_{n}\right) \widehat{\boldsymbol{\Sigma}}_{n}+W_{n} \mu_{n} \operatorname{id}_{n}
$$

Optimizing W_{n} w.r.t. the MSE

$$
W_{n}^{*}=\operatorname{argmin}_{W_{n} \in[0,1]} d_{n}^{-1} E\left\|\boldsymbol{\Sigma}_{n}^{s}\left(W_{n}\right)-\boldsymbol{\Sigma}_{n}\right\|_{F}^{2}
$$

leads to explitic formulas for W_{n}^{*} and ensures a true improvement

$$
\begin{equation*}
E\left\|\boldsymbol{\Sigma}_{n}^{s}-\boldsymbol{\Sigma}_{n}\right\|_{F}^{2}<E\left\|\widehat{\boldsymbol{\Sigma}}_{n}-\boldsymbol{\Sigma}_{n}\right\|_{F}^{2} \tag{ISW}
\end{equation*}
$$

Applications: Sparse Principal Component Analysis LASSO

Let \mathcal{X}_{n} be a $\left(n \times d_{n}\right)$-dimensional data matrix, independent from \mathcal{Y}_{n}.

SCotLASS (Simplified component technique-lasso), Jolliffee (2003): $1^{\text {st }}$ principal component (pc) solves

$$
\max _{\mathbf{v}} \mathbf{v}^{\prime} \mathcal{X}_{n}^{\prime} \mathcal{X}_{n} \mathbf{v}, \quad \text { subject to }\|\mathbf{v}\|_{\ell_{2}}^{2} \leq 1,\|\mathbf{v}\|_{\ell_{1}} \leq c
$$

Continue in this way under the additional constraints that further components are orthogonal.

Applications: Sparse Principal Component Analysis

LASSO (Tibshirani, 1996 \& 2011): Determine ℓ_{1}-sparse coefficient vector in a high-dimensional linear regression in dim. p_{n}

$$
Y_{t}=\mathbf{X}_{t}^{\prime} \beta_{0}+\epsilon_{t}, \quad E\left(\epsilon_{t} \mid \mathbf{X}_{t}\right)=0
$$

Given an estimator $\widehat{\beta}_{n}, \pi_{n}=\mathbf{X}^{\prime} \widehat{\beta}_{n}$ is used for prediction.
LASSO minimizes the ℓ_{1}-constrained least squares criterion

$$
\beta \mapsto \sum_{t}\left(Y_{t}-\mathbf{X}_{t}^{\prime} \beta\right)^{2},\|\beta\|_{\ell_{1}} \leq c
$$

for some bound $c>0$.
Apply results with $\mathbf{w}_{n}=\widehat{\beta}_{n}$ estimated from indep. learning sample, $d_{n}=p_{n}, \mathbf{Y}=\mathbf{X}, \mathbf{Y}_{t}=\mathbf{X}_{t}$ to infer $\operatorname{Var}\left(\mathbf{w}_{n}^{\prime} \mathbf{X}\right)$ given the learning sample, provided $\left\{\mathbf{X}_{t}\right\}$ satisfies our assumptions.

End

Related Publication:

Steland, A. and R. v. Sachs (2015). Large sample approximations for variance-covariance matrices of high-dimensional time series, under revision.

Thanks for your attention.

