
Robustness Analysis of Deep Neural
Networks in the Presence of
Adversarial Perturbations and

Noisy Labels

Von der Fakultät für Elektrotechnik und Informationstechnik
der Rheinisch-Westfälischen Technischen Hochschule Aachen

zur Erlangung des akademischen Grades eines Doktors
der Ingenieurwissenschaften genehmigte Dissertation

vorgelegt von

Master of Science
Emilio Rafael Balda Cañizares

aus Guayaquil, Ecuador

Berichter: Universitätsprofessor Dr. rer. nat. Rudolf Mathar
Universitätsprofessor Dr. sc. techn. Bastian Leibe

Tag der mündlichen Prüfung: 18. November 2019

Diese Dissertation ist auf den Internetseiten
der Hochschulbibliothek online verfügbar.

ii

Acknowledgments

I would like expressing my deep gratitude to Univ.-Prof. Dr. rer. nat. Rudolf Mathar
for his guidance during my Ph. D. at the Institute for Theoretical Information Technol-
ogy at RWTH Aachen University. In particular, for encouraging me to explore different
research directions and providing an adequate environment. Additionally, I would like
thanking Univ.-Prof. Dr. sc. techn. Bastian Leibe for examining my thesis and deliv-
ering insightful comments.

I cannot begin expressing my thanks to my beloved wife Joana Gómez who constantly
encouraged me to move forward and demonstrated her unwavering support along this
journey. Thanks as well to my colleague Dr. Arash Behboodi for collaborating with me
on various research topics, and for all the fruitful discussions. I would like extending my
sincere thanks to Vimal Radhakrishnan for sharing an office with me these years. The
same goes for all my colleagues at the Institute for Theoretical Information Technology.
It was my absolute pleasure to work with everyone and exchange knowledge about
various topics.

Ultimately, I am deeply indebted to my parents who always believed in my abilities, for
nurturing and advising me through my studies.

Aachen, November 2019 Emilio Rafael Balda Cañizares

iii

Contents

Acknowledgments iii

1. Introduction 1

2. Technical Background 5
2.1. Notation and Norms . 5
2.2. Statistical Learning . 8

2.2.1. System Model . 8
2.2.2. Concentration Inequalities . 9
2.2.3. Elementary Definitions from Information Theory 10

3. Generation of Adversarial Examples for Classification and Regression 11
3.1. Related Work . 12

3.1.1. Our Contributions . 14
3.2. Fooling Classifiers with First-Order Perturbation Analysis 15

3.2.1. Adversarial Perturbation Design Problem 15
3.2.2. Perturbation Analysis . 16
3.2.3. Feasible Adversarial Perturbation Designs 18

3.3. From Classification to Regression . 21
3.3.1. A Quadratic Programming Problem 22
3.3.2. A Linear Programming Problem 24

3.4. Single Subset Attacks . 24
3.4.1. Single Subset Attack for the Quadratic Problem 25
3.4.2. Single Subset Attack for the Linear Problem 26

3.5. Iterative Versions of the Linear Problem 27
3.6. Experiments . 28

3.6.1. Classification . 29
3.6.2. Regression . 31

3.7. Outlook . 33

4. On the Effect of Low-Rank Weights on Adversarial Robustness 39
4.1. Related Work . 39

4.1.1. Our Contributions . 41

v

Contents

4.2. Preliminaries . 41
4.3. Enhancing the Robustness of Sparse Linear Classifiers through Compression 43
4.4. Inducing Compression through Regularization 45
4.5. Experiments . 47
4.6. Discussion . 50

5. Adversarial Risk Bounds through Sparsity based Compression 55
5.1. Related Work . 56

5.1.1. Our Contributions . 57
5.1.2. Notation . 58

5.2. Problem Setup . 58
5.3. Main Results . 61

5.3.1. Linear Classifier . 61
5.3.2. Neural Networks . 67

5.4. Experiments . 73

6. An Information Theoretic View on Learning with Noisy Labels 77
6.1. Related Work . 78

6.1.1. Our Contributions . 79
6.2. System Model . 80
6.3. Bounds Relating Entropy and Error . 82
6.4. Analysis of Learning Trajectories for Linear Classifiers 87

6.4.1. Binary Classification of Linearly Separable Data 87
6.4.2. Multi-Class Classification . 90

6.5. Experimental Study for Neural Networks 91

7. Conclusions 103
7.1. Summary of Contributions . 103
7.2. Outlook . 104

A. Appendix 107
A.1. Additional Experiments for Chapter 4 . 107
A.2. Reshaping of Convolutional Filters in Chapter 4 108
A.3. Proof of Lemma 6.4.2 . 109

List of Acronyms 113

List of Symbols and Notation 115

Bibliography 117

vi

1
Introduction

Deep Neural Networks (DNNs) excelled in recent years in many learning tasks and
demonstrated outstanding achievements in speech analysis [1] and visual recognition
[2]–[5]. Despite their success, they have been shown to suffer from instability in their
classification under adversarial perturbations [6]. Adversarial perturbations are inten-
tionally worst case designed noise that aims at changing the output of a DNN to an
incorrect one. Although DNNs might achieve robustness to random noise [7], it was
shown that there is a clear distinction between the robustness of a classifier to ran-
dom noise and its robustness to adversarial perturbations. The existence of adversarial
perturbations was known for machine learning algorithms [8], however, they were first
noticed in deep learning research in 2014 by Szegedy et al. [6]. The peculiarity of ad-
versarial perturbations laid in the fact that they managed to fool state of the art neural
networks into making confident and wrong decisions in classification tasks, and they,
nevertheless, appeared unperceived to the naked eye. These discoveries gave rise to
extensive research on understanding the instability of DNNs, exploring various attacks,
and devising multiple defenses (for instance refer to [9]–[11] and references therein).

Another kind of corruption that is present, when training and evaluating DNNs, is label
noise. The study of robustness and generalization of properties of classifiers to this type
of corruption dates back to 1988, in the well known work of Angluin & Laird [12]. Since
then, there have been several advances on understanding the robustness, optimization,
and generalization properties of classifiers in the presence of label noise [13], [14]. Up to
date, most of the theoretical work in this direction considers classification with binary

1

1. | Introduction

labels. However, recent works generalized existing results to the case of multi-class
classification, such as the work of Ghosh et al. [15].

In this thesis, we study the robustness and generalization properties of DNNs under
various noisy regimes, due to corrupted inputs or labels. Such corruptions can be either
random or intentionally crafted to disturb the target DNN. Note that inputs corrupted
by maliciously designed perturbations (i.e., adversarial examples) have been shown to
severely degrade the performance of DNNs. However, due to the non-linearity of DNNs,
crafting such perturbations is non-trivial.

In Chapter 3, we first address the problem of designing algorithms for generating adver-
sarial examples, known as adversarial attacks. We start with a general formulation of
this problem and, through successive convex relaxations, propose a framework for com-
puting adversarial examples under various desired constraints. Using this approach, we
derive novel methods that consistently outperform existing algorithms in tested scenar-
ios. In addition, new algorithms are also formulated for regression problems. We show
that adversarial vulnerability is also an issue in various regression tasks, a problem that
has so far been overlooked in the literature.

One central question among the community is which characteristics must DNNs have
in order to be robust against adversarial examples. In Chapter 4, we address this
question in terms of compression, which appears in the form of low-complexity structures
present in the weight matrices of robust DNNs. We show that adversarial training seems
to induce low complexity structures such as sparsity and low-rankness in the weight
matrices of DNNs. We give a theoretical justification for this phenomenon using linear
classifiers and the notion of effective sparsity. We show that, if the input data lies in
a linear low-dimensional subspace, the robustness of linear classifiers can be improved
without loss of accuracy by appropriately decreasing the rank of the weight matrix
without increasing its effective sparsity. Motivated by these results, we use different
regularization techniques to show empirically that simultaneously inducing effective
low-rankness and sparsity leads to significant improvements in robustness. The effect
low-rankness on robustness seems to be more pronounced for Convolutional Neural
Networks (CNNs). Although adversarial training still produced more robust models
than the proposed regularization schemes, these results show that low-rankness has an
important role in the robustness of DNNs.

While there has been a vast amount of works on the design and understanding of DNNs
resistant to these attacks, their generalization properties are less understood. How
well does adversarial robustness generalize from the training set to unseen data? In
Chapter 5, we use Statistical Learning Theory (SLT) to bound the so-called adversarial
risk of DNNs. Proving SLT bounds for deep learning is on-going research with various
existing frameworks. Among these SLT frameworks, we choose a compression-based
technique that established state of the art results for DNNs in the non-adversarial
regime. Our bound leverages the sparsity structures induced by adversarial training
and has no explicit dimension dependence, which is particularly challenging for `∞
adversarial attacks. In addition, it improves over existing results to `∞ bounded inputs.

2

To complete this work, in Chapter 6, we shift our focus from perturbed inputs to noisy
labels and analyze how DNNs learn when a portion of the inputs is incorrectly labeled.
In this setup, we use information theory to characterize the behavior of classifiers. Under
noisy labels, we study the trajectory of DNNs in the information plane, formed by the
entropy of estimated labels and the conditional entropy between given and estimated
labels. We first generalize the error bound of Menon et al. [16] to the multi-class
setting and derive fundamental error entropy relations. We use these results to analyze
the trajectory of DNNs in the information plane and show their de-noising capabilities.
Under simplified scenarios, we are able to analytically characterize these trajectories for
linear classifiers and linearly separable data. This result shows a trajectory for properly
trained networks that seems to be consistent among DNNs in real image classification
tasks. In addition, we show that underfitted, overfitted, and well-trained DNNs exhibit
significantly different trajectories in the information plane. Such phenomena are not
visible when considering only training and validation error, thus showing the potential
of using information-theoretic quantities to provide a richer view of the learning process
than standard classification error.

This thesis contains unpublished work that may be used in further publications.

3

2
Technical Background

2.1. Notation and Norms

Throughout this thesis, the letters a, b, . . . are used for scalars, a,b, . . . for vectors,
A,B, . . . for matrices and A,B, . . . for sets. These scalars, vectors, matrices, and sets,
may be random depending on the context. To denote the set {1, . . . , n}, we make
use of the shorthand notation [n] for n ∈ N. The operator (·)> denotes the matrix
transposition.

For any vector x = (x1, . . . , xn)> ∈ Rn and p > 0, the `p-norm of x is defined by

‖x‖p :=
(

n∑

i=1
xpi

)1/p

.

When p tends to zero, the above definition converges to the number of non-zero entries
of the vector. This is called, with an abuse of terminology, the `0-norm. The explicit
definition is given as

‖x‖0 :=
n∑

i=1
1(xi 6=0) ,

where 1(·) is the indicator function. The `0-norm gives the sparsity order of the vector
x. The `∞-norm of a vector x is obtained when p→∞. It is defined as

‖x‖∞ := max
i∈[n]
|xi| .

5

2. | Technical Background

For p > 0, the dual norm of the `p-norm is defined as

‖x‖∗p := sup
‖z‖p=1

〈x, z〉 .

For the case of matrices, any matrix X = (x1, . . . ,xn) ∈ Rm×n has mixed (p, q)-norm
given by

‖X‖p,q :=
∥∥∥∥
(
‖x1‖p , . . . , ‖xn‖p

)>∥∥∥∥
q
.

Similarly, the operator (p, q)-norm is denoted by ‖X‖p→q and defined as

‖X‖p→q := sup
‖z‖p≤1

‖Xz‖q = sup
‖z‖p=1

‖Xz‖q . (2.1)

For the case when p = q, we make use of the shorthand notation ‖X‖p to denote
‖X‖p→p. The Frobenius norm of X is denoted by ‖X‖F and defined as

‖X‖F :=

n∑

j=1
‖xj‖2

1/2

. (2.2)

The Singular Value Decomposition (SVD) of X is given by X = ∑min{m,n}
i=1 σi uiv>i ,

where σ1 ≥ · · · ≥ σmin{m,n} are the singular values of X and ui,vi the singular vectors
for i = 1, . . . ,min{m,n}. Then, let us define the operator σ : Rm×n → Rmin{m,n} which
outputs the column vector containing the singular values of a matrix, in descending
order. Formally, that is

σ(X) :=
(
σ1, . . . , σmin{m,n}

)>
.

Using this notion, the nuclear norm of X is defined as the `1-norm of σ(X), that is

‖X‖∗ := ‖σ(X)‖1 .

In other words, since singular values are always non-negative, the nuclear norm of X
corresponds to the sum of its singular values. The vectorization operation is denoted
by vec (·) : Rm×n → Rmn, which corresponds to

vec (X) :=
(
x>1 , . . . ,x>n

)>
.

Now, let us assume that h : Rn → R is a scalar function that takes the vector x =
(x1, . . . , xn)> as its input. Then, the gradient of such function is defined as

∇h(x) :=
(
∂h
∂x1

(x), . . . , ∂h
∂xn

(x)
)>

.

Extending this notion to vectorial functions leads to the definition of Jacobian ma-
trix. To that end, let f be a vectorial function f : Rn → Rm given by f(x) =

6

Notation and Norms | 2.1

CO-DOMAIN

DOMAIN

`1 `2 `∞

`1 ‖X‖1,∞ ‖X‖2,∞ ‖X‖∞,∞
`2 NP-hard ‖σ(X)‖∞ ‖X>‖2,∞

`∞ NP-hard NP-hard ‖X>‖1,∞

Table 2.1.: Known solutions of ‖X‖p→q, from the work of Tropp and Aaron [17]. By
the definition of operator norm in (2.1), p corresponds to the domain, while
q to the co-domain.

(f1(x), . . . , fm(x)), where fi : Rn → R are scalar functions for i = 1, . . . ,m. The
Jacobian of f at the point x is denoted by Jf (x) and defined as

Jf (x) :=
[
∂fi
∂xj

(x)
]

i∈[n],j∈[m]
.

One useful property used in this work is the relation between vector norms, that is, for
any x ∈ Rn and p > r > 0, we have that

‖x‖p ≤ ‖x‖r ≤ n1/r−1/p ‖x‖p .

For p > 1, the dual norm of the `p-norm boils down to ‖x‖∗p = ‖x‖q where q > 1 is such
that 1/p+ 1/q = 1. For example, the `2-norm is the dual norm of itself. By continuity,
the `1-norm has `∞ as its dual norm. One main result derived from this fact is Hölders
inequality, which states the following result

|〈x, z〉| ≤ ‖x‖p ‖z‖q ,

where 〈·, ·〉 denotes the canonical inner product1.

Let us introduce some commonly used relations between matrix norms. First, by the
definition of Frobenius norm in (2.2) we can also express it as

‖X‖F = ‖X‖2,2 .

On the other hand, in some cases, we can also relate operator norms with mixed norms
[17]. A summary of solutions for computing some commonly used operator norms
is shown in Table 2.1. Finally, we introduce further notation to deal with random
processes. Let x ∈ R be a random variable and DX : R → [0, 1] some probability
measure. We use the notation Px∼DX [·] to denote the probability of an event when
x is distributed according to DX . Similarly, the operators Ex∼DX [·] and Varx∼DX [·]
denote the expectation and variance of x with the probability measure DX . When the
distribution of x is clear by the context, we drop the subscripts and use the shorthand
notations P[·],E[·] and Var[·].

1That is 〈x, z〉 := x>z.

7

2. | Technical Background

2.2. Statistical Learning

2.2.1. System Model

This work is mainly focused on classification. Along this thesis, we keep the following
domain-specific notation:

• Let X be the feature space, that is the set of all possible inputs.

• Similarly, the label space is denoted by Y .
• The dimensionality of the input is denoted by n, that is X ⊆ Rn.

• The number of possible classes is k and the label space is set to be
Y = {1, 2, . . . , k}.
• x ∈ X is the input vector with its corresponding label y ∈ Y .
• The tuple (x, y) ∼ D is assumed to be random and distributed according to the

data distribution D.
• The training set S is defined as a set of independent and identically distributed

(i.i.d.) realizations of (x, y) ∼ D, which are used to tune the parameters of a
classifier.

• The size of the training set is denoted by m := |S|.

Definition 2.2.1 (Classifier and score functions). A classifier is defined by the mapping
c : X → Y that maps an input x ∈ X to its estimated class c (x) ∈ Y. The mapping
c(·) is itself defined by

c(x) = argmax
l∈Y

{fl (x)} , (2.3)

where fl(x) : X → R’s are called score functions representing the probability of class
belonging. Then, a classifier is fully defined by its vector of score functions. That is,
the function f : X → R|Y| defined as

f(x) =
(
f1(x), . . . , f|Y|(x)

)>
.

For example, the score functions of a linear classifier are given by

f(x) = W>x ,

whereW ∈ Rn×k is a matrix of tunable parameters. Note that we neglect the bias term,
since it can be easily included by appending a scalar 1 to the input vector x. Similarly,
a Fully Connected Neural Network (FCNN) with d-layers has a score function given by

f(x) = φd
(
W d>φd−1

(
W d−1> · · ·φ1

(
W 1>x

)
· · ·

))
, (2.4)

8

Statistical Learning | 2.2

where φi is a (possibly non-linear) function applied point-wise to the entries of vectors,
for i = 1, . . . , d. Strictly speaking, a linear classifier is also a 1-layer neural network
with a linear activation function.

Using these notions we can now define the margin of a classifier, given a sample. To
that end, given the instance (x, y) ∈ X × Y , the margin of f is defined as

`(f ; x, y) = fy(x)−max
j 6=y

fj(x) . (2.5)

In this manner, a positive margin implies correct classification. This allows us to define
the expected risk, with margin γ ≥ 0, of a classifier f as

Lγ(f) = P(x,y)∼D [`(f ; x, y) ≤ γ] .

Note that this definition implies that L0(f) is the probability of incorrect classification,
also known as test error. In practice, we do not have access to the data distribution D,
thus we cannot compute Lγ(f). However, we have access to the training set S, which
allows us to obtain an empirical estimate of this quantity. This estimate is called the
empirical risk and it is defined as

L̂γ(f) = 1
m

m∑

i=1
1(`(f ;xi,yi)≤γ) ,

where (xi, yi) are the elements of S, that is S = {(xi, yi)}mi=1. Note that, for a fixed f ,
we have that

ES∼Dm
[
L̂γ(f)

]
= Lγ(f) .

This property allows bounding the expected risk by using famous concentration inequal-
ities from the literature. Nonetheless, one should take care since f is usually not fixed,
instead it is computed using S.

2.2.2. Concentration Inequalities

Let us introduce some well known concentration inequalities that are employed along
this work. First, when the expectation and variance of a random variable are known and
finite, we may employ Chebyshev’s inequality, which is stated in the following lemma.

Lemma 2.2.2 (Chebyshev’s Inequality). Let x be a random variable with finite mean
and variance. Then, for any t > 0 the following holds

P(|x− E[x]| ≥ t) ≤ Var[x]
t2

.

Additionally, for a sequence of i.i.d. random variables, if these variables are bounded,
we may use the Hoeffding’s inquality. This inequality is introduced in the following
lemma.

9

2. | Technical Background

Lemma 2.2.3 (Hoeffding’s Inequality). Let xi be i.i.d. random variables bounded be-
tween [ai, bi] for ai < bi and i = 1, . . . ,m. Let x be the random variable x = 1

m

∑m
i=1 xi,

then, for any t > 0 it holds

P(|x− E[x]| ≥ t) ≤ 2 exp
(
− 2m2t2
∑m
i=1(bi − ai)2

)
.

Moreover, this lemma is often reformulated in the following form as well, which may be
useful in some situations.

Corollary 2.2.3.1. In the same setup as Lemma 2.2.3, let z := ∑m
i=1 xi. Then, for any

t > 0 it holds
P(|z − E[z]| ≥ t) ≤ 2 exp

(
− 2t2
∑m
i=1(bi − ai)2

)
.

2.2.3. Elementary Definitions from Information Theory

We shortly review some elementary concepts from information theory, such as entropy
and mutual information, that are used in this thesis. The entropy of a discrete random
variable y ∈ Y is defined as

H(y) = −
∑

i∈Y
P(y = i) logP(y = i) = −E [logP(y)] .

This quantity is bounded as 0 ≤ H(y) ≤ log |Y| and measures the amount of uncertainty
present in y. Similarly, the conditional entropy of y given ŷ is defined as

H(y|ŷ) = −E [logP(y|ŷ)]

and quantifies the uncertainty about y given that ŷ is known. Finally, the mutual
information I(y; ŷ) between y and ŷ measures how much information does one random
variable carry about the other. It may be defined in terms of entropies as

I(y; ŷ) = H(y)−H(y|ŷ) = H(ŷ)−H(ŷ|y) .

10

3
Generation of Adversarial Examples for

Classification and Regression

Despite the tremendous success of deep neural networks in various learning problems,
it has been observed that adding intentionally designed adversarial perturbations to
inputs of these architectures leads to erroneous classification with high confidence in
the prediction. In this chapter1, we show that adversarial examples can be generated
using a generic approach that relies on the perturbation analysis of learning algorithms.
Formulated as a convex program, the proposed approach retrieves many current ad-
versarial attacks as special cases. It is used to propose novel attacks against learning
algorithms for classification and regression tasks under various new constraints with
closed form solutions in many instances. In particular, we derive new attacks against
classification algorithms which are shown to be top performing on various architectures.
Although classification tasks have been the main focus of adversarial attacks, we use the
proposed approach to generate adversarial perturbations for various regression tasks.
Designed for single pixel and single subset attacks, these attacks are applied to autoen-
coding, image colorization and real time object detection tasks, showing that adversarial
perturbations can degrade equally gravely the output of regression tasks.

1This chapter contains the work from our publications [18], [19].

11

3. | Generation of Adversarial Examples for Classification and Regression

3.1. Related Work

Most adversarial attacks fall generally into two classes, white-box and black-box at-
tacks. White-box attacks use complete or partial knowledge of the machine learning
architecture, see for instance [20]. In constrast, black-box attacks do not require any
information about the target neural network, see for instance [21]. In this work, we
focus only on white-box attacks with full knowledge of the function implemented by
the learning algorithm. The attacks, as in [20], [22], [23], act on the system inputs and
add perturbations that are not perceived by the system’s administrator such that the
performance of the system is severely degraded.

Adversarial perturbations were obtained in [6] to maximize the prediction error at
the output and were approximated using the box-constrained Limited memory Broy-
den Fletcher Goldfarb Shanno (L-BFGS) algorithm. The Fast Gradient Sign Method
(FGSM), proposed by Goodfellow et al. [20], was based on finding the scaled sign of
the gradient of the cost function. Note that the FGSM aims at minimizing `∞-norm
of the perturbation while the former algorithm minimizes `2-norm of the perturbation
under box constraint on the perturbed example.

More effective attacks utilize either iterative procedures or randomization of the pertur-
bations and instances as in [22], [24]. The algorithm DeepFool [22] conducts an iterative
linearization of the DNN to generate perturbations that are minimal in the `p-norm for
p > 1. Kurakin et al. [25] proposed an iterative version of FGSM, called Basic Iterative
Method (BIM). This method was later extended by Madry et al. [24], where ran-
domness was introduced in the computation of adversarial perturbations. This attack
is called the Projected Gradient Descent (PGD) method and was employed in [24] to
devise a defense against adversarial examples. An iterative algorithm based on PGD
combined with randomization was introduced in [26] and has been used to dismantle
many defenses so far [27]. Another popular way of generating adversarial examples is
by constraining the `0-norm of the perturbation. These types of attacks are known as
single pixel attacks [28] and multiple pixel attacks [29]. Despite their differences, many
of the above attacks share a similar underlying principle. At some moment, they rely
on a simple characterization of input perturbations on the output of the algorithm. In
this work, we build on this idea to design new attacks for classification and regression
tasks.

An interesting feature of these perturbations is their generalization over other datasets
and DNNs [20], [23]. These perturbations are called universal adversarial perturbations.
This is partly explained by the fact that certain underlying properties of the perturba-
tion, such as orientation in case of image perturbation, matters the most and is therefore
generalized through different datasets. For example, the attack of Tramèr et al. [30]
shows that adversarial examples transfer from one random instance of a neural network
to another. In that work, the authors showed the effectiveness of these types of attacks

12

Related Work | 3.1

for enhancing the robustness of neural networks, since they provide diverse perturba-
tions during adversarial training. Moreover, Moosavi-Dezfooli et al. [31] showed the
existence of universal adversarial perturbations that are independent from the system
and the target input. We will not go into more details about universal perturbations in
this work.

Since the rise of adversarial examples for image classification, novel algorithms have
been developed for attacking other types of systems. In the field of computer vision, [32]
constructed an attack on image segmentation, while Xie et al. [33] designed attacks for
object detection. The Houdini attack [34] aims at distorting speech recognition systems.
Moreover, Papernot et al. [35] taylored an attack for recurrent neural networks, and
Lin et al. [36] for reinforcement learning. Adversarial examples exist for probabilistic
methods as well. For instance, Kos et al. [37] showed the existence of adversarial
examples for generative models. For regression problems, Tabacof et al. [38] designed
an attack that specifically targets variational autoencoders. There seems, however, to
be a gap in the literature when it comes to adversarial attacks on regression problems.
One of the goals of this work is to fill this gap by proposing attacks on various regression
problems.

Before going further, we shortly overview some theoretical explanations of adversarial
examples as well as common defenses. There are various theories regarding the nature of
adversarial examples and the subject is heavily investigated. Initially, the authors in [20]
proposed the linearity hypothesis where the existence of adversarial images is attributed
to the approximate linearity of classifiers, although this hypothesis has been challenged
by Tanay & Griffin [39]. Some other theories focus mostly on decision boundaries of
classifiers and their analytic properties [7], [40]. The work of Raghunathan et al. [41]
provides a framework for determining the robustness of a classifier against adversarial
examples with some performance guarantees. For a more recent theoretical approach
to this problem refer to [42]. There exist several types of defenses against adversarial
examples, as well as subsequent methods for bypassing them. Defensive distillation was
proposed in [43] as a defense method. It extracts knowledge about the training points
and feeds it back as part of the training to improve the robustness of the network. The
method directly controls the amplitude of network gradients as a defense technique.
The authors in [44], however, proposed three attacks to bypass defensive distillation.
Similarly, the attacks of Athalye et al. [26], bypassed 7 out of 9 non-certified defenses
presented at ICLR 2018 that claimed to be white-box secure. The term non-certified
refers to defenses that do not provide any certificate that guarantees robustness against
particular attacks. The most common defense is adding adversarial examples to the
training set, also known as adversarial training. For that purpose different adversarial
attacks may be employed. Recently, training with the PGD attack is used in [24]
to provide the state of the art defense against adversarial examples for various image
classification datasets.

13

3. | Generation of Adversarial Examples for Classification and Regression

3.1.1. Our Contributions

In this work, we provide various new adversarial attacks for classification and regres-
sion tasks. We consider only white-box attacks where the full knowledge of the machine
learning model is assumed to be available. The common thread of these new attacks
is the perturbation analysis of learning algorithms that yields a tractable optimization
problem for generating new attacks. This idea, as it will be shown, underlies many ex-
isting attacks. We build upon our previous work [19] to introduce a connection between
perturbation analysis of learning algorithms and adversarial examples. For classification
tasks, we start with a fairly general formulation of the adversarial generation problem
(AGP), and show how perturbation analysis can be used to obtain a convex optimiza-
tion problem for generating adversarial examples. This problem, (AGP.II), is the basis
for generating adversarial examples. We address feasibility issues of the preceding prob-
lem and propose multiple techniques to get around this issue in general, among which
(3.4) is introduced for the first time. Besides, closed form solutions are provided for a
few cases. We propose novel adversarial attacks for classification, given in Algorithm
1, which are benchmarked with state of the art attacks. Our proposed attack is an
iterative method that constrains the norm of adversarial perturbations and we apply it
after randomization of the training instances.

Another contribution of this work is to use a similar technique in context of adversarial
perturbations for regression problems, a topic that has not yet been widely explored.
Regression loss functions differ from classification loss functions in that it is sufficient
to maximize the output perturbation measured by an application-dependent function,
for instance the `2-norm of the output error. In classification tasks, such maximization
might not necessarily change the output label particularly because these perturbations
might push the instances far away from classification margins. There is, however, no
natural margin in regression tasks. We use perturbation analysis to formulate the loss
maximization problem in a tractable fashion. Similar to classification problems, adver-
sarial examples can be generated using convex optimization with closed-form solutions
for a few special cases. The proposed optimization problems for regression are, to the
best of our knowledge, novel. We discuss single pixel and single subset attacks for re-
gression tasks. It is shown that this problem is related to the MaxCut problem and
hence difficult to solve. We propose a greedy algorithm to solve this problem.

Finally, the proposed algorithms are experimentally evaluated using state of the art
benchmarks for classification and regression tasks. In classification tasks, the perfor-
mance of our proposed attack is consistently among the top attacks and sometimes
the best one. In regression tasks, we demonstrate several attacks for regression tasks
such as image colorization, autoencoding and object detection. Although autoencoders
show better robustness in general, the other algorithms are severely degraded under
adversarial perturbations.

14

Fooling Classifiers with First-Order Perturbation Analysis | 3.2

3.2. Fooling Classifiers with First-Order
Perturbation Analysis

The perturbation analysis, also called sensitivity analysis, is used in signal processing for
analytically quantifying the error at the output of a system that occurs as consequence of
a known perturbation at the system’s input. Adversarial images can also be considered
as a slightly perturbed version of original images that manage to change the output of
the classifier. Indeed, the generation of adversarial examples in [20], [22] is implicitly
based on maximizing the effect of an input perturbation on a relevant function which is
either the classifier function or the cost function used for training. In the FGSM, given
in [20], the perturbation at the output of the training cost function is first analyzed
using first-order perturbation analysis of the cost function and then maximized to fool
the algorithm. The DeepFool method, given in [22], maximizes the output perturbation
for the linearized approximation of the underlying classifier which is indeed its first
order-perturbation analysis. In this section, we develop further the connection between
perturbation analysis and adversarial examples. To generate adversarial examples, we
provide a generic approach that starts from a fairly abstract formulation and transforms
it into a tractable problem by sequentially using perturbation analysis.

3.2.1. Adversarial Perturbation Design Problem

We start with formulating the problem of adversarial perturbation design. As it was
mentioned above, adversarial examples can be considered as a perturbed version of
training examples changed by an adversarial perturbation η. As we will see later, the
perturbation analysis is straightforward when the underlying system behaves smoothly
and can be modeled by differentiable functions. The classifier function, however, maps
inputs to discrete set of labels and therefore it is not differentiable. Instead, the classi-
fication problem is slightly modified, by defining the classifier as in Definition 2.2.1, to
facilitate the perturbation analysis. Using that definition, a classifier c : Rn → [k] can
be expressed as

c(x) = argmax
l∈[k]

{fl (x)} , (3.1)

where fl(x) : Rn → R’s are called score functions representing the probability of class
belonging. The function f(x) given by the vector (f1(x), . . . , fk(x)) can be assumed to
be differentiable almost everywhere for many classifiers.

The problem of adversarial generation consists of finding a perturbation that changes
the classifier’s output. However, it is desirable for adversarial perturbations to mod-
ify training instances only in an insignificant and unnoticeable way. This is controlled
by adding a constraint on the adversarial perturbation. For instance, the perturba-
tion generated by the FGSM is bounded in the `∞-norm and the DeepFool method
directly minimizes the norm of the perturbation that changes the classifier’s output.

15

3. | Generation of Adversarial Examples for Classification and Regression

While DeepFool might generate perturbations that are perceptible, the FGSM might
not change the classifier’s output. It is indeed an intriguing property of adversarial
examples that the perturbation does not distort the image significantly so that the
naked eye cannot detect any notable change in the images. One way of imposing this
property in adversarial design is to constrain the input perturbation to keep the output
of the ground truth classifier, also called oracle classifier [10], intact. The oracle classi-
fier represents the naked eye in case of image classification. The score functions of the
oracle classifier are denoted by gl(·). The undetectability constraint for an adversarial
perturbation η is formulated as

Tg(x,η) = gc(x)(x + η)− max
l 6=c(x)

gl(x + η) > 0 . (3.2)

This inequality means that even after applying the perturbation η to an instance x
with the correct label c(x), the score function of the correct class gc(x)(x+η) is superior
to the other score functions. A fundamental trait of the oracle classifier, therefore, is
its robustness to the adversarial perturbation η. Therefore the problem of adversarial
design can be formulated as follows.

Problem 3.2.1 (Adversarial Generation Problem). For a given x ∈ Rn, find a pertur-
bation η ∈ Rn to fool the classifier c(·) by the adversarial sample x̂ = x + η such that
c(x) 6= c(x̂) and the oracle classifier is not changed, i.e.,

Find : η

s.t. Tf (x,η) = fc(x)(x + η)− max
l 6=c(x)

fl(x + η) < 0

Tg(x,η) = gc(x)(x + η)− max
l 6=c(x)

gl(x + η) > 0 .
(AGP)

We pose the problem (AGP) as a general starting point for the adversarial design. As
it is, the problem (AGP) does not have that much utility in practice but serves as the
starting point. Next we explore different methods for making this problem tractable, all
of them based on perturbation analysis of constraints. Note that the function Tf (x, ·)
is exactly the margin of the classifier f , as defined in (2.5), at the point x + η with
label y = c(x). Formaly, that is Tf (x,η) = `(f ; x + η, c(x)), thus it is natural for an
attacker to aim at minimizing such margin. Since x and f are fixed for the attacker,
we simplify the notation by dropping the subscript f and assuming that gradients are
always with respect to η, that is T (x, ·) = Tf (x, ·) and ∇T (x, ·) = ∇ηTf (x, ·). We keep
these shorthand notations throughout the chapter.

3.2.2. Perturbation Analysis

The problem (AGP) constitutes the starting point for adversarial design. Two issues
prevent us from directly applying it. We use perturbation analysis to propose a solution
to these issues. First, the oracle function is not known in general. However, since the

16

Fooling Classifiers with First-Order Perturbation Analysis | 3.2

oracle function is assumed to be robust to adversarial perturbations, the constraint
can be replaced with constraints on the perturbation itself, for instance by imposing
upper bounds on the `p-norm of the perturbation. Indeed, if the perturbation analysis
is applied to the oracle function, its robustness implies that the output perturbation is
O(‖η‖p). Therefore, adding constraints on the `p-norm translates into constraints on
the oracle function as in (3.2). The constraint on the oracle function can be therefore
approximated by ‖η‖p ≤ ε for sufficiently small ε ∈ R+. This means that the noise is
sufficiently small in `p-norm sense so that the observer does not notice it. Different
classes of attacks can be obtained for different choices of p and are well known in the
literature such as `∞-attacks, `2-attacks and `1-attacks (see the survey in [9] for details).

The second problem with (AGP) is that the function T (x, ·) can be non-convex or
difficult to optimize directly. Here again, perturbation analysis can be employed to
approximate T (x, ·) with a tractable function like linear functions. The first order
perturbation analysis of T yields

T (x,η) = T (x,0) + η>∇T (x,0) +O(‖η‖2
2) ,

where O(‖η‖2
2) contains higher order terms. Following the above approximations using

perturbation analysis, we propose the following relaxed optimization problem.

Problem 3.2.2 (Relaxed Adversarial Generation Problem). For a given x ∈ Rn, a
perturbation η ∈ Rn is found to fool the classifier c(·) using

Find: η

s.t. T (x,0) + η>∇T (x,0) < 0, ‖η‖p ≤ ε . (AGP.II)

The above problem is the result of applying perturbation analysis to the problem (AGP).
It is a convex optimization problem that can be efficiently solved. One significant
advantage of the problem (AGP.II) is that it can incorporate additional constraints to
the optimization problem such as sparsity constraint that leads to single-pixel attacks.
Furthermore, as we will see later, this formulation of the problem yields some of the well
known existing adversarial methods. Unfortunately, the above problem is not always
feasible as stated in the following proposition.

Theorem 3.2.3. The optimization problem (AGP.II) is not feasible if for q = p
p−1

ε‖∇T (x,0)‖q < T (x,0) . (3.3)

Proof. The proof follows a simple duality argument and is an elementary optimization
theory result. A similar result can be inferred from [45]. We repeat the proof for
completeness. Note that the dual norm of `p is defined by

‖x‖∗p = sup{a>x : ‖a‖p ≤ 1}.

17

3. | Generation of Adversarial Examples for Classification and Regression

Furthermore ‖x‖∗p = ‖x‖q for q = p
p−1 . Since the `p-norm of η is bounded by ε, the

value of η>∇T (x,0) is always bigger than −ε‖∇T (x,0)‖∗p. However if the condition
(3.3) holds, then we have

T (x,0) + η>∇T (x,0) ≥ T (x,0)− ε‖∇T (x,0)‖∗p > 0 .

Therefore, the problem is not feasible.

Theorem 3.2.3 shows that given a vector x, the adversarial perturbation should have at
least `p-norm equal to T (x,0)

‖∇T (x,0)‖q . In other words if the ratio T (x,0)
‖∇T (x,0)‖q is small, then it

is easier to fool the network by the `p-attacks. In that sense, Theorem 3.2.3 provides an
insight into the stability of classifiers. In [22], the authors suggest that the robustness
of the classifiers can be measured as

ρ̂1(f) = 1
|D|

∑

x∈D

‖r̂(x)‖p
‖x‖p

,

where D denotes the test set and r̂(x) is the minimum perturbation required to change
the classifier’s output. The above theorem suggests that one can also use the following
as the measure of robustness, which was also derived in [45]

ρ̂2(f) = 1
|D|

∑

x∈D

T (x,0)
‖∇T (x,0)‖q

.

The lower ρ̂2(f), the easier it gets to fool the classifier and therefore it becomes less
robust to adversarial examples. One can also look at other statistics related to T (x,0)

‖∇T (x,0)‖q
in order to evaluate the robustness of classifiers.

To get around the feasibility problem, a first approach is to start with a small enough
ε and iteratively solve the problem (AGP.II). Other methods consist of relaxing one
of the constraints while keeping the other constraint intact. We will explicate these
methods in the next section.

3.2.3. Feasible Adversarial Perturbation Designs

Theorem 3.2.3 shows that the optimization problem (AGP.II) might not be feasible. We
propose to get around this issue by solving an optimization problem which keeps only
one of the constraints, depending on the scenario, and selects an appropriate objective
function to preserve the other constraint as much as possible. The objective function in
this sense models the deviation from the constraint and is minimized in the optimization
problem. We consider two optimization problems for this purpose.

First, the norm-constraint on the perturbation is preserved. The following optimization
problem, called gradient-based Norm-constrained Method (GNM), aims at minimizing
T (x,0) + η>∇T (x,0) by solving the following problem:

min
η

{
T (x,0) + η>∇T (x,0)

}
s.t. ‖η‖p ≤ ε . (3.4)

18

Fooling Classifiers with First-Order Perturbation Analysis | 3.2

This method finds the best perturbation under the norm-constraint and is a novel
formulation to the best of our knowledge. The constraint aims at guaranteeing that
the adversarial images are still imperceptible by an ordinary observer. Note that (3.4)
is fundamentally different from [22], [45], where the norm of the noise does not appear
as a constraint. Using a similar duality argument, the problem (3.4) has a closed form
solution given below.

Theorem 3.2.4. If ∇T (x,η) = (∂T (x,η)
∂η1

, . . . , ∂T (x,η)
∂ηn

), the closed form solution to the
minimizer of the problem (3.4) is given by

η∗ = −ε 1
‖∇T (x,0)‖q−1

q

sign(∇T (x,0))� |∇T (x,0)|q−1 (3.5)

for q = p
p−1 , where sign(·) and | · |q−1 are applied element-wise, and � denotes the

element-wise (Hadamard) product. Particularly for p = ∞, we have q = 1 and the
solution is given by the following

η∗ = −ε sign(∇T (x,0)) . (3.6)

Proof. Based on the duality argument from convex analysis, it is known that

sup
‖η‖p≤1

η>∇T (x,0) = ‖∇T (x,0)‖∗p ,

where ‖·‖∗ is the dual norm. This implies that the objective function is lower bounded by
T (x,0)− ε‖∇T (x,0)‖∗p. It is easy to verify that the minimum is attained by (3.5).

The advantage of (3.4), apart from being convex and enjoying computationally efficient
solutions, is that one can incorporate other convex constraints into the optimization
problem to guarantee additional required properties of the perturbation. Note that
the introduced method in (3.4) can also be used for other target functions or learning
problems. If the training cost function is maximized under a norm constraint, as in
[20], the solution of (3.4) with p = ∞ recovers the adversarial perturbations obtained
via the FGSM. The problem (3.4) guarantees that the perturbation is small, however,
it might not change the classifier’s output.

The second optimization problem, on the other hand, preserves the constraint for chang-
ing the classifier’s output and minimizes the perturbation norm instead. The feasibility
problem of (AGP.II) can therefore be simplified to

min
η
‖η‖p s.t. T (x,0) + η>∇T (x,0) ≤ 0 , (3.7)

which recovers the result in [45] and in [22] although without the iterative procedure.
This problem has a similar closed form solution.

19

3. | Generation of Adversarial Examples for Classification and Regression

Proposition 3.2.5. If ∇T (x,η) = (∂T (x,η)
∂η1

, . . . , ∂T (x,η)
∂ηn

), the closed form solution to
the problem (3.7) is given by

η∗ = − T (x,0)
‖∇T (x,0)‖q−1

q

sign(∇T (x,0))� |∇T (x,0)|q−1 (3.8)

for q = p
p−1 .

Note that the perturbation found in Proposition 3.2.5, like the solution to GNM, aligns
with the gradient of the classifier function and they only differ in their norm. Although
the perturbation in (3.8), unlike the solution to GNM, is able to fool the classifier, the
perturbation in (3.8) might be perceptible by the oracle classifier.

The formulations (3.4) and (3.7) do not exhaust all possibilities for solving the feasibility
problem above. There are other variants of adversarial generation methods that rely on
an implicit perturbation analysis of a relevant function. These methods can be easily
obtained by small modification of the methods above.

Iterative procedures can be easily adapted to the current formulation by repeating the
optimization problem until the classifier output changes while keeping the perturbation
small enough at each step such that the problem (AGP.II) remains feasible. Later we
provide an iterative version of the GNM and compare it with DeepFool [22], as well as
other methods.

Another class of methods relies on introducing randomness in the generation process.
We call this technique dithering. A notable example is the PGD attack introduced in
[24] which is one of the state of the art attacks. The first-order approximation is then
taken around another point η̃ with ε̃ , ‖η̃‖p ≤ ε. In other words we approximate
T (x, ·) by a linear function around the point η̃ within an ε̃-radius from η = 0. This
new point η̃ can be computed at random using arbitrary distributions with `p-norm
bounded by ε. Changing the center of the first order approximation from 0 to η̃ does
not change the nature of the problem since T (x,η) ≈ T (x, η̃)+(η− η̃)>∇T (x, η̃) leads
to the following problem

min
η
T (x, η̃) + (η − η̃)>∇T (x, η̃) s.t. ‖η‖p ≤ ε ,

which is equivalent to:

min
η
η>∇T (x, η̃) s.t. ‖η‖p ≤ ε . (3.9)

From this result one can add randomness to the computation of adversarial examples by
selecting η̃ in a random fashion. This is desirable when training models with adversarial
examples since it increases the diversity of the adversarial perturbations during training
(See [30] where the authors introduce the Randomized Fast Gradient Sign Method
(R-FGSM) attack).

20

From Classification to Regression | 3.3

The summary of our proposed approach is as follows. We start with the problem (AGP)
by determining an appropriate loss function T (x, ·). Next the problem is simplified to
a tractable problem like (AGP.II) using perturbation analysis. Additional constraints
on the perturbation are added at will. If the problem is feasible, the final solution
yields the adversarial perturbation. Otherwise, one can use iterative and randomization
techniques explained above or solve problems (3.4) or (3.7). We follow similar steps to
generate adversarial examples for regression problems in the next section.

3.3. From Classification to Regression

In classical statistical learning theory, regression problems are defined in the follow-
ing manner. Given m ∈ N samples {(xi,yi)}mi=1 drawn according to some unknown
distribution PX,Y , a regression model computes a function f : Rn → Rk that aims to
minimize the expected loss EP (L(f(x),y)), where L : Rn × Rk → R is a function that
measures the deviation between f(x) and y. While logarithmic losses are popular in
classification problems, the squared loss L(f(x),y) = ‖f(x) − y‖2

2 is mostly used for
the general regression setting. There is, however, no general natural loss function for
the regression problems, although each problem disposes of specific appropriate choices.
Squared loss is certainly suitable for function approximation tasks and in particular
autoencoders. Peak Signal to Noise Ratio (PSNR) is suitable for measuring the quality
of image outputs. Throughout this work, it is assumed that the loss function is properly
chosen for the adversarial attack on the underlying regression problem. For the sake of
notation, given y and f , let us redefine T (x,η) as T (x,η) = L(f(x + η),y).

For a given f , x and y, an adversarial attacker finds an additive perturbation vector η
that is imperceptible to the administrator of the target system, while maximizing the
loss of the perturbed input T (x,η) as

max
η
T (x,η) s.t. η is imperceptible .

In contrast with classification problems where maximum perturbations at the output
might not change the class, adversarial instances maximize the output perturbation in
regression problems.

As in (3.4), a constraint on the `p-norm of η models imperceptibility leading to the
following formulation of the problem

max
η
‖y− f(x + η)‖2

2 s.t. ‖η‖p ≤ ε . (3.10)

Consider the image colorization problem where the goal is to add proper coloring on
top of gray scale images. In this problem, f(·) is the regression algorithm and assumed
to be known however the ground truth colorization y is generally unknown. Without
knowing y, the optimization problem (3.10) is ill posed and cannot be solved in general.

21

3. | Generation of Adversarial Examples for Classification and Regression

There are some cases where the output y is known by the nature of the problem, for
instance, when f(·) is an encoder-decoder pair as in autoencoders for which y = x.

Since the goal is to perturb the acting regression algorithm, we can assume that y ≈ f(x)
which means that the algorithm provides a good although not perfect approximation of
the ground truth function. We use the formulation in (3.10) and discuss the implications
of applying the approximation y ≈ f(x) in later sections.

3.3.1. A Quadratic Programming Problem

In general f(x) is a non-linear and non-convex function, so we have that T (x, ·) is
non-convex. Here again the perturbation analysis of f(·) can be used to relax (3.10)
and to obtain a convex formulation of the adversarial problem. The first order per-
turbation analysis of f(x) yields the approximation f(x + η) ≈ f(x) + Jf (x)η, where
Jf (·) is the Jacobian matrix of f(·). This approximation leads to the following convex
approximation of T (x, ·):

T (x,η)
≈ ‖y‖2

2 − 2y>(f(x) + Jf (x)η) + ‖f(x) + Jf (x)η‖2
2

= ‖y‖2
2 − 2y>f(x) + ‖f(x)‖2

2

+ 2 (f(x)− y)T Jf (x)η + ‖Jf (x)η‖2
2 .

Since the first three terms of this expression do not depend on η, the optimization
problem from (3.10) reduces to

max
η

2 (f(x)− y)T Jf (x)η + ‖Jf (x)η‖2
2 s.t. ‖η‖p ≤ ε . (3.11)

The above convex maximization problem is, in general, challenging and NP-hard.
Nevertheless, since y is usually not known, we may use the assumption that y ≈ f(x),
which simplifies the problem to

max
η
‖Jf (x)η‖2

2 s.t. ‖η‖p ≤ ε . (3.12)

Although this problem is a convex quadratic maximization under an `p-norm constraint
and in general challenging, it can be solved efficiently in some cases. For general p,
the maximum value is indeed related to the operator norm of Jf (x) [46]. This norm is
central in stability analysis of many signal processing algorithms (for instance see [47]).
The operator norm of a matrix A ∈ Rm×n between `p and `q is defined as

‖A‖p→q , sup
‖x‖p≤1

‖Ax‖q .

Using this notion, we can see that ‖η
ε
‖p ≤ 1 leads to ‖Jf (x)η‖2 = ε‖Jf (x)η

ε
‖2 ≤

ε‖Jf (x)‖p→2. Therefore, the problem of finding a solution to (3.12) amounts to finding

22

From Classification to Regression | 3.3

the operator norm ‖Jf (x)‖p→2. First observe that the maximum value is achieved on
the border namely for ‖η‖p = ε. In the case where p = 2, this problem has a closed-
form solution. If vmax is the unit `2-norm eigenvector corresponding to the maximum
eigenvalue of Jf (x)>Jf (x), then

η∗ = ±εvmax (3.13)

solves the optimization problem. The maximum eigenvalue of Jf (x)>Jf (x) corresponds
to the square of the spectral norm ‖Jf (x)‖2→2.

Another interesting case is p = 1. In general, the `1-norm is usually used as a regular-
ization technique to promote sparsity. When the solution of a problem should satisfy a
sparsity constraint, the direct introduction of this constraint into the optimization leads
to NP-hardness of the problem. Instead the constraint is relaxed by adding `1-norm
regularization. The adversarial perturbation designed in this way tends to have only a
few non-zero entries. This corresponds to scenarios like single pixel attacks where only
a few pixels are supposed to change. For this choice, we have

‖A‖1→2 = max
k∈[n]
‖ak‖2 ,

where ak’s are the columns of A. Therefore, if the columns of the Jacobian matrix are
given by Jf (x) = [j1 . . . jn], then

‖Jf (x)η‖2 ≤ εmax
k∈[n]
‖jk‖2 ,

and the maximum is attained with

η∗ = ±εek∗ for k∗ = argmax
k∈[n]

‖jk‖2 , (3.14)

where the vector ei is the i-th canonical vector. For the case of gray-scale images,
where each pixel is represented by a single entry of x, this constitutes a single pixel
attack. Some additional constraints must be added in the case of RGB images, where
each pixel is represented by a set of three values.

Finally, the case where the adversarial perturbation is bounded with the `∞-norm is
also of particular interest. This bound guarantees that the noise entries have bounded
values. The problem of designing adversarial noise corresponds to finding ‖Jf (x)‖∞→2.
Unfortunately, this problem turns out to be NP-hard [48]. However, it is possible to
approximate this norm using semi-definite programming as proposed in [49]. Semi-
definite programming scales badly with input dimension in terms of computational
complexity, namely O(n6) with n the underlying dimension, and therefore might not be
suitable for fast generation of adversarial examples when the input dimension is very
high. We address these problems later in Section 3.4, where we obtain fast approximate
solutions for ‖Jf (x)‖∞→2 and single pixel attacks.

23

3. | Generation of Adversarial Examples for Classification and Regression

3.3.2. A Linear Programming Problem

The methods derived in Section 3.3.1 suffer from one main drawback, they require
storing Jf (x) ∈ Rk×n into memory. While this may be doable for some applications, it
is not feasible for others. For example, if the target system is an autoencoder for RGB
images with size 680 × 480, that is n = k = 680 · 480 · 3 ≈ 9 · 105, storing Jf (x) ∈
R9·105×9·105 requires loading around 8 · 1011 values into memory, which is in most cases
not tractable. Note that, in order to solve (3.12) for p = 2, we would require computing
the eigenvalue decomposition of Jf (x)>Jf (x) as well. This motivates us to relax the
problem into a linear programming problem as in Section 3.2, where Jf (x) is computed
implicitly and we do not require to store it. To that end, we relax (3.10) by directly
applying a first order approximation of T , that is T (x,η) ≈ T (x,0) + η>∇T (x,0) .
Using this approximation the problem from (3.10) is now simplified to

max
η
∇T (x,0)>η s.t. ‖η‖p ≤ ε , (3.15)

where ∇T (x,0) = −2Jf (x)T (y− f(x)). Note that the attacks discussed in Section 3.2
for classification follow the same formulation with another choice of T (x, ·). Therefore,
the closed-form solution of (3.15) can be obtained from (3.5).

Unfortunately using y ≈ f(x) yields zero gradient in (3.15), thus leaving this ap-
proximation useless for obtaining adversarial perturbations. This problem is tackled by
taking the approximation around another random point η̃ within and ε̃-ball radius from
η = 0 as in (3.9), with ε̃ ≤ ε. As it was mentioned above, this dithering mechanism is
also used in classification problems for instance in [24].

3.4. Single Subset Attacks

Another popular way of modeling undetectability in the field of image recognition, is by
constraining the number of pixels that can be modified by the attacker. This gave birth
to single and multiple pixel attacks. Note that, for the case of gray-scale images, the
solutions obtained in (3.14) and (3.5) provide already single pixels attacks. This is not
true for RGB images where each pixel is represented by a subset of three values. Since
our analysis is not limited to image based systems, we refer to these type of attacks
which target only a subset of entries as single subset attacks.

Since perturbations belong to Rn, let us partition [n] = {1, . . . , n} into S possible subsets
S1, . . . ,SS. The sets can in general have different cardinalities. However, we assume here
that all of them have the same cardinality of Z = n/S, where Ss = {i1s, . . . , iZs } ⊆ [n].
We define the mixed zero-S norm ‖ ·‖0,S of a vector, for the partition S = {S1, . . . ,SS},
as the number of subsets containing at least one index associated to a non-zero entry

24

Single Subset Attacks | 3.4

of x2, that is

‖x‖0,S =
S∑

i=1
1(‖xSi‖6=0) ,

where xSi denotes the vector containing the entries of x with index belonging to Si.
Therefore, ‖η‖0,S counts the number of subsets modified by an attacker. To guarantee
that only one subset is active, an additional constraint can be added to the optimization
problem. This leads to the following formulation of the single subset attack for the
regression problem

max
η
‖y− f(x + η)‖2

2 s.t. ‖η‖∞ ≤ ε , ‖η‖0,S = 1 . (3.16)

A similar formulation holds as well for classification problems. The mixed norm ‖.‖0,S
in widely used in signal processing and compressed sensing to promoting group sparsity
[23].

3.4.1. Single Subset Attack for the Quadratic Problem

As in Section 3.3.1, the approximations f(x+η) ≈ f(x)+Jf (x)η and y ≈ f(x) simplify
the problem (3.16) to

max
η
‖Jf (x)η‖2

2 s.t. ‖η‖∞ ≤ ε , ‖η‖0,S = 1 . (3.17)

As it was mentioned above, the problem is NP-hard without the mixed-norm constraint.
We try to find an approximate solution to a simpler problem where only the set Ss =
{i1s, . . . , iZs } is to be modified by the attacker for s ∈ [S]. Finding the perturbation on
this set amounts to solving the following problem:

ηs = argmax
η
‖Jf (x)η‖2

2 s.t. ‖η‖∞ ≤ ε , (η)i = 0 ∀i /∈ Ss , (3.18)

where (η)i denotes the i-th entry of η. As discussed in Section 3.3.1, this problem is
NP-hard. Since the maximization of a quadratic bowl over a box constraint lies in the
corner points of the feasible set, we have

ηs = ε
Z∑

z=1
ρ∗izseizs

with ρ∗s , (ρ∗i1s , . . . , ρ
∗
iZs

)> ∈ {−1,+1}Z . The optimization problem can be equivalently
formulated as follows:

ρ∗s = argmax
ρs∈{−1,+1}Z

∥∥∥∥∥Jf (x)(ε
Z∑

z=1
ρizseizs)

∥∥∥∥∥

2

2

= argmax
ρs∈{−1,+1}Z

Z∑

z=1

Z∑

w=1
ρizsρiws j>izs jiws ,

2Similar to the so-called `0-norm, this is not a proper norm.

25

3. | Generation of Adversarial Examples for Classification and Regression

for ρs , (ρi1s , . . . , ρiZs)> ∈ {−1,+1}Z and jk the k-th column of Jf (x). This problem is
indeed related to the well known MaxCut problem introduced by [50]. The literature
abounds with works on the MaxCut problem, the efficient solutions and their recovery
guarantees. A common solution to this problem is a relaxation by a semi-definite pro-
gramming problem. However, as we discussed semi-definite programming solvers scales
badly with the input dimension. Therefore, in the spirit of obtaining fast and scal-
able approximate solutions, that can later be used to design adversarial perturbations
through iterative approximations, we propose to obtain approximate solutions using a
greedy approach. To that end, and without loss of generality, let us assume that for
a given Ss, the indices i1s, . . . , iZs ∈ Ss are sorted such that ‖ji1s‖2 ≥ · · · ≥ ‖jiZs ‖2. An
approximate solution for ρ∗izs is calculated in a greedy manner by setting ρ∗i1s = 1 and
recursively calculating

ρ∗izs = sign

z−1∑

j=1
ρ∗
ijs

jijs

>

jizs

 ∀ z = 2, . . . , Z . (3.19)

As for greedy algorithms, this solution is fast, however, there is no optimality guarantee
for it. For the case where S = 1 and S = n, the expression (3.19) is an approximate
solution for (3.12) under the `∞-norm constraint on the perturbation (i.e., p =∞).

This method provides an approximate solution to the problem for a given choice of Ss.
The solution to (3.17) can then be obtained by solving the following problem:

η∗ = ηs∗ , (3.20)

with s∗ = argmax
s
‖Jf (x)ηs‖2

2 and ηs = ε
Z∑

z=1
ρ∗izseizs .

This is based on naive exhaustive search over the subsets which is tractable only when
the number of subsets is small enough.

3.4.2. Single Subset Attack for the Linear Problem

Following the steps from Section 3.3.2, we make use of the approximation T (x,η) ≈
T (x, η̃) + (η − η̃)>∇T (x, η̃) which leads to the formulation of (3.16) as a linear pro-
gramming problem

max
η
η>∇T (x, η̃) s.t. ‖η‖∞ ≤ ε , ‖η‖0,S = 1 . (3.21)

In the same manner as Section 3.4.1, for a given subset Ss we define ηs as in (3.18).
For this linear problem that results in

ηs = argmax
η
∇T (x, η̃)>η s.t. ‖η‖∞ ≤ ε , (η)izs = 0 ∀izs /∈ Ss .

26

Iterative Versions of the Linear Problem | 3.5

Type Design Adversarial Exact Application
of Attack Algorithm Perturbation Solution

`2-constrained (3.15) (3.13) Yes Regression
`2-constrained (3.12) (3.5) Yes Classification/Regression
`∞-constrained (3.15) (3.20) No Regression
`∞-constrained (3.12) (3.6) Yes Classification/Regression
Single-subset (3.17) (3.20) No Regression
Single-subset (3.21) (3.22) Yes Classification/Regression

Table 3.1.: Summary of the obtained closed-form solutions for adversarial perturbations

Attack Design Algorithm Iterative Dithering
FGSM [20] (3.4) with cross-entropy loss × ×

R-FGSM [30] (3.4) with cross-entropy loss × X
BIM [25] (3.4) with cross-entropy loss X ×
PGD [24] (3.4) with cross-entropy loss X X

DeepFool [22] (3.7) with p = 2 X ×
Ensemble [30] (3.4) with combined cross-entropies × X

Targeted (3.4) with (3.23) loss X X
Algorithm 1 (3.4) X X

Table 3.2.: Summary of existing attacks in classification obtained from presented algo-
rithms AGP.II

In contrast to the definition of ηs from (3.18), in this case we have a closed form solution
for ηs as

ηs = ε
Z∑

z=1
sign((∇T (x, η̃))izs)eizs ,

which implies that ∇T (x, η̃)>ηs = ∑Z
z=1

∣∣∣(∇T (x, η̃))izs
∣∣∣. Therefore, the linear problem

for the single subset attack (3.21) has the closed form solution

η∗ = ηs∗ , with s∗ = argmax
s

Z∑

z=1

∣∣∣(∇T (x, η̃))izs
∣∣∣ (3.22)

and ηs = ε
∑Z
z=1 sign((∇T (x, η̃))izs)eizs . This results are valid for classification as well

when replacing T with T (x,η) = −(fc(x)(x + η)−maxl 6=c(x) fl(x + η)).

3.5. Iterative Versions of the Linear Problem

In the previous sections we have formulated several variations of the problem of gen-
erating adversarial perturbations. In the same spirit as DeepFool, we make use of the

27

3. | Generation of Adversarial Examples for Classification and Regression

obtained closed form solutions to design adversarial perturbations using iterative ap-
proximations. In Algorithm 1 an iterative method based on the linear problem (3.15)
is introduced. This corresponds to a gradient ascent method for maximizing T (x,η)
with a fixed number of iterations and steps of equal `p-norm. While generalizing the

Algorithm 1 Iterative extension for `p constrained methods.
input: x, f , T , ε, ε̃1, . . . , εT .
output: η∗.
Initialize η1 ← 0.
for t = 1, . . . , T do
η̃t ← ηt + random(ε̃t)
η∗t ← argmaxη η>∇T (x, η̃t) s.t. ‖η‖p ≤ ε/T (Table 3.1)
ηt+1 ← ηt + η∗t

end for
return: η∗ ← ηT

results for (3.15) into a gradient ascent method is trivial, the same is not true for the
quadratic problem (3.12). The main reason for this is that, using the approximation
y ≈ f(x), we were able to simplify (3.11) into (3.12) since y−f(x) ≈ 0. For an iterative
version of this solution we must successively approximate f(·) around different points
x̃, which leads to y − f(x̃) 6= 0 even if y = f(x). We leave the task of investigating
alternatives for designing iterative methods with the results for (3.12) for future works,
and in Section 3.6 show that the non-iterative solutions for this method are still top
performing.

Finally, replacing line 5 of Algorithm 1 with

η∗t ← argmax
η

η>∇T (x, η̃t) s.t. ‖η‖p ≤ ε , ‖η‖0,S = 1

leads to a multiple subset attack, since we modify the values of one subset at every
iteration. At every iteration, we may exclude the previously modified subsets from S
in order to ensure that a new subset is modified.

3.6. Experiments

In this section, the proposed methods are used to fool neural networks in classification
and regression problems. But first, we summarize the presented algorithms and the
relation with other existing attacks. The proposed attacks are summarized in Table
3.1. These attacks rely on perturbation analysis of learning algorithms and can be used
for classification and regression tasks. The approach we chose to derive these algorithms
is capable of rendering other existing methods by adjusting the choice of T (x, ·) and
other design parameters. This point has been discussed in Table 3.2. In that table we

28

Experiments | 3.6

also include the black-box ensemble attack of [30] and targeted attacks [21], [29], [34],
[44], [52]. Consider first the ensemble attack of [30]. A black-box attack in nature, this
attack does not have access to the target neural network and uses another function f ,
potentially similar to the neural network’s function, hoping that the obtained adversarial
example transfers to the unknown network. After choosing multiple similar neural
networks, the attack adopts the loss function as the averaged sum of cross entropies of
these networks. Once the loss function is fixed, the algorithm, similar to above methods,
uses a combination of perturbation analysis with an optimization problem of type (3.4)
or (3.7) to solve the problem. Targeted attacks are used when the goal is to generate
adversarial examples that are classified by target system as belonging to some given
target class l ∈ [k]. That corresponds to fixing the loss function to

T (x,η) = fc(x)(x + η)− fl(x + η) . (3.23)

After that, the process of finding adversarial examples leverages the same techniques,
i.e., perturbation analysis and convex optimization, discussed in this work. This is, how-
ever, only a side feature of our approach. Our proposed attacks are still of independent
interest.

The goal of this section is twofold. First, we would like to examine the performance of
the newly proposed attack in classification tasks, thereby showing the strength of our
proposed method. Secondly we generate adversarial perturbations for various regression
tasks which only received small attention in the literature. For this purpose we use the
MNIST [53], CIFAR-10 [54], STL-10 and PASCAL VOC 2012 datasets.

3.6.1. Classification

As discussed in Section 3.2, the appropriate loss function T (x,η) for image classification
tasks that should be used in (3.4) is given by (AGP). For this problem, ‖η‖∞ ≤ ε
is a common constraint that models the undetectability, for sufficiently small ε, of
adversarial noise by an observer. However solving (3.4) involves finding the function
T (x,0) which is defined as the minimum of k − 1 functions with k being the number
of different classes. In large problems, this may significantly increase the computations
required to fool one image. Therefore, we include a simplified version of this algorithm
in our simulations. The non-iterative methods might not guarantee the fooling of the
underlying network but on the other hand, the iterative methods might suffer from
convergence problems.

To benchmark the proposed adversarial algorithms, we consider the following methods
tested on the aforementioned datasets:

• Algorithm 1: This algorithm solves (3.4) with T (x, ·) given by (AGP). Note
that, for evaluating T at a given x one must search over all l 6= c(x). This can be
computationally expensive when the number of possible classes (i.e., the number of
possible values for l) is large. The `∞-norm is chosen for the constraint. Moreover,

29

3. | Generation of Adversarial Examples for Classification and Regression

an example of adversarial images obtained using this algorithm is shown in Figure
3.3.

• Algorithm 1-T : This is the iterative version of Algorithm 1 with T iterations.
The adversarial perturbation is the sum of T perturbation vectors with `∞-norm
of ε/T computed through T successive approximations.

• Algorithm 2: This algorithm approximates (AGP) with T (x,η) ≈ fc(x)(x + η),
thus reducing the computation of T (x) when the number of classes is large. Note
that we cannot use T (x,η) < 0 to guarantee that we have fooled the network.
Nevertheless, the lower the value of T (x,η) the most likely it is that the network
has been fooled. The same reasoning is valid for the FGSM algorithm.

• FGSM: This well-known method was proposed by [20] where T (x,η) is replaced
by the negative training loss for the input x + η. Usually the cross-entropy loss
is used for this purpose. With the newly replaced function, (3.4) is solved for
p =∞.

• PGD: This method, given in [24], is the iterative version of FGSM (T > 1) with
ε̃1 = ε and ε̃t = 0 for all t > 1. It constitutes one of the state of the art attacks
in the literature.

• DeepFool: This method was proposed in [22] and makes use of iterative approx-
imations. Every iteration of DeepFool can be written within our approach by
replacing T by

T (x,η) = fc(x)(x + η)− f
l̂
(x + η) , where

l̂ = argmin
l 6=c(x)

{
|fc(x)(x)− fl(x)|

‖∇fc(x)(x)−∇fl(x)‖q

}
.

The adversarial perturbations are computed using p = ∞, thus q = 1, with a
maximum of 50 iterations. These parameters were taken from [22]. Note that l̂ is
chosen to minimize the robustness ρ̂1(f) for S = {x}.

• Random: For benchmarking purposes, we also consider random perturbations
with independent Bernoulli distributed entries with P(ε) = P(−ε) = 1

2 . This helps
to demarcate the essential difference of adversarial and random perturbations.

The above methods are tested on the following deep neural network architectures:

• MNIST : A fully connected network with two hidden layers of size 150 and 100
respectively, as well as the LeNet-5 architecture [55].

• CIFAR-10 : The Network In Network (NIN) architecture [56], and a 40 layer
DenseNet [57].

30

Experiments | 3.6

Test ρ̂1(f) ρ̂2(f) fooled
error [22] (ours) >99%

FCNN (MNIST) 1.7% 0.036 0.034 ε =0.076
LeNet-5 (MNIST) 0.9% 0.077 0.061 ε =0.164
NIN (CIFAR-10) 13.8% 0.012 0.004 ε =0.018
DenseNet (CIFAR-10) 5.2% 0.006 0.002 ε =0.010

Table 3.3.: Robustness measures for different classifiers

As a performance measure, we use the fooling ratio defined in [22] as the percentage
of correctly classified images that are missclassified when adversarial perturbations are
applied. Of course, the fooling ratio depends on the constraint on the norm of adversar-
ial examples. Therefore, in Figure 3.1 we observe the fooling ratio for different values
of ε on the aforementioned neural networks. As expected, the increased computational
complexity of iterative methods such as DeepFool and Algorithm 1-T translates into
increased performance with respect to non-iterative methods. Nevertheless, as shown
in Figures 3.1(a) and (c), the performance gap between iterative and non-iterative al-
gorithms is not always significant. For the case of iterative algorithms, the proposed
Algorithm 1-T outperforms DeepFool and PGD. The same holds true for Algorithm 1
with respect to other non-iterative methods such as FGSM, while Algorithm 2 obtains
top performance with respect to FGSM. However, note that adversarial training using
PGD is the state of the art defense against adversarial examples, thus PGD may still
be a better choice than Algorithm 1-T for adversarial training. Some adversarial ex-
amples obtained using Algorithm 1-T are shown in Figure 3.2. Finally, we measure the
robustness of different networks using ρ̂1(f) and ρ̂2(f), with p = ∞. We also include
the minimum ε, such that DeepFool obtains a fooling ratio greater than 99%, as a per-
formance measure as well. These results are summarized in Table 3.3, where we obtain
coherent results between the 3 measures.

3.6.2. Regression

For the sake of clarity we use the following notation to distinguish between the different
regression methods used in this section:

• quadratic-`p: This algorithm computes adversarial perturbations by solving the
quadratic problem (3.12) under the `p-norm constraint.

• linear-`p-T : Similarly, this attack refers to Algorithm 1 with T iterations and the
`p-norm constraint.

• linear-pixel-T : Since the experiments carried out in this section are exclusively
image based, we use this notation to refer to the multiple subset attack with
‖η‖0,S = T .

31

3. | Generation of Adversarial Examples for Classification and Regression

• random-`p: Similarly to [22], we show the validity of our attacks by compar-
ing their performance against appropriate types of random noise. For p = 2,
the random perturbation is computed as η = εw/‖w‖2, where the entries of w
are independently drawn from a Gaussian distribution. For p = ∞ the random
perturbation η has independent Bernoulli distributed entries with parameter 1/2.

• random-pixel-T : Random attacks are considered as well for multiple subset
attacks with p = ∞. The random perturbations are added to only T randomly
chosen pixels, while the other pixels are untouched.

The random attacks are used for benchmarking purposes. The algorithms behind our
proposed attacks, i.e., the first three attacks, are summarized in Table 3.1. Since the
aim of the proposed attacks is to maximize the MSE of the target system, we use the
Peak Signal to Noise Ratio, which is a common measure for image quality and is defined
as PSNR = (maximum pixel value)2/MSE, as the performance metric.

For our experiments we use the MNIST, CIFAR-10 and STL-10 and PASCAL VOC
2012 datasets. A different neural network is trained for each of these datasets. As
in [38], we also consider autoencoders. For MNIST and CIFAR-10 we have trained
fully connected autoencoders with 96% and 50% compression rates respectively. Next,
we train the image colorization architecture of [58] for the STL-10 dataset. Finally,
we use the YOLO architecture for object detection of [51]. The convolutional layers
of the proposed network are trained on the ImageNet dataset with 1000 classes. The
experiments are run on the PASCAL VOC 2012 dataset [59], which is a common dataset
for object detection tasks.

Different example images obtained from applying the proposed methods on these net-
works are shown in Figure 3.3. For instance, in Figure 3.3(a) we observe that the au-
toencoder trained on MNIST is able to denoise random perturbation correctly but fails
to do so with adversarial perturbations obtained using the quadratic-`∞ method. Simi-
larly, in Figure 3.3(b), the random-pixel-100 algorithm distorts the output significantly
more than its random counterpart. These two experiments align with the observation of
[38] that autoencoders tend to be more robust to adversarial attacks than deep neural
networks used for classification. The deep neural network trained for colorization is
highly sensitive to adversarial perturbations as illustrated in Figure 3.3(c), where the
original and adversarial images are nearly identical.

While the results shown in Figure 3.3 are for some particular images, in Figure 3.4
we measure the performance of different adversarial attacks using the average output
PSNR over 20 randomly selected images from the corresponding datasets. In Figures
3.4(a) and 3.4(b) we observe how computing adversarial perturbations through suc-
cessive linearizations improves the performance. This behavior is more pronounced
in Figure 3.4(d), where iterative linearizations are responsible for more than 10 dB
of output PSNR reduction. Note that, in Figures 3.4(a) and 3.4(b) the non-iterative
quadratic-`p algorithm performs competitively, even when compared to iterative meth-
ods. In Figure 3.4(b) we observe that the autoencoder trained on CIFAR-10 is robust

32

Outlook | 3.7

to single pixel attacks. However, an important degradation of the systems performance,
with respect to random noise, can be obtained through adversarial perturbations in the
100 pixels attack (≈ 9.7% of the total number of pixels). Moreover, in Figure 3.4(d),
we can clearly observe the instability of the image colorization network to adversarial
attacks. Finally, object detection tasks can be treated as regression problems, since the
predicted location and size of the detected object can be approximated as continuous
variables. Therefore, we can observe in Figure 3.5(a) how the performance of YOLO at
detecting objects is severely degraded when adding adversarial perturbations. The loss
function used in this experiment is the same used in [51], which accounts for the correct
labeling of the detected objects as well as the correct placement of the boxes surround-
ing them. Some concrete example images from the PASCAL VOC 2012 dataset are
shown in Figure 3.5(b). These experiments show that, even though autoencoders are
somehow robust to adversarial noise, this may not be true for deep neural networks in
other regression problems.

3.7. Outlook

The perturbation analysis of different learning algorithms underlies many attacks. In
this work, the generation of adversarial examples is pursued by applying perturbation
analysis to a fairly general problem and is formulated as a convex program. The other
techniques like iterative methods and randomization of instances can be additionally
considered. We used this generic approach to propose new attacks for classification
and regression problems under various desirable constraints. This includes in particular
single-pixel and single-subset attacks. Through multiple examples, regression problems
are shown to be equally vulnerable to adversarial perturbations. Our new attacks on
classification functions are benchmarked through empirical simulations of the fooling
ratio against the well-known FGSM, DeepFool, and PGD methods. For regression
tasks, three use cases are considered, namely, autoencoders, images colorization and
object detection algorithms.

For classification tasks, the adversarial vulnerability is directly related to the proper-
ties of classification margin. Regression algorithms, however, do not dispose such a
notion. It is an interesting research question to investigate the vulnerabilities of these
algorithms.

33

3. | Generation of Adversarial Examples for Classification and Regression

0 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1

0

50

100

ε

Fo
ol

in
g

R
at

io
(in

%
)

DeepFool
linear-`∞-10
linear-`∞-5
linear-`∞-1
FGSM
PGD
random-`∞

(a) FCNN

0 5 · 10−2 0.1 0.15 0.2

0

50

100

ε

Fo
ol

in
g

R
at

io
(in

%
)

(b) LeNet-5

0 1 2 3

·10−2

0

50

100

ε

Fo
ol

in
g

R
at

io
(in

%
)

(c) NIN

0.2 0.4 0.6 0.8 1

·10−2

0

50

100

ε

Fo
ol

in
g

R
at

io
(in

%
)

(d) DenseNet

Figure 3.1.: (a) and (b): Fooling ratio of the adversarial samples for different values of
ε on the MNIST test dataset. (c) and (d): Fooling ratio of the adversarial
samples for different values of ε on the CIFAR-10 test datasets.

34

Outlook | 3.7

original adv original adv

nine zero airplane ship

eight three truck car

two three cat dog
(a) MNIST (b) CIFAR-10

Figure 3.2.: Examples of correctly classified images that are misclassified when adver-
sarial noise is added using Algorithm 1. The LeNet-5 architecture is used
in the MNIST examples, while DenseNet is used in the CIFAR-10 example.

35

3. | Generation of Adversarial Examples for Classification and Regression

input output

o
ri
g
in
a
l

a
d
v
e
rs
a
ri
a
l

n
o
is
y

(r
a
n
d
o
m
)

input output

(a) Autoencoder (96% compression)
input output

o
ri
g
in
a
l

a
d
v
e
rs
a
ri
a
l

n
o
is
y

(r
a
n
d
o
m
)

input output

(b) Autoencoder (50% compression)
input output

o
ri
g
in
a
l

a
d
v
e
rs
a
ri
a
l

n
o
is
y

(r
a
n
d
o
m
)

input output

(c) Image Colorization

Figure 3.3.: Adversarial examples for (a): MNIST autoencoder obtained using
quadratic-`∞, (b): CIFAR-10 autoencoder obtained using linear-pixel-100,
(c): STL-10 colorization network obtained using linear-`∞-20.

36

Outlook | 3.7

10 15 20 25 30 35 40

12

14

16

18

20

22

input PSNR (dB)

ou
tp

ut
PS

N
R

(d
B)

rand-`2
linear-`2-1
linear-`2-10
linear-`2-20
quadratic-`2-1

(a)

10 15 20 25 30 35 40

12

14

16

18

20

22

input PSNR (dB)

ou
tp

ut
PS

N
R

(d
B)

rand-`∞
linear-`∞-1
linear-`∞-10
linear-`∞-20
quadratic-`∞-1

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7

14

16

18

20

22

24

input PSNR (dB)

ou
tp

ut
PS

N
R

(d
B)

linear-pixel-1
linear-pixel-10
rand-pixel-1
rand-pixel-10

(c)

10 15 20 25 30 35 40

15

20

25

30

35

40

input PSNR (dB)

ou
tp

ut
PS

N
R

(d
B)

rand-`∞
linear-`∞-1
linear-`∞-10
linear-`∞-20

(d)

Figure 3.4.: Output PSNR for (a): MNIST autoencoder under `2-norm constraint, (b):
MNIST autoencoder under `∞-norm constraint, (c): CIFAR-10 autoen-
coder under multiple pixel attacks, (d): STL-10 colorization network under
`∞-norm constraint.

37

3. | Generation of Adversarial Examples for Classification and Regression

5 · 10−2 0.1 0.15 0.2

10

15

20

25

30

ε

av
er

ag
e

lo
ss

original
rand-`∞
linear-`∞-5
linear-`∞-10

(a)
Original Random Adversarial

(b)

Figure 3.5.: The YOLO architecture under `∞-norm constraint in the PASCAL VOC
2012 dataset. (a) Output loss, defined as in [51]. (b) Adversarial examples
obtained using linear-`∞-10.38

4
On the Effect of Low-Rank Weights on

Adversarial Robustness

Recently, there has been an abundance of works on designing DNNs that are robust
to adversarial examples. In particular, a central question is which features of DNNs
influence adversarial robustness and, therefore, can be used to design robust DNNs. In
this chapter, this problem is studied through the lens of compression which is captured
by the low-rank structure of weight matrices. It is first shown that adversarial training
tends to promote simultaneously low-rank and sparse structure in the weight matrices
of neural networks. This is measured through the notions of effective rank and effective
sparsity. In the reverse direction, when the low rank structure is promoted by nuclear
norm regularization and combined with sparsity inducing regularizations, neural net-
works show significantly improved adversarial robustness. The effect of nuclear norm
regularization on adversarial robustness is paramount when it is applied to convolu-
tional neural networks. Although still not competing with adversarial training, this
result contributes to understanding the key properties of robust classifiers.

4.1. Related Work

Different hypotheses have been made about the existence of adversarial examples. In
[20], it is hypothesized that DNNs are particularly vulnerable to adversarial examples

39

4. | On the Effect of Low-Rank Weights on Adversarial Robustness

because of their too linear decision boundary in the vicinity around the data points
together with the assumption of sufficiently large dimensionality of the problem. Tanay
& Griffin [39] showed that it is possible to train linear classifiers that are resistant to
adversarial attacks which stands in contrast to the linearity hypothesis. Moreover, it is
exemplified that high dimensional problems are not necessarily more sensitive to adver-
sarial examples. Further, Sabour et al. [60] manipulated deep representations instead of
the input and argued that the linearity hypothesis is not sufficient to explain this type
of attack. Regarding the observed transferability of adversarial examples across differ-
ent DNN architectures, Szegedy et al. [6] and Tràmer et al. [61] proposed a method
for estimating the dimensionality of the space of adversarial examples. The authors
showed that adversarial examples span a contiguous subspace of large dimensionality.
In addition, such subspaces intersect for different DNNs that have common adversarial
examples. Fawzi et al. [62] proposed the low flexibility of DNNs, compared to the
difficulty of the classification task, as a reason for the existence of adversarial examples.
However, on subsequent work [7] the authors argued that the flatness of the decision
boundary is a reason for the existence of adversarial examples. Another perspective was
proposed by Tanay et al. [39] with the boundary tilting mechanism. It was argued that
adversarial examples exist when the decision boundary lies close to the sub-manifold of
sampled data. The authors introduced the notion of adversarial strength which refers
to the deviation angle between the target classifier and the nearest centroid classifier. It
was shown that the adversarial strength can be arbitrarily increased, independently of
the classifier’s accuracy, by tilting the boundary. Rozsa et al. [63] give another expla-
nation, arguing that over the course of training the correctly classified samples do not
have a significant impact on shaping the decision boundary and eventually remain close
to it. This phenomenon is called evolutionary stalling. Further work of Rozsa et al. [64]
performed an empirical study of the correlation between robustness and accuracy by
attacking different state-of-the-art DNNs. Their results suggest that higher accuracy
DNNs are more sensitive to adversarial attacks than lower accuracy ones. Regarding
universal adversarial examples, Moosavi-Dezfooli et al. [31] showed empirically and for-
mally [65] that their existence is partly caused by the correlation between the normals
to the decision boundary in the vicinity of natural images, i.e., these normals span a
low dimensional space. It was observed that, in such subspace, the decision boundary
is positively curved in the vicinity of natural images.

Kurakin et al. [66] and Madry et al. [24] provided evidence that increasing the model
capacity alone can help to induce DNNs to be more robust against adversarial attacks.
Additionally, it was observed that robust models (obtained through adversarial training)
exhibit rather sparse weights compared to unrobust ones. Madry et al. [24] compared
the weights of a CNN that is trained naturally, with one trained adversarially, on the
MNIST dataset [53]. After training, it is observed that the adversarially trained CNN
has more sparse weights in the first two convolutional filters than the naturally trained
one. Moreover, it has been proposed that producing sparse input representations im-
proves the robustness of linear and deeper binary classifiers [67], [68]. Guo et al. [69]
conducted a more detailed study of the relation between sparsity and robustness of

40

Preliminaries | 4.2

DNNs. It was shown formally and empirically that more sparse DNNs are more robust
against adversarial attacks, up to a certain limit where robustness starts decreasing
again. In contrast to that, Guo et al. [70] conducted an empirical study and came to
the conclusion that there is a trade-off between weight pruning and robustness. Alemi
et al. [71] proposed the variational information bottleneck (VIB) method that aims at
learning an encoding that is maximally expressive about the input but maximally com-
pressive about the representation. The authors showed that models trained with the
VIB objective have improved robustness. Recently, Sanyal et al. [72] provided evidence
that adversarial robustness can be improved by encouraging the learned representations
to lie in a low-rank subspace.

4.1.1. Our Contributions

We have discussed many different hypotheses about the nature of adversarial examples
which, in fact, do not perfectly match. For this reason, research on the nature of
adversarial examples is an active area. Inspired by recent works [24], [69], [72], in
this chapter we suggest that one should design robust DNNs considering the effective
sparsity and the effective rank of the weights. We observe that adversarial training
induces low-rankness and sparsity on the weights of DNNs. So far, these two properties
have not been pointed out together in the context of adversarial robustness of DNNs. We
are able to substantially improve adversarial robustness by simultaneously promoting
low-rank and sparse weights using different regularization techniques. In addition, we
raise an open question whether there is an optimal combination of sparsity and low-
rankness of the weights that can further improve robustness. Our experiments suggest
that simultaneous sparsity and low-rankness of the weight matrices play a significant
role in robustness, but do not fully explain the success of adversarial training.

4.2. Preliminaries

Recall Definition 2.2.1, where a classifier is defined through its score function f and
classifier function c. In that chapter (i.e., Chapter 2.2.1), the score function of a neural
network was introduced in (2.4). Such expression can be written in a recursive manner
through the intermediate variables x0, . . . ,xd, that is

xi := φ(W i>xi−1) , for all i = 1, . . . , d , (4.1)

where x0 := x and f(x) := xd. Using this notation, the vectors x1, . . . ,xd are known as
hidden representations. Moreover, each layer is represented by its own weight matrix
W i, with appropriate dimensions, that defines the mapping from xi−1 to xi. Note that,
the dimensionality of the hidden representations are parameters that can be chosen
arbitrarily. In this chapter, we assume these parameters to be chosen beforehand and
to remain unchanged during the course of training.

41

4. | On the Effect of Low-Rank Weights on Adversarial Robustness

The weight matrices resulting from standard training with gradient-based methods con-
tains dense entries, which are never exactly zero. The same can be said about the
singular values of these matrices. For these reasons, the standard notions of sparsity
and low-rankness are not useful to study such matrices. However, we may use relaxed
versions of these notions, which allow for measuring approximate (or effective) sparsity
and low-rankness. We start by defining the effective sparsity of a matrix W as

s(W) = ‖vec (W)‖1
‖vec (W)‖2

=
‖W ‖1,1

‖W ‖F
. (4.2)

The definition applies to vectors as well with s(x) = ‖x‖1 / ‖x‖2. Note that if a vector
x is s-sparse, i.e., has only s non-zero values, we have ‖x‖1 ≤

√
s ‖x‖2. In that sense,

this notion is commonly used in compressed sensing as an extension of standard sparsity
[73]. Similarly, the effective sparsity of the vector of singular values of a matrix W is
called the effective rank of such matrix, that is

r(W) = ‖σ(W)‖1
‖σ(W)‖2

= ‖W ‖∗‖W ‖F
. (4.3)

which is a continuous relaxation of the notion of rank.

These notions can be seen as measures of complexity for weight matrices, since they
quantify low-complexity structures such as sparsity and low-rankness. A weight matrix
with these low-complexity characteristics can be seen as a linear transformation that
maps a hidden representation into a low-complexity space. Note that some information
about the original hidden representation may be lost during such transformation. In
other words, we can see every layer of a neural network as a lossy compression encoding
from one hidden representation to another. Therefore, information theoretic notions,
such as mutual information, provide yet another measure of complexity, since they
measure how much information is compressed at every stage of a neural network. A
well known study into this direction was initiated by Tishby et al. [74], where the
authors estimated information theoretic quantities during their training phase of neural
networks. In that work, the authors proposed that the hidden representations xi of a
DNN form a Markov Chain, that is

(x, y)→ x1 → ...→ xd−1 → f(x) . (4.4)

Such successive representations are studied with the notion of mutual information,
which quantifies how much information about one random variable can be obtained
if the other random variable is observed. We use the notation I(a; b) for the mutual
information between two random variables a,b, as introduced in Chapter 2.2.3. Using
this quantity, the authors studied the behavior of the so called information plane which
is the 2-dimensional plane of values between successive representations and the input
I(xi; x) and the output I(xi; y) of DNNs during training. In this context, the hidden
representation xi is seen as a compressed version of x, where information is lost dur-
ing compression. Then, I(xi; x) quantifies the amount of information about x that is

42

Enhancing the Robustness of Sparse Linear Classifiers through Compression | 4.3

contained in xi. Even though this chapter focuses on the low-rankness and sparsity of
the weights to quantify compression, we show experimentally that our findings align
with the information theoretic notion of compression, which is measured using mutual
information.

4.3. Enhancing the Robustness of Sparse Linear
Classifiers through Compression

Consider the case of linear binary classifiers as an example. For convenience, in this
section we deviate from the system model in Chapter 2.2.1. Instead let us redefine the
score function f and classifier function c, from Definition 2.2.1, as

f(x) := w>x and c(x) := sign (f(x)) . (4.5)

In this manner, the set of possible labels is now Y = {−1,+1} instead of {1, 2}, while
the set of possible inputs remains being X ⊆ Rn as in Chapter 2.2.1. Using this
formulation, the expected error (also known risk) of this linear classifier is given by

L0(fw) = E(x,y)∼D

[
1(w>x·y<0)

]
= P(x,y)∼D[w>x · y < 0] ,

which is equivalent to L0(fw) = P[c(x) 6= y]. As introduced in Chapter 3, an `∞
adversarial attack against this classifier is obtained by applying input perturbations η
with `∞-norm bounded by some ε > 0. Then, let us define the adversarial risk as

Lε0(fw) = P
[

min
‖η‖∞≤ε

w>(x + η) · y < 0
]
.

In other words, Lε0(fw) is the error probability of this classifier under worst case input
perturbations, with `∞-norm bounded by ε. The goal of a robust classifier is to minimize
this error by an appropriate choice of w. Formally, the adversarial accuracy 1−Lε0(fw)
measures the robustness fw.

A typical choice of η is given by the FGSM, described in Table 3.2, for which η =
−y · ε sign (w). Note that, in this linear setup, this perturbation corresponds to the
best possible `∞ attack. It was previously discussed in [69] that the robustness of linear
classifiers is upper bounded by 1/ ‖w‖1. Since the `1-norm is widely used as a sparsity
promoting regularization, the authors concluded that the sparsity of w contributes to
the robustness of classifiers against `∞ attacks. As a matter of fact, it can be seen
that the robustness to attacks with a bounded `p-norm is related to having a small
corresponding dual norm of w. In this chapter, we show that the robustness can be
improved if the sparsity is complemented with an adequate dimensionality reduction.
Although only the example of binary linear classifiers is considered, the result can be

43

4. | On the Effect of Low-Rank Weights on Adversarial Robustness

also extended to the multi-class setup similar to [69], as discussed in the following
section.

It is often observed in machine learning problems that high dimensional inputs lie in low
dimensional manifolds. In this section, we mimic that situation by assuming that any
input x ∈ X lies in an r-dimensional subspace V ⊂ Rn spanned by r orthonormal basis
vectors v1, . . . ,vr with r < n. Nevertheless, the data distribution D remains unknown.
Now, let us apply an intermediate linear transformation Q on the data, in order to
reduce its dimensionality, based on the available training samples. The same classifier c
is now applied to Qx, instead of x. Note that, since our linear classifier is given by (4.5),
this compression step is equivalent to replacing the weight vector w with Qw. The main
question is whether this compression step affects adversarial robustness. Intuitively, an
`∞ attack allows for ε perturbation of each entry which can translate each data point
by an Euclidean distance of ε

√
n in the space. From this point of view, these `∞-norm

attacks can severely perturb high-dimensional inputs x ∈ Rn. Therefore, reducing
their effective dimension seems to be favorable for increasing adversarial robustness. A
natural choice of Q ∈ Rn×n is the orthogonal projection matrix onto the data subspace
V , given by

Q =
r∑

i=1
viv>i ,

since it compresses the inputs without loosing relevant information, i.e., denoising it.
The following theorem shows that, if the transformation w→ Qw manages to preserve
the effective sparsity of the weight vector w, this projection can indeed improve the
robustness of the classifier without compromising the overall accuracy.

Theorem 4.3.1. For a binary classification task, suppose that the data samples belong
to r-dimensional subspace V and Q ∈ Rn×n is the orthogonal projection onto this sub-
space. Then, for any given binary linear classifiers with parameters w, if the effective
sparsity of w after projection satisfies s(Qw) ≤ s(w), then

• The accuracy remains unchanged, that is

L0(fw) = L0(fQw) .

• The adversarial robustness against `∞ attacks is either improved or unchanged,
that is

Lε0(fQw) ≤ Lε0(fw) .

Remark 4.3.2. Before stating the proof, some remarks are in order. First of all, note
that the new classifier applies to the projected vectors Qx. Since Q is symmetric, this
amounts to a new binary classifier with parameters Qw. As it will be seen from the
proof, if the vector w already belongs to the data subspace V, that is, the discriminat-
ing hyperplane is orthogonal to V, then the adversarial robustness remains unchanged.
However, this is highly unlikely for most datasets that are noisy and therefore difficult
to find exactly this hyperplane among many choices.

44

Inducing Compression through Regularization | 4.4

Proof (Theorem 4.3.1). The optimal `∞ attack for a vector x with label y is given by
η = −y · ε sign (w). Therefore, the adversarial risk is simplified to

Lε0(fw) = P(w>(x + η) · y < 0)
= P(y ·w>x < ε ‖w‖1)
= L0(fw)P(|w>x| < ε ‖w‖1 | y ·w>x < 0) .

First suppose that the same classifier is applied after the orthogonal projection. Since
the inputs belongs to V , we have that Qx = x, thus L0(fw) = L0(fQw). Similarly, the
adversarial risk of the classifier with the compression step yields

Lε0(fQw) = P(w>Q(x + η) · y < 0)
= P(y ·w>Qx < ε ‖Qw‖1)
= L0(fw)P(|w>x| < ε ‖Qw‖1 | y ·w>x < 0) .

If ‖Qw‖1 ≤ ‖w‖1, the theorem follows. Since Q is a projection matrix, for any w we
have that ‖Qw‖2 ≤ ‖w‖2. This inequality and the definition of effective sparsity yield

‖Qw‖1
s(Qw) ≤

‖w‖1
s(w) .

Given the initial assumption s(Qw) ≥ s(w) we get

‖Qw‖1 ≤
s(Qw)
s(w) ‖w‖1 ≤ ‖w‖1 .

Hence, ε ‖w‖1 ≥ ε ‖Qw‖1 thus Lε0(fw) ≥ Lε0(fQw).

The condition on effective sparsity is not very demanding. Indeed, assume that V =
span(e1, . . . , er) for r < n. Then, we have ‖Qw‖1 = ∑r

i=1 |wi| ≤ ‖w‖1. The equality
holds only if w ∈ V . In other words, if the discriminating hyperplane is not orthogonal
to the data subspace, there is always a gain in low dimensional projection. Note that
for an arbitrary classifier, the accuracy remains unchanged after the projection. In
this case, if the corresponding weight vector is projected such that its `1-norm is not
increased, then the robustness will be enhanced. Finally, if we overparametrize the
classifier sign((Qw)>x) as sign

(
(QW 1 · · ·W d−1w)>x

)
we obtain a d-layered neural

network with linear activations whose initial weight matrix given by QW 1 has low
rank. This remark points our attention specially into the low-rankness the first weight
matrices of neural networks.

4.4. Inducing Compression through Regularization

Motivated by the result in Theorem 4.3.1, for linear classifiers, we investigate the effect
that simultaneous low-rankness and sparsity of the weight matrices of DNNs has on

45

4. | On the Effect of Low-Rank Weights on Adversarial Robustness

their adversarial robustness. More precisely, we investigate if promoting sparsity and
low-rankness leads to robustness and vice-versa. Let us first illustrate this relation with
a simple experiment, shown in Figure 4.1. In that figure, we observe how adversarial
training, using the FGSM and PGD attacks, seems to induce effective sparsity as well as
effective low-rankness to the weight matrices of a FCNN (details about the simulation
setup are provided in Section 4.5). Motivated by this result, as well as Theorem 4.3.1, we

−‖W ‖∞,∞ 0 + ‖W ‖∞,∞

(a) Natural training (b) FGSM training (c) PGD training

Figure 4.1.: Reshaped input weight matrix W 1 ∈ R20×784 of FCNN after natural vs.
adversarial training with ε = 0.05.

proceed to the question of whether is possible to improve the adversarial robustness by
promoting sparsity and low-rankness without adversarial training. We introduce three
regularization techniques designed to promote sparsity and low-rankness to the weight
matrices of DNNs. In order to promote sparsity on the weight matrices, a common
choice is to apply the `1 regularization. To that end, let us define the `1 regularization
loss as

L`1(w,λ1) =
d∑

i=1
λ1,i

∥∥∥vec
(
W i

)∥∥∥
1

=
d∑

i=1
λ1,i

∥∥∥W i
∥∥∥

1,1
, (4.6)

where λ1 = (λ1,1, . . . , λ1,d) ∈ Rd
+ is a vector of hyper-parameters. Just like the `1

regularization is a relaxation of sparsity measure, the nuclear norm is the convex re-
laxation of rank of a matrix, thus the nuclear norm regularization is used to promote
low-rankness. Similarly, the nuclear regularization loss is given by

L∗(w,λ∗) =
d∑

i=1
λ∗,i

∥∥∥σ(W i)
∥∥∥

1
=

d∑

i=1
λ∗,i

∥∥∥W i
∥∥∥
∗
, (4.7)

with the corresponding hyper-parameters λ∗ = (λ∗,1, . . . , λ∗,d) ∈ Rd
+.

46

Experiments | 4.5

As discussed in Section 4.3 and in [69], the robustness to `∞ attacks of multilayer neural
networks with linear activations is controlled by the `1-norm of the product of its weight
matrices, that is

∥∥∥W 1 · · ·W d
∥∥∥

1
. Motivated by this result, we include into our study

the following regularization

Ljoint(w, λjoint) = λjoint
∥∥∥W 1 · · ·W d

∥∥∥
1,1

, (4.8)

which is known to promote robustness in linear neural networks. Such approach may
lead to robustness for non-linear networks if they operate in approximately linear
regimes. Note that Ljoint(w, λjoint) is cheaper to compute than L∗(w,λ∗), which makes
it a good alternative to avoid computing SVDs during training. Finally, we incorporate
these regularization losses into one global loss function yielding

L(w; x, y) =LCE(w; x, y) + L`1(w,λ1) + L∗(w,λ∗) + Ljoint(w, λjoint) ,

where LCE denotes the cross-entropy loss function.

4.5. Experiments

In this chapter, we consider two architectures and datasets:

1. FCNN: is a fully-connected neural network with 5 hidden layers used on the
MNIST handwritten digits dataset [53]. Each hidden layer contains 20 neurons
with hyperbolic tangent activations, while the output layer uses the softmax func-
tion. We use a learning rate of 0.001 and a batch size of 128 for both training
from scratch and fine-tuning.

2. CNN: is a convolutional neural network applied on the Fashion-MNIST (F-
MNIST) clothing articles dataset [75]. It is composed by two convolution/max-
pooling blocks followed by two fully connected layers. Both convolution/max-
pooling blocks use 32 convolution filters of window size 3× 3 and pooling window
of size 2× 2. The first fully connected layer outputs 128 outputs with hyperbolic
tangent activations, while the output layer outputs 10 values. We use a batch
size of 64 with a learning rate of 0.01 for training from scratch, and 0.001 for
fine-tuning.

In both cases, stochastic gradient descent is used for minimizing the loss function.

We consider the FGSM [20], PGD [24] and the GNM [19] as adversarial attacks and
study their success on DNNs that are trained naturally, adversarially, or with the afore-
mentioned regularization techniques (see Section 4.4). As in Chapter 3.6, the fooling
ratio is defined as the percentage of inputs, among the correctly classified ones, whose
classification outcome changes after adding adversarial perturbations. This ratio is cal-
culated on the test set as an empirical measure of sensitivity of the classifier against

47

4. | On the Effect of Low-Rank Weights on Adversarial Robustness

adversarial attacks for a given value of ε. We focus on the low ε regime, which corre-
sponds to adversarial examples that are hard to detect by an observer. In such regime,
the FGSM often leads to similar attacks as PGD since the decision boundary is linear
enough in a vicinity around the clean sample. We found that ε = 0.05 was a proper
choice that leads to a fooling ratio slightly below 100% in the case of natural training
for both considered architectures. We generate the attack using the GNM with T = 5
iterations, while PGD attacks are generated with T = 20 iterations and a step size of
α = 0.005.

In the same spirit as Madry et al. [24], we raise the question to what happens to
the weight matrices W i during adversarial training. For both settings, we fine-tune
naturally trained models through adversarial training with the FGSM and PGD attack,
using a fixed ε = 0.05. As expected, adversarial training substantially decreases the
fooling ratios. We illustrate the fooling ratios over the whole course of training, in
Figure 4.2 and Figure 4.3, for FCNN and CNN respectively. Moreover, we compute the
fooling ratios for different types of attacks using the same fixed ε = 0.05. For the sake
of completeness, we report the test accuracies achieved on clean data (see the Appendix
A.1). For CNN model, we observe slightly lower test accuracies for the adversarially
trained models when compared to the naturally trained one.

In Figure 4.4 and Figure 4.5, we present the effective rank and the effective sparsity over
the whole course of training for FCNN and CNN respectively. In case of FCNN, we also
estimate the mutual information between the input x and the hidden representations
xi using the Kernel-based Density Estimator (KDE) method [76], [77] with a noise
variance of 0.1. Note that the KDE method provides upper and lower bounds for
mutual information, instead of a single estimate. However, for the sake of clarity, in
these figures we plot the arithmetic average between those upper and lower bounds.

We observe how the proposed regularization techniques successfully induce low-rankness
and sparsity to the weight matrices. At the same time, the mutual information between
the input and hidden representations is reduced. Interestingly, the effective low-rankness
of the weight matrices coincides with lower mutual information values, between the
input and hidden representations, which can be seen as a form of compression in the
information theoretic sense. This effect is most visible for the input weight matrix
W 1 ∈ R20×784. This weight matrix is visualized for natural and adversarial training in
Figure 4.1. WhileW 1 looks like noise after natural training, it clearly looks like lower-
rank and more sparse after adversarial training, with strongly correlated patterns. We
can also observe this effect in an attenuated form for CNN experiments, for instance
see Figure 4.6.

Further, we can see in Figure 4.5 that adversarial training substantially decreases the
effective sparsity1 of the first two convolutional filters (i.e.,W 1 ∈ R3×3×1×32 andW 2 ∈
R3×3×32×32). Moreover, adversarial training slightly decreases the effective rank of W 2

as well. Note that using PGD adversarial training reduces the effective rank ofW 2 more
1Note that highly sparse matrices have low effective sparsity, i.e., low value of s(·).

48

Experiments | 4.5

than FGSM adversarial training, as shown in Figure 4.5. This is also visible in Figure
4.7 where we visualizeW 2 for natural and adversarial training. The weights after both
FGSM and PGD adversarial training look more sparse and slightly lower-rank than
after natural training. In addition, the weights after PGD adversarial training look
slightly lower-rank than after FGSM adversarial training. From these observations we
first conclude that adversarial training leads to compression in the information theoretic
sense. Besides, it seems that adversarial training leads to low-rank and sparse weights.

Natural train λ1,1 = 0.01
FGSM adv. train λ1,1 = 0.01, λ∗,1 = 0.05
PGD adv. train λ1,1 = 0.01, λ∗,1 = 0.03
λ∗,1 = 0.01 λ1,1 = 0.003, λ1,joint = 0.01

0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

Epochs ·103

Fo
ol

in
g

R
at

io

(a) FGSM

0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

Epochs ·103

Fo
ol

in
g

R
at

io

(b) GNM

0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

Epochs ·103

Fo
ol

in
g

R
at

io

(c) PGD

Figure 4.2.: Fooling ratios of FCNN with respective attack and defense using a fixed
ε = 0.05. Dataset: MNIST.

We now study the reverse direction, that is whether low-rank and sparse weight matrices
lead to enhanced adversarial robustness. To that end, we mimic adversarial training by
promoting low-rank and sparse weight matrices. This is carried out through regulariza-
tion of the loss function as explained in Section 4.4. In case of FCNN, we first regularize
the input weight matrixW 1 with different choices of λ1,1 and λ∗,1 as this weight matrix
substantially changes its effective rank and effective sparsity during adversarial training.
We also provide results for performing only l1-regularization on W 1 with λ1,1 = 0.01.
Both kinds of regularization substantially decrease the fooling ratios, as shown in Figure
4.2. Moreover, in Figure 4.4 we observe that both kinds of regularization substantially
decrease the effective sparsity and effective rank of W 1, as well as W 2. Surprisingly,
performing only l1-regularization on W 1 also decreases its effective rank. In Figure
4.8, we visualize W 1 after training with both kinds of regularization, where we can
clearly observe approximately sparse and low-rank structures. As shown in Figure 4.4,
we are able to simultaneously decrease the effective rank ofW 1,W 2 andW 3 by using
the joint regularization technique (4.8). Together with explicitly promoting sparsity on
W 1, we are able to improve the robustness again compared to regularizing only W 1.

49

4. | On the Effect of Low-Rank Weights on Adversarial Robustness

Natural train λ1,1 = 0.01, λ1,2 = 0.01
FGSM adv. train λ1,1 = 0.01, λ1,2 = 0.01, λ∗,2 = 0.05
PGD adv. train λ1,1 = 0.01, λ1,2 = 0.01, λ∗,2 = 0.1

λ1,1 = 0.01, λ1,2 = 0.01, λ∗,2 = 0.5

0 5 10
0

0.2

0.4

0.6

0.8

1

Epochs ·103

Fo
ol

in
g

R
at

io

(a) FGSM

0 5 10
0

0.2

0.4

0.6

0.8

1

Epochs ·103

Fo
ol

in
g

R
at

io

(b) GNM

0 5 10
0

0.2

0.4

0.6

0.8

1

Epochs ·103

Fo
ol

in
g

R
at

io

(c) PGD

Figure 4.3.: Fooling ratios of CNN with respective attack and defense using a fixed
ε = 0.05. Dataset: F-MNIST.

In case of CNN, we regularize the reshaped versions of the first two convolutional fil-
ters W 1, W 2 (see Appendix A.2 for details about reshaping) with different choices of
λ1,1, λ1,2 and λ∗,2. We observe a significant improvement in terms of robustness (see
Figure 4.3) when increasing the explicit low-rank promotion on W 2 by nuclear-norm
regularization. In Figure 4.5, we see that a considerably lower effective rank of W 2

can be obtained by adding nuclear-norm regularization. This result supports the idea
that simultaneous sparsity and low-rankness of the weights should be favored on the
way towards adversarial robustness. In Figure 4.9 and Figure 4.10, we visualize the
first and second convolutional filter W 1, W 2 after training with the different kinds
of regularization. These empirical findings suggest that simultaneously low-rank and
sparse weight matrices indeed promote robustness against adversarial examples.

4.6. Discussion

We are able to obtain more sparse and lower-rank weights through regularizations, which
led to substantial improvement in adversarial robustness. However, this approach did
not match the robustness of adversarial training. This result suggests that, besides spar-
sity and low-rankness of the weights, further attributes should be considered. Moreover,
it raises an open question whether there is an optimal combination of sparsity and low-
rankness of the weights that can further improve robustness. The experiments suggest
that, despite their important role, sparsity and low-rankness of the weights do not fully
explain the success of adversarial training.

50

Discussion | 4.6

Natural train λ1,1 = 0.01
FGSM adv. train λ1,1 = 0.01, λ∗,1 = 0.05
PGD adv. train λ1,1 = 0.01, λ∗,1 = 0.03
λ∗,1 = 0.01 λ1,1 = 0.003, λ1,joint = 0.01

I
(x

;x
i)

lo
gs

(W
i)

lo
gr

(W
i)

0 5 10

3

3.5

4

4.5

0 5 10
3

3.5

4

4.5

5

0 5 10
0

5

10

Epochs ·103

(a) i = 1

0 5 10

3

3.5

4

4.5

0 5 10

2.6

2.8

3

0 5 10
0

5

10

Epochs ·103

(b) i = 2

0 5 10

3

3.5

4

4.5

0 5 10

2.6

2.8

3

0 5 10
0

5

10

Epochs ·103

(c) i = 3

0 5 10

3

3.5

4

4.5

0 5 10

2.6

2.8

3

0 5 10
0

5

10

Epochs ·103

(d) i = 4

Figure 4.4.: Effective rank, effective sparsity and mutual information for different layers
of FCNN. Layers 5 and 6 are shown in Appendix A.1.

51

4. | On the Effect of Low-Rank Weights on Adversarial Robustness

Natural train λ1,1 = 0.01, λ1,2 = 0.01
FGSM adv. train λ1,1 = 0.01, λ1,2 = 0.01, λ∗,2 = 0.05
PGD adv. train λ1,1 = 0.01, λ1,2 = 0.01, λ∗,2 = 0.1

λ1,1 = 0.01, λ1,2 = 0.01, λ∗,2 = 0.5

lo
gs

(W
i)

lo
gr

(W
i)

0 5 10

5

10

0 5 10

2

4

Epochs ·103

(a) i = 1

0 5 10

5

10

0 5 10

2

4

Epochs ·103

(b) i = 2

0 5 10

5

10

0 5 10

2

4

Epochs ·103

(c) i = 3

0 5 10

5

10

0 5 10

2

4

Epochs ·103

(d) i = 4

Figure 4.5.: Effective rank and effective sparsity for different layers of CNN.

(a) Natural training (b) FGSM training (c) PGD training

Figure 4.6.: Reshaped input convolutional filter W 1 ∈ R3×3×1×32 of CNN after natural
vs. adversarial training with ε = 0.05. The color coding is done as in Figure
4.1.

(a) Natural training (b) FGSM training (c) PGD training

Figure 4.7.: Reshaped second convolutional filterW 2 ∈ R3×3×32×32 of CNN after natural
vs. adversarial training with ε = 0.05. The color coding is done as in Figure
4.1.

52

Discussion | 4.6

(a) λ1,1 = 0.01 (b) λ1,1 = 0.01,
λ∗,1 = 0.01

(c) λ1,1 = 0.003,
λjoint = 0.04

Figure 4.8.: Reshaped input weight matrix W 1 ∈ R20×784 of FCNN after training with
respective regularization. The color coding is done as in Figure 4.1.

(a) λ1,1 = 0.01,
λ1,2 = 0.01

(b) λ1,1 = 0.01,
λ1,2 = 0.01,
λ∗,2 = 0.5

Figure 4.9.: Reshaped input convolutional filterW 1 ∈ R3×3×1×32 of CNN after training
with respective regularization. The color coding is done as in Figure 4.1.

(a) λ1,1 = 0.01,
λ1,2 = 0.01

(b) λ1,1 = 0.01,
λ1,2 = 0.01,
λ∗,2 = 0.5

Figure 4.10.: Reshaped second convolutional filterW 2 ∈ R3×3×32×32 of CNN after train-
ing with respective regularization. The color coding is done as in Figure
4.1.

53

5
Adversarial Risk Bounds through Sparsity

based Compression

As discussed in Chapters 3 and 4, neural networks are known to be vulnerable against
minor adversarial perturbations of their inputs, especially for high dimensional data
under `∞ attacks. To combat this problem, techniques like adversarial training have
been employed to obtain models which are robust on the training set. However, the ro-
bustness of such models against adversarial perturbations may not generalize to unseen
data. To study how robustness generalizes, recent works assume that the inputs have
bounded `2-norm in order to bound the adversarial risk for `∞ attacks with no explicit
dimension dependence. In this chapter1, we focus on `∞ attacks on `∞ bounded inputs
and prove margin-based bounds. Specifically, we use a compression based approach that
relies on efficiently compressing the set of tunable parameters without distorting the
adversarial risk. To achieve this, we propose a notion of effective sparsity and effective
joint sparsity on the weight matrices of neural networks. This leads to bounds with
no explicit dependence on the input dimension, neither on the number of classes. Our
results show that neural networks with approximately sparse weight matrices not only
possess enhanced robustness, but also better generalization.

1This chapter contains the work in [78].

55

5. | Adversarial Risk Bounds through Sparsity based Compression

5.1. Related Work

In Chapter 3, we have discussed the vulnerability of neural networks to maliciously
designed perturbations of their inputs, known as adversarial examples. We showed ex-
amples where such perturbed inputs are only slightly distorted versions of the original
inputs, and yet they manage to fool neural networks into incorrect classifications. For
example, in image classification, adversarial examples have been shown to be indistin-
guishable from the original image to the human eye (see Figure 3.2). This phenomena
motivated several works aiming at understanding the nature of classifiers, and in par-
ticular neural networks, in the presence of adversarial examples. Initial works focused
on the linearity (and non-linearity) of classifiers and its implications on the robustness
of DNNs against adversarial examples [20], [39], [60]. Subsequent works shed some light
on the nature of adversarial examples by studying the properties of decision boundaries
[7], [39], [63]–[65], while others focused on the model capacity of neural networks in
relation to the problem difficulty [24], [62], [66]. While these approaches contributed
to understanding the nature of adversarial examples, they do not consider whether the
robustness of classifiers against adversarial perturbations generalizes to unseen data.

If a classifier is robust to perturbations of the training set, can we guarantee that it
will also be robust to perturbations of the test set? This question is not particularly
new. The optimization community has studied this problem for quite some time. The
work of Xu, et al. [79], studied robust regression in Lasso, while later work [80] ob-
tained results for support vector machines. Other works considered the generalization
properties of robust optimization in a distributional sense [81], that is when adversar-
ial examples are assumed to be samples from the worst possible distribution within a
Wasserstein ball around the original one. As discussed, these works provide algorithms
for training various types of classifiers with robustness guarantees. Regarding neural
networks, for the case where no adversarial perturbations are present, there exists an
extensive literature on their generalization properties. Many of these works are based
on bounding the Rademacher complexity of the function class [82]–[85], while others
make use of the PAC-Bayes framework [86]–[88]. There are other works which rely on
different techniques, for instance, Arora et al. [89] rely on compressing the weights of
neural networks. Despite this knowledge, proving robustness guarantees for neural net-
works remained unstudied till recently. Initial works going into this direction studied
neural networks in artificial scenarios. For instance, Attias et al. [90] proved general-
ization bounds for the case when the adversary can modify a finite number of entries
per input. Following this approach, Diochnos et al. [91] showed that the number of
flipped bits required to fool almost all inputs is less than O(

√
n), for the case when the

input is binary and uniformly distributed. As similar subsequent result [92] for binary
inputs, proved the existence of polynomial-time attacks that find adversarial examples
of Hamming distance O(

√
n). Concurrently, the work of Schmidt et al. [93] showed

that the amount of data necessary to classify n-dimensional Gaussian data grows by
a factor of

√
n in the presence of an adversary. However, Cullina et al. [94] showed

56

Related Work | 5.1

that the Vapnik-Chervonenkis (VC)-dimension of linear classifiers does not increase in
the adversarial setting. Additionally, they derived generalization guarantees for binary
linear classifiers. Moreover, Montasser et al. [95] showed that VC-classes are learn-
able in the adversarial setting, but only if we refrain from using standard empirical
risk minimization approaches. Later works considered more general scenarios. Using a
PAC-Bayes approach, Farnia et al. [96] proved a generalization bound for neural net-
works under `2 attacks. However, deriving bounds for attacks with bounded `∞-norm
(instead of `2-norm) is of particular interest, since most successful attacks in computer
vision are of this type. In addition, such attacks tend to be more effective for scenarios
where the input dimension is large, thus deriving generalization bounds without explicit
dimension dependence is promising.

Now, let us overview recent works addressing the problem of proving generalization
bounds for neural networks in the adversarial setting, where the attacker has bounded
`∞ perturbations. Since these works are closely related to this chapter, we discuss them
in more detail in the following list.

• Yin et al. [97] bounded the Rademacher complexity for linear classifiers and neural
networks in the adversarial setting. This lead to explicit bounds on the notion of
adversarial risk for the linear classifier as well as neural networks. Nevertheless,
such bound applied only to neural networks with one hidden layer and ReLU
activations.

• Concurrent work of Khim et al. [98] proved bounds on a surrogate of the adver-
sarial test error. In that work, the authors use the so-called tree transform on
the function class to derive their results. Under the assumption that the original
inputs have `2 bounded norm, the authors proved generalization bounds with no
explicit dimension dependence in the binary classification setting. Yet, the au-
thors extend this to k-class classification by incurring an additional factor k on
their bound.

• Later work of Tu et al. [99] formulated generalization in the adversarial setting
as a minimax problem. Their proposed framework is more general than previous
ones in the sense that it can be applied to support vector machines and principal
component analysis, as well as neural networks. Nonetheless, for neural networks
this approach yielded a generalization bound with explicit dimension dependence.

One common assumption shared by these works is that the inputs come from a dis-
tribution with bounded `2-norm, which is a weaker notion than assuming `∞ bounded
inputs.

5.1.1. Our Contributions

In this chapter, we study the problem of bounding the generalization error of multi-
layer neural networks under `∞ attacks, where we assume that the original inputs have

57

5. | Adversarial Risk Bounds through Sparsity based Compression

`∞ bounded norm. Using a compression approach, we obtain bounds with no explicit
dependence on the input dimension or the number of classes. We summarize our con-
tributions as follows.

• We prove generalization bounds in the presence of adversarial perturbations of
bounded `∞-norm under the assumption that the input distribution has bounded
`∞-norm as well. This is an improvement with respect to recent works where the
input is assumed to be `2 bounded.

• We extend the compression approach of [89] by incorporating the notion of effec-
tive sparsity. Using this technique we prove that the sample complexity of neural
networks, under adversarial perturbations, is bounded by the effective sparsity
and effective joint sparsity of its weight matrices. This result has no explicit di-
mension dependence, neither it depends on the number of classes. We show that
approximately sparse weights not only improve robustness against `∞ bounded
adversarial perturbations, but also provide better generalization as well.

• We corroborate our result with experiments on the MNIST and CIFAR-10
datasets, where the bound correlates with adversarial risk. We observe that
adversarial training significantly decreases the bound, while standard training
does not. Similarly, adversarial training seems to decrease both, effective
sparsity and effective joint sparsity, as predicted by our result. Moreover, in
these experiments, effective joint sparsity appears to be the dominant quantity
in our bound. This shows the importance of effective joint sparsity for achieving
generalization in the adversarial setting, a relation that was not discovered so far.

5.1.2. Notation

The notation Bnp,ε is used to refer to an n-dimensional `p ball of radius ε, that is the set
Bnp,ε = {x ∈ Rn : ‖x‖p ≤ ε}. We use the compact notation Õ(n) := O(n log n) to ignore
logarithmic factors.

5.2. Problem Setup

We start with the standard margin-based statistical learning framework, introduced in
Section 2.2. Since the notation introduced in that section is consistent among chapters,
X ⊆ Rn denotes the feature space, Y = {1, 2, . . . , k} the label space, and D : X ×Y →
[0, 1] data distribution. In this chapter, it is assumed that all instances x ∈ X have
`∞-norm bounded by 1, that is X ⊆ Bn∞,1 ⊂ Rn. Using this notation, a classifier is
defined in Definition 2.2.1 through its so called score function f : Rn → R|Y| such that

58

Problem Setup | 5.2

the predicted label is argmaxj∈Y fj(·), where fj(·) is the j-th entry of f(·). Moreover,
given an instance (x, y) ∈ X × Y , the classification margin is defined in (2.5) as

`(f ; x, y) = fy(x)−max
j 6=y

fj(x) .

In this manner, a positive margin implies correct classification. Then, for any distribu-
tion D the expected margin loss with margin γ ≥ 0 is defined as

Lγ(f) = P(x,y)∼D [`(f ; x, y) ≤ γ] .

We study the case where an adversary is present. This adversary has access to the input
x and is allowed to add a perturbation η with `∞-norm bounded by some ε ≥ 0 (i.e.,
η ∈ Bnp,ε) such that the classification margin is as small as possible. This perturbed
input x + η is usually known as an adversarial example. Furthermore, let us define the
margin under adversarial perturbations as

`ε(f ; x, y) = inf
η∈Bn∞,ε

`(f ; x + η, y) .

This leads to the definition of adversarial margin loss, that is

Lεγ(f) = P(x,y)∼D [`ε(f ; x, y) ≤ γ] .

Let S = {(x1, y1), . . . , (xm, ym)} be the training set composed of m instances drawn
independently from D. Using these instances we define L̂εγ(f) = 1

m

∑m
i=1 1(`ε(f ;xi,yi)≤γ)

as the empirical estimate of Lεγ(f), where 1(·) denotes the indicator function. Note that
Lε0(f) and L̂ε0(f) are the expected and training error under adversarial perturbations,
respectively.

For many classifiers, such as deep neural networks, the score function f belongs to a
complicated function class F , which usually has more sample complexity than the size
of the training set. Even without the presence of an adversary, it is challenging to bound
the generalization error, given by the difference L0(f)− L̂γ(f), of such function classes.
The key idea behind the compression framework presented in [89] is to show that there
exists a finite function class G with low sample complexity and a mapping that assigns
a function g ∈ G to every f ∈ F such that the empirical loss is not severely degraded.
This trick allows us to bound the generalization error using the sample complexity of G
instead of F . A drawback of this method is that we are only able to bound L0(g)−L̂γ(f)
instead of the original generalization error. Nevertheless, as the authors mentioned in
[89], a similar issue is present as well in standard PAC-Bayes bounds, where the bound
is on a noisy version of f . Moreover, the authors discuss some possible ways to solve
this issue, but these approaches were left for future work. In this chapter we leverage
such a compression framework by extending it to the case when an adversary is present.
Our goal is to bound the generalization error under the presence of an adversary. We
start by introducing some formal definitions and theorems, similar to the ones in [89].

59

5. | Adversarial Risk Bounds through Sparsity based Compression

Definition 5.2.1 ((γ, ε,S)-compressible). Given a set of parameter configurations A,
let GA = {gA|A ∈ A} be a set of parametrized functions gA. We say that the score
function f ∈ F is (γ, ε,S)-compressible through GA if

∀x ∈ S, y ∈ Y : |`ε(f ; x, y)− `ε(gA; x, y)| ≤ γ .

Theorem 5.2.2. Given the finite sets A and GA = {gA|A ∈ A}, if f is (γ, ε,S)-
compressible via GA then there exists A ∈ A such that with high probability

Lε0(gA) ≤ L̂εγ(f) +O

√

log |A|
m

 .

Proof (Theorem 5.2.2). Since L̂ε0(gA) is an average of m i.i.d random variables with
expectation equal to Lε0(gA) we may use Hoeffdingen’s inequality, yielding

P(x,y)∼D
[
L̂ε0(gA)− Lε0(gA) ≥ τ

]
≤ exp

(
−2mτ 2

)
.

Note that |A| = exp(log |A|). Then, let us choose τ =
√

log|A|
m

and take a union bound
over all A ∈ A, leading to

P(x,y)∼D

L̂ε0(gA)− Lε0(gA) ≥

√
log |A|
m

 ≤ exp(− log |A|) .

Since f is (γ, ε,S)-compressible via g, then

∀x ∈ S : |`ε(f ; x, y)− `ε(gA; x, y)| ≤ γ ,

which implies that
L̂ε0(gA) ≤ L̂εγ(f) .

Combining these results we get that

Lε0(gA) ≤ L̂εγ(f) +O

√

log |A|
m

with probability at least 1 − exp(− log |A|) = 1 − 1/ |A|, which we consider as high
probability.
Corollary 5.2.2.1. In the same setting of Theorem 5.2.2, if f is compressible only for
a fraction 1− δ of the training sample, then with high probability

Lε0(gA) ≤ L̂εγ(f) +O

√

log |A|
m

+ δ .

This main definition and following theorems are trivial extensions of the ones used in [89]
to the adversarial setting. However, even for the linear classifier, the main technique
used in that work for compressing f cannot be applied to the setup of this chapter
without incurring into explicit dimensionality dependencies in the resulting bounds.
This will be explained in detail in the next section.

60

Main Results | 5.3

5.3. Main Results

In this section we introduce our main results. We start with linear classifiers on binary
classification and move forward to neural networks and multi-class classification.

5.3.1. Linear Classifier

We start with a linear classifier for binary labels. Assume that x ∈ Bn∞,1, y ∈ {1, 2}
and let w = (w1, . . . , wn)> be a vector of weights of a linear classifier. Then, the score
function of the linear classifier is given by

fw(x) =
(

0
〈w,x〉

)
.

This simplifies the margin to `(f ; x, y) = (2y − 3) 〈w,x〉, which leads to

`ε(fw; x, y) = (2y − 3)(〈w,x〉 − ε ‖w‖1) .

Note that (2y − 3) ∈ {−1,+1}. The weight vector w ∈ Rn of this classifier, with
margin γ, can be compressed into another ŵ such that both classifiers make the same
predictions with reasonable probability (as we will see in Lemma 5.3.2). Given δ ∈
(0, 1], the compressed classifier ŵ is constructed entry-wise as ŵi = ziwi/pi where
pi = (1 + ε)2 |wi| /δγ2 and zi ∼ Bern (pi).

Definition 5.3.1 (CompressVector(γ,w)). Given w ∈ Bn1,1, δ ∈ (0, 1], γ > 0 and
ε > 0, let us define the random mapping CompressVector(γ, ·) which outputs ŵ =
(ŵ1, . . . , ŵn)> = CompressVector(γ,w) as follows

ŵi = ziwi/pi , with zi ∼ Bern(pi) and pi = |wi|
δγ2 (1 + ε)2 ,

where Bern(pi) denotes the Bernoulli distribution with probability pi and outcomes
{0, 1}.

Such classifier ŵ outputs the same prediction as w with probability 1− δ and has only
O ((log n)(1 + ε2)/δγ2) non-zero entries with high probability.

Lemma 5.3.2. Given w ∈ Bn1,1, δ ∈ (0, 1], γ > 0 and ε > 0. If
ŵ = CompressVector(γ,w) then

∀x ∈ Bn∞,1, y ∈ Y : Pŵ [|`ε(fw; x, y)− `ε(fŵ; x, y)| ≥ γ] ≤ δ ,

and the number of non-zero entries in ŵ is less than O((log n)(1 + ε)2/δγ2) with high
probability.

61

5. | Adversarial Risk Bounds through Sparsity based Compression

Proof (Lemma 5.3.2). Note that E[ŵi] = wi
pi
E[zi] = wi thus E[ŵ] = w. Similarly,

E[|ŵi|] =
∣∣∣wi
pi

∣∣∣E[zi] = |wi| and since ŵi’s are independent, we get E[‖ŵ‖1] = ‖w‖1. This
implies that

E [`ε(fŵ; x, y)] = E [〈ŵ,x〉 − ε ‖ŵ‖1] = 〈w,x〉 − ε ‖w‖1 = `ε(fw; x, y) .

Now let us compute the variance of ŵi as

Var [ŵi] = E
[
ŵ2
i

]
− E [ŵi]2 = (wi/pi)2pi − w2

i = 1− pi
pi

w2
i .

The same calculation yields
Var [|ŵi|] = 1− pi

pi
w2
i .

The covariance between |ŵi| and ŵi is

Cov (|ŵi| , ŵi) = E [|ŵi|ŵi]− E[|ŵi|]E[ŵi] = 1− pi
pi
|wi|wi .

Now putting all together we get

Var [ŵixi − ε|ŵi|] = x2
iVar[ŵi]− 2εxiCov(ŵi, |ŵi|) + ε2Var[|wi|2]

= 1− pi
pi

(
x2
iw

2
i − 2εxi|wi|wi + ε2w2

i

)

≤ w2
i

pi

(
x2
i + 2ε|xi|+ ε2

)

= δγ2

(1 + ε)2 |wi|
(
x2
i + 2ε|xi|+ ε2

)
.

Since ŵi’s are independent, we get

Var [〈ŵ,x〉 − ε ‖ŵ‖1]

= Var
[
n∑

i=1
ŵixi − ε|ŵi|

]

=
n∑

i=1
Var [ŵixi − ε|ŵi|]

≤ δγ2

(1 + ε)2

n∑

i=1
|wi|

(
x2
i + 2ε|xi|+ ε2

)

= δγ2

(1 + ε)2

(〈
|w|,x2

〉
+ 2ε 〈|u|, |c|〉+ ε2 ‖w‖1

)
(x2 is entry-wise)

≤ δγ2

(1 + ε)2

(
‖w‖1

∥∥∥x2
∥∥∥
∞

+ 2ε ‖w‖1 ‖x‖∞ + ε2 ‖w‖1

)

≤ δγ2

(1 + ε)2 (1 + 2ε+ ε2) = δγ2 .

62

Main Results | 5.3

By Chebyshev’s inequality we get

P [|(〈ŵ,x〉 − ε ‖ŵ‖1)− 〈w,x〉 − ε ‖w‖1 | > γ] ≤ δ .

On the other hand, the expected number of non-zero entries in ŵ is given by

E [‖ŵ‖0] =
n∑

i=1
pi =

n∑

i=1

|wi|
δγ2 (1 + ε2) = (1 + ε)2

δγ2 .

Then, by Hoefdingen’s inequality the number of non-zero entries in ŵ is less than
O((log n)(1 + ε)2/δγ2) with high probability.

By discretizing ŵ, we obtain a compression setup that maps w into a discrete set but
fails with probability δ. To that end, we handle discretization by clipping and then
rounding in the following lemma.

Lemma 5.3.3. Let us define

• w′ component-wise as w′i = wi1(|wi|≥ γ
4n(1+ε)),

• w̃ = CompressVector(γ/2,w′),

• ŵ is obtained by rounding each entry of w̃ to the nearest multiple of γ
2n(1+ε) .

Then, we have that

∀x ∈ Bn∞,1, y ∈ Y : Pŵ [|`ε(fw; x, y)− `ε(fŵ; x, y)| ≥ γ] ≤ δ .

Proof (Lemma 5.3.3). We start by bounding the error incurred by clipping, that is

|`ε(fw; x, y)− `ε(fw′ ; x, y)| ≤ |〈w,x〉 − 〈w′,x〉|+ ε |‖w‖1 − ‖w′‖1|
≤ |〈w−w′,x〉|+ ε ‖w−w′‖1
≤‖w−w′‖1 ‖x‖∞ + ε ‖w−w′‖1
≤‖w−w′‖1 (1 + ε)

≤ γ

4n(1 + ε)n(1 + ε) = γ/4 .

Similarly, the error incurred by discretizing w̃ is bounded by

|`ε(fw̃; x, y)− `ε(fŵ; x, y)| ≤ ‖w̃− ŵ‖1 (1 + ε)

≤ γ

2n(1 + ε)
n

2 (1 + ε) = γ/4 .

By Lemma 5.3.2, we know that with probability at least 1− δ we have that

|`ε(fw̃; x, y)− `ε(fŵ; x, y)| ≤ γ/2 .

63

5. | Adversarial Risk Bounds through Sparsity based Compression

Combining these three results yields

|`ε(fw; x, y)− `ε(fŵ; x, y)| ≤ |`ε(fw; x, y)− `ε(fw′ ; x, y)|
+ |`ε(fw′ ; x, y)− `ε(fw̃; x, y)|
+ |`ε(fw̃; x, y)− `ε(fŵ; x, y)|
≤ γ/4 + γ/2 + γ/4 ≤ γ

with probability at least 1− δ.

Therefore, we can apply Corollary 5.2.2.1 and choose δ = ((1 + ε)2/γ2m)1/3, which
yields a generalization bound of order Õ

(
((1 + ε)2/γ2m)1/3

)
as shown in the following

theorem.

Theorem 5.3.4. With high probability

Lε0(fŵ) ≤ L̂εγ(fw) + Õ

(

(1 + ε)2

γ2m

)1/3

 ,

where Õ(·) ignores logarithmic factors.

Proof (Theorem 5.3.4). Let A be the set of vectors with at most O((log n)(1 +ε)2/δγ2)
non-zero entries, where each entry is a multiple of 2γ/2n(1 + ε) between −δγ2/(1 + ε)2

and δγ2/(1 + ε)2. Then, |A| = rq with

r = 2 δγ
2/(1 + ε)2

2γ/2n(1 + ε) = 4nδγ
(1 + ε) , q = (1 + ε)2

δγ2 .

Let ŵ be defined as in Lemma 5.3.3. Then, by Lemma 5.3.2, we have that Pŵ[ŵ ∈
A] ≤ 1− δ. We define G = {fŵ : ŵ ∈ A}. Note that the mapping from fw to fŵ fails
(i.e., ŵ /∈ A) with probability at most δ, thus corollary 5.2.2.1 yields

Lε0(fŵ) ≤ L̂εγ(fw)+O

√√√√(1 + ε)2 log(n) log
(

4nδγ
(1+ε)

)

δγ2m

+δ = L̂εγ(fw)+Õ

√

(1 + ε)2

δγ2m

+δ

with high probability. Then, we choose δ = ((1 + ε)2/γ2m)1/3 which leads to

Lε0(fŵ) ≤ L̂εγ(fw) + Õ

(

(1 + ε)2

γ2m

)1/3

with high probability.

64

Main Results | 5.3

This approach is fairly similar to the original one in the work of Arora et al. [89], but
the pi values are chosen differently in order to deal with the new term ε ‖w‖1 that
appears in the margin’s expression.

This result provides a dimension-free bound2. However, that bound scales with m1/3

instead of
√
m, since the compression approach fails with probability δ. To tackle this

issue, Arora et al. [89] proposed a compression algorithm based on random projections.
In their setup, this technique works due to a famous corollary of Johnson-Lindenstrauss
lemma that shows that we can construct random projections which preserve the inner
product 〈w,x〉. In addition, since the Euclidean inner product can be induced by the
`2-norm, the `2-norm of w is preserved as well. However, in this setup we would need
a random projection that preserves ‖w‖1 and 〈w,x〉 at the same time, which seems
unattainable unless additional assumptions are made. Therefore, we propose to assume
an effective sparsity bound on w, which is defined as follows.

Definition 5.3.5 (Effective s-sparsity). A vector w ∈ Rn is effectively s-sparse, with
s ∈ [1, n], if

‖w‖1/2 ≤ s ‖w‖1 .

Note that for all s = 1, 2, . . . , it holds that any s-sparse vector (i.e., a vector with at
most s non-zero entries) is effectively s-sparse, but not vice-versa. Assuming that w is
effectively sparse allows us to compress it by simply setting its lowest entries to zero.
The following lemma provides a tight bound on the error, in the `1 sense, that is caused
by this process.

Lemma 5.3.6 ([47]: Theorem 2.5). For any w ∈ Rn the following inequalities hold:

inf {‖w− z‖1 : z is s-sparse} ≤ 1
4s ‖w‖1/2 ,

inf {‖w− z‖∞ : z is s-sparse} ≤ 1
s
‖w‖1 .

In both cases, the infimum is attained when z is an s-sparse vector whose non-zero
entries are the s-largest absolute entries of w.

For any effectively s-sparse classifier w with margin γ, this lemma allows us to compress
it into a vector ŵ, with only O(s(1 + ε)/γ) non-zero entries, such that both classifiers
assign the same label to any input.

Lemma 5.3.7. Given an effectively s-sparse vector w ∈ Bn1,1, let us define w′ ∈ Bn1,1
as the s-sparse vector whose non-zero entries are the s-largest absolute entries of w. In
addition, the vector ŵ is obtained by rounding each entry of w′ to the nearest multiple
of γ/s(1 + ε). If we choose s = s(1 + ε)/2γ then

∀x ∈ Bn∞,1, y ∈ Y : |`ε(fw; x, y)− `ε(fŵ; x, y)| ≤ γ .

2Except for logarithmic terms.

65

5. | Adversarial Risk Bounds through Sparsity based Compression

Proof (Lemma 5.3.7). Let us first bound how much does sparsifying w affects inner
products, that is

|〈w,x〉 − 〈w′,x〉| ≤ ‖w−w′‖1 ‖x‖∞ ≤ ‖w−w′‖1 .

This distorts the adversarial margin as follows:

|`ε(fw; x, y)− `ε(fw′ ; x, y)|
≤ |〈w,x〉 − 〈w′,x〉|+ ε |‖w‖1 − ‖w′‖1|
≤ ‖w−w′‖1 + ε ‖w−w′‖1 (triangle inequality)
= (1 + ε) ‖w−w′‖1

≤ (1 + ε) 1
4s ‖w‖1/2 (Lemma 5.3.6)

≤ (1 + ε) s4s ‖w‖1 (Definition of effective sparsity)

= γ/2 . (Choice of s)

Similarly,

|`ε(fw′ ; x, y)− `ε(fŵ; x, y)| ≤ (1 + ε) ‖w′ − ŵ‖1

≤ (1 + ε)s1
2

(
γ

s(1 + ε)

)

= γ/2 .

Putting all together, we get

|`ε(fw; x, y)− `ε(fŵ; x, y)| ≤ |`ε(fw; x, y)− `ε(fw′ ; x, y)|+ |`ε(fw′ ; x, y)− `ε(fŵ; x, y)|
≤ γ/2 + γ/2 = γ ,

which completes the proof.

Since this compression approach does not fail, we can discretize ŵ and apply Theorem
5.2.2. This allows to prove the following generalization bound for the linear classifier in
the presence of an adversary.

Theorem 5.3.8. Let w be any linear classifier with ‖w‖1/2 / ‖w‖1 ≤ s, and margin
γ > 0 on the training set S. Then, if |S| = m, with high probability the adversarial risk
is bounded by

Lε0(fŵ) ≤ L̂εγ(fw) + Õ

√

(1 + ε)s
γm

 ,

where Õ(·) ignores logarithmic factors.

66

Main Results | 5.3

Proof (Theorem 5.3.8). Let A be the set of vectors with at most s(1 + ε)/2γ non-zero
entries, where each entry is a multiple of γ/s(1 + ε) between −1 and 1. Then, |A| = rq

with

r = 2
γ/s(1 + ε) = 2

γ2/2s(1 + ε)2 = 4s(1 + ε)2

γ2 , q = s = s(1 + ε)/2γ .

Let G = {fŵ : ŵ is defined as in Lemma 5.3.7 with w ∈ Bn1,1}. Then, by Lemma 5.3.7
we know that fw is (γ, ε,S)-compressible via G, thus Theorem 5.2.2 yields

Lε0(fŵ) ≤ L̂εγ(fw) +O

√√√√2s(1 + ε) log
(

4s(1+ε)2

γ2

)

γm

 = L̂εγ(fw) + Õ

√

(1 + ε)s
γm

with high probability.

This result provides a bound with no explicit dimension dependence. Moreover, we
observe that the presence of an adversary only increases the sample complexity by a
factor (1 + ε).

5.3.2. Neural Networks

Due to the `∞-norm bound on the perturbation η, in this chapter the mixed (1,∞)-
norm of the weight matrices plays a central role. As an example, let us consider a linear
classifier in multi-class classification, that is f(x) = W>x. Then, a perturbation η can
perturb any entry of the vector of score functions (i.e., f(x)) at most

sup
‖η‖∞≤1

‖W>η‖∞ = ‖W>‖∞ = ‖W ‖1,∞ .

The last equality comes from the properties of operator norms, see [17] for more details.
Similar statements can be made for the layers of a neural network with 1-Lipschitz
activation functions. Let us start by defining a d-layered fully connected neural network
as

xi := φ(W i>xi−1) , ∀i = 1, 2, . . . , d , (5.1)
where φ is a 1-Lipschitz activation function applied entry-wise, x0 := x and f(x) :=
xd. Then, the following lemma allows us to quantify how much error is incurred by
perturbing the input of a layer, or by switching the matrix W to a different one.

Lemma 5.3.9. If φ is a 1-Lipschitz activation function, then for any W , Ŵ the fol-
lowing inequalities hold

∥∥∥φ(W>x)− φ(W> (x + η))
∥∥∥
∞
≤ ‖W ‖1,∞ ‖η‖∞ ,

∥∥∥∥φ(W>x)− φ(Ŵ>
x)
∥∥∥∥
∞
≤
∥∥∥W − Ŵ

∥∥∥
1,∞
‖x‖∞ .

67

5. | Adversarial Risk Bounds through Sparsity based Compression

Proof (Lemma 5.3.9). Since φ is 1-Lipschitz, we have that for any vector w of the same
size as η, it holds

|φ(〈w,x〉)− φ(〈w,x + η〉)| ≤ |〈w,η〉| ≤ ‖w‖1 ‖η‖∞ .

This proves the first inequality of the lemma. Similarly, for any w and ŵ it follows

|φ(〈w,x〉)− φ(〈ŵ,x〉)| ≤ |〈w− ŵ,x〉| ≤ ‖w− ŵ‖1 ‖x‖∞ ,

thus implying the second inequality.

Following the steps of Section 5.3.1, we now impose some conditions on W that allow
us to efficiently compress it into another matrix Ŵ which belongs to a potentially small
set. To that end, let us start by introducing the notion of effective joint sparsity.
Definition 5.3.10 (Effective joint sparsity). A matrix W ∈ Rn1×n2 is effectively joint
s-sparse, with s ∈ [1, n2], if

‖W ‖1,1 ≤ s ‖W ‖1,∞ .

Any matrix with s non-zero columns is effectively joint s-sparse as well, but not vice-
versa. Note that, given a matrix W = (w1, . . . ,wn), its effectively joint sparsity can
be written as the effective sparsity of the vector (‖w1‖1 , . . . , ‖wn‖1)>. A consequence
of Lemma 5.3.6 is that we can compress effectively joint-sparse matrices by setting to
zero their columns with lowest `1-norm. For example, assume that W ∈ Rn1×n2 is an
effective joint s-sparse matrix and that Ŵ is constructed by setting to zero all columns
ofW except for its s largest in the `1 sense. Then, by Lemma 5.3.6, we can bound the
‖·‖1,∞ error as

∥∥∥W − Ŵ
∥∥∥

1,∞
≤ 1
s
‖W ‖1,1 ≤

s

s
‖W ‖1,∞ .

The resulting compressed matrix Ŵ would have only s non-zero columns instead of
the original n2. However, every column has potentially n1 non-zero values. Therefore,
in order to compress W further, we assume that each one of its columns has bounded
effective sparsity as well. In summary, effective joint sparsity allows us to reduce the
number of non-zero columns in a matrix, while effective sparsity of the columns allows
us to reduce the number of non-zero elements that each of those columns may have.
Finally, discretization is handled using a standard covering number argument. Putting
all together into the following compression algorithm (Algorithm 2) allows us to map
W into a discrete set while keeping the ‖·‖1,∞ error bounded.

By construction, using this algorithm guarantees that the error is bounded, as stated
in the following lemma.
Lemma 5.3.11. LetW be an effectively joint s2-sparse matrix with effectively s1-sparse
columns, such that ‖W ‖1,∞ ≤ 1. If Ŵ = MatrixCompress (W , γ), then

∥∥∥W − Ŵ
∥∥∥

1,∞
≤ γ ,

where Ŵ belongs to a discrete set C such that log |C| ≤ Õ
(
‖W ‖2

1,∞ s1s2/γ
2
)
.

68

Main Results | 5.3

Algorithm 2 MatrixCompress (·, γ)
Require: γ > 0 and W ∈ Rn1×n2 with ‖W ‖1,∞ = 1, effectively s1-sparse columns
and is effectively joint s2-sparse
Ensure: ∥∥∥W − Ŵ

∥∥∥
1,∞
≤ γ ,

where Ŵ belongs to a discrete set C such that log |C| ≤ Õ
(
‖W ‖2

1,∞ s1s2/γ
2
)

Choose s1 = 3 ‖W ‖1,∞ s1/4γ and s2 = 3 ‖W ‖1,∞ s2/γ

Let W ∈ Rn1×n2 be obtained by setting to zero the columns of W except for the s2
columns with largest `1 norm
Let W̃ ∈ Rn1×n2 be constructed by keeping the s1 largest values of every column of
W and setting to zero the other entries
Let W be the set all possible W̃
Let C be the covering set of W such that ∀W̃ ∈ W ,∃Ŵ ∈ C :

∥∥∥W̃ − Ŵ
∥∥∥

1,∞
≤ γ/3

Let Ŵ ∈ C be the closest matrix in the ‖·‖1,∞ sense to W̃
Return: Ŵ

Proof (Lemma 5.3.11). SinceW is effectively joint sparse, we can bound
∥∥∥W −W

∥∥∥
1,∞

as follows
∥∥∥W −W

∥∥∥
1,∞
≤ 1
s2
‖W ‖1,1 (Lemma 5.3.6)

≤ s2

s2
‖W ‖1,∞ . (Definition of effective joint sparsity)

Similarly, since the remaining non-zero columns W are effectively sparse, we get
∥∥∥W − W̃

∥∥∥
1,∞

= inf
X:‖X‖0,∞=s1

∥∥∥W −X
∥∥∥

1,∞

≤ 1
4s1

∥∥∥W
∥∥∥

1/2,∞
(Lemma 5.3.6)

≤ s1

4s1

∥∥∥W
∥∥∥

1,∞
. (Definition of effective sparsity)

By the definition of Ŵ , we have that
∥∥∥W̃ − Ŵ

∥∥∥
1,∞
≤ γ/3. Combining all these

statements, the choice of s1 and s2 (see Algorithm 2) yields
∥∥∥W − Ŵ

∥∥∥
1,∞
≤
∥∥∥W −W

∥∥∥
1,∞

+
∥∥∥W − W̃

∥∥∥
1,∞

+
∥∥∥W̃ − Ŵ

∥∥∥
1,∞

≤ s1

4s1
‖W ‖1,∞ + s2

s2
‖W ‖1,∞ + γ

3
≤ γ

3 + γ

3 + γ

3 = γ .

It remains to bound the covering number of W with the mixed (1,∞)-norm, denoted
by N (W , ‖·‖1,∞ , γ/3). By definition, the set W is composed of all matrices W̃ with

69

5. | Adversarial Risk Bounds through Sparsity based Compression

at most s2 non-zero columns, where each column has at most s1 non-zero entries and
`1-norm not greater than one. Since any W̃ ∈ W has at most s2 non-zero columns, we
get

N (W , ‖·‖1,∞ , γ/3) ≤
(
n2

s2

)
N (γ/3,Bn1

1,1 ∩ Bn1
0,s1 , ‖·‖1)s2

≤
(
n2

s2

)[(
n1

s1

)
N (γ/3,Bs1

1,1, ‖·‖1)
]s2

≤
(
en2

s2

)s2 [(en1

s1

)s1

N (γ/3,Bs1
1,1, ‖·‖1)

]s2

≤
(
en2

s2

)s2 (en1

s1

)s1s2
(

1 + 6
γ

)s1s2

.

This leads to

logN (W , ‖·‖1,∞ , γ/3) ≤ Õ (s1s2) = Õ
(
‖W ‖2

1,∞ s1s2/γ
2
)
.

choosing C to be the covering set of W completes the proof.

From this lemma, we can see that the set of possible compressed matrices has reasonable
size. Moreover, approximately sparse matrices can be compressed efficiently. This
result leads us to the main contribution of this chapter, which is stated in the following
theorem.

Theorem 5.3.12. Assume x ∈ Bn∞,1. Let fW be a d-layer neural network with ReLU
activations, and effectively joint sj2-sparse weight matrices with effectively sj1-sparse
columns for j = 1, . . . , d. Assume that the network is rebalanced so that

∥∥∥W 1
∥∥∥

1,∞
=

· · · =
∥∥∥W d

∥∥∥
1,∞

= 1. Then, given γ > 0 and ε < γ/4, there exists a finite function set G
composed of the functions f

Ŵ
such that for any fW the adversarial risk is bounded as

Lε0(f
Ŵ

) ≤ L̂εγ(fW) + Õ

√√√√√ d

m

(
1 + γ/2− ε
γ/2− 2ε

)2

d∑

j=1

√
sj1s

j
2

2

with high probability.

Proof (Theorem 5.3.12). By assumption, the activation functions are all set to be the
ReLU activation φ. Then, due to its positive homogeneity property, we re-balance the
network by setting

∥∥∥W i
∥∥∥

1,∞
= 1 for all i = 1, . . . , d without altering the classification

function. For any given adversarial noise η1 with `∞-norm bounded by ε, let us re-define
xi as in (5.1) but with x0 = x + η1. Similarly, for another adversarial noise η2 with
`∞-norm bounded by ε and compressed matrices Ŵ i, let us define the error vector of
the i-th layer ηi in a recursive fashion, that is ηi := φ(W i>xi−1)−φ(Ŵ i>(xi−1 +ηi−1))

70

Main Results | 5.3

for i = 1, . . . , d with η0 := η2 − η1. Note that ‖η0‖∞ ≤ 2ε. With this definition of xi,
since

∥∥∥φ(W i>xi−1)
∥∥∥
∞
≤
∥∥∥W i>xi−1

∥∥∥
∞
≤
∥∥∥W i>

∥∥∥
∞

∥∥∥xi−1
∥∥∥
∞

=
∥∥∥W i

∥∥∥
1,∞

∥∥∥xi−1
∥∥∥
∞

we have that ‖xi‖∞ ≤ ‖x0‖∞
∏i
j=1

∥∥∥W j
∥∥∥

1,∞
≤ 1 + ε.

Our first goal is to bound ‖ηi‖∞ for i = 1, 2, . . . , d, which we do by induction. For any
i > 0, let us assume that ‖ηi−1‖ ≤ εi−1 where εi−1 is some positive value. Given some
εi > εi−1, we compress W i as Ŵ i = MatrixCompress((εi − εi−1)/(1 + ε + εi−1),W i).
Then, using Lemma 5.3.9, we get
∥∥∥ηi

∥∥∥
∞

=
∥∥∥∥φ(W i>xi−1)− φ(Ŵ i>(xi−1 + ηi−1))

∥∥∥∥
∞

=
∥∥∥φ(W i>xi−1)− φ(W i>(xi−1 + ηi−1))

∥∥∥
∞

+
∥∥∥∥φ(W i>(xi−1 + ηi−1))− φ(Ŵ i>(xi−1 + ηi−1))

∥∥∥∥
∞

≤
∥∥∥W i

∥∥∥
1,∞

∥∥∥ηi−1
∥∥∥
∞

+
∥∥∥∥W

i − Ŵ i
∥∥∥∥

1,∞

∥∥∥xi−1 + ηi−1
∥∥∥
∞

(Lemma 5.3.9)

≤ εi−1 +
∥∥∥∥W

i − Ŵ i
∥∥∥∥

1,∞
(1 + ε+ εi−1)

≤ εi . (Definition of Ŵ i)

Given y and fW , let us define f̃W (x) := [fW (x)]j 6=y. By setting ε0 := 2ε and εd := γ/2,
we get

∣∣∣`ε(fW ; x, y)− `ε(fŴ ; x, y)
∣∣∣

=
∣∣∣∣[fW (x + η1)]y −max

j 6=y
[fW (x + η1)]j − [f

Ŵ
(x + η2)]y + max

j 6=y
[f
Ŵ

(x + η2)]j
∣∣∣∣

=
∣∣∣[fW (x + η1)]y −

∥∥∥f̃W (x + η1)
∥∥∥
∞
− [f

Ŵ
(x + η2)]y +

∥∥∥f̃
Ŵ

(x + η2)
∥∥∥
∞

∣∣∣

≤
∣∣∣[fW (x + η1)]y − [f

Ŵ
(x + η2)]y

∣∣∣+
∣∣∣
∥∥∥f̃W (x + η1)

∥∥∥
∞
−
∥∥∥f̃
Ŵ

(x + η2)
∥∥∥
∞

∣∣∣

≤
∥∥∥fW (x + η1)− f

Ŵ
(x + η2)

∥∥∥
∞

+
∥∥∥f̃W (x + η1)− f̃

Ŵ
(x + η2)

∥∥∥
∞

≤ 2
∥∥∥fW (x + η1)− f

Ŵ
(x + η2)

∥∥∥
∞

= 2
∥∥∥ηd

∥∥∥
∞
≤ γ .

We are free to choose ε1, . . . , εd−1 without loosing this bound on∣∣∣`ε(fW ; x, y)− `ε(fŴ ; x, y)
∣∣∣, as long as εi > εi−1. However, the choice of these values

will determine the sample complexity of the compressed function class. A naive way of
choosing εi, like εi := i(γ/2 − 2ε)/d + 2ε, will lead to a sample complexity of O(d2)
instead of O(d). Therefore, we choose these parameters in a smarter way, that is

ε0 := 2ε , εi := εi−1 +

√
si1s

i
2

∑d
j=1

√
sj1s

j
2

(γ/2− 2ε) ,

71

5. | Adversarial Risk Bounds through Sparsity based Compression

so that more error is allocated to the layers with more effective parameters. Note
that this selection implies εd = γ/2 and εi > εi−1, so fW is (γ, ε,S)-compressible via
G = {f

Ŵ
: Ŵ = MatrixCompress((εi − εi−1)/(1 + ε+ εi−1),W)}. In the same manner

as in Lemma 5.3.9, for all i = 1, . . . , d let us define Ci to be the set of all possible Ŵ i.
With this choice, the logarithm of the cardinality of the compressed function class is

log |G| = log
d∏

i=1

∣∣∣Ci
∣∣∣ =

d∑

i=1
log

∣∣∣Ci
∣∣∣

≤ Õ
(

d∑

i=1
si1s

i
2(1 + ε+ εi−1)2/(εi − εi−1)2

)

≤ Õ

d∑

i=1

si1s
i
2(1 + ε+ γ/2− 2ε)2

(∑d
j=1

√
sj1s

j
2

)2

(
(γ/2− 2ε)

√
si1s

i
2

)2

= Õ

d∑

i=1

(1 + γ/2− ε)2
(∑d

j=1

√
sj1s

j
2

)2

(γ/2− 2ε)2

= Õ

d

(
1 + γ/2− ε
γ/2− 2ε

)2

d∑

j=1

√
sj1s

j
2

2

 .

Finally, we apply Theorem 5.2.2, yielding

Lε0(f
Ŵ

) ≤ L̂εγ(fW) + Õ

√√√√√ d

m

(
1 + γ/2− ε
γ/2− 2ε

)2

d∑

j=1

√
sj1s

j
2

2

which proves the theorem.

This result proves a bound with no explicit dimension dependence, which is also indepen-
dent from the number of classes. On the other hand, there seems to be an unavoidable
dependence with

√
d. Yet, this dependence is also present in the bounds for multi-layer

neural networks, derived in related works [98], [99]. The rebalancing in Theorem 5.3.12
simplifies the proof by getting rid of the term ∏d

j=1 ‖W j‖1,∞, which appears in other
works such as [98]. Note that, for ReLU networks, rebalancing does not affect the labels
that fW assigns to the inputs. However, by the definition of `ε and Lεγ, in practice, γ
cannot be larger than 2∏d

j=1 ‖W j‖1,∞. Then, the requirement ε < γ/4, in the setup of
Theorem 5.3.12, limits the use of this result to ε < 0.5, or less for neural networks with
smaller classification margins. Nonetheless, considering that x ∈ Bn∞,1, this require-
ment may not be extremely restrictive, since ε = 0.5 is a rather high value. Despite
this shortcoming, Theorem 5.3.12 improves existing bounds in other aspects, as shown
in Table 5.1. For instance, we observe that Theorem 5.3.12 improves existing works

72

Experiments | 5.4

Rebalancing Generalization Bound
[98] ‖x‖2 ≤ R

∥∥∥W j
∥∥∥

1,∞
= 1 Õ

(√
d
m
k2(Rmaxj

∥∥∥W j
∥∥∥

F
+ ε)2

)

[99] ‖x‖2 ≤ R
∥∥∥W j

∥∥∥
2

= 1 Õ

λ+

f ε+

√√√√R2

m

(
n2
(∑d

j=1

√∥∥∥W j
∥∥∥

F

)2
+ Λε

)2

ours ‖x‖∞ ≤ 1
∥∥∥W j

∥∥∥
1,∞

= 1 Õ
(√

d
m

(
1+γ−ε
γ−2ε

)2
(∑d

j=1

√∥∥∥W j
∥∥∥

1/2,∞

∥∥∥W j
∥∥∥

1,1

)2
)

Table 5.1.: Comparison of the result in Theorem 5.3.12 with existing bounds for d-
layered neural networks and ‖η‖∞ ≤ ε. We assume ReLU activations and
rebalance the networks such that the bounds are simplified. The input
x ∈ Rn is assumed to belong to one of k classes and γ is the classification
margin. The term λ+

f > 0 depends on m but may not vanish as m increases,
while the term Λε vanishes if ε = 0. For the precise definition of these two
terms refer to [99].

from requiring ‖x‖2 ≤ R to ‖x‖∞ ≤ 1. Note that, in general, knowing that ‖x‖1 ≤ 1
only allows to bound R by

√
n, which would add an explicit dimension dependence on

existing results. Moreover, our result does not depend on the number of classes as the
work of Khim et al. [98], nor it contains terms that do not vanish with m or an explicit
dimension dependence (as Tu et al. [99]).

5.4. Experiments

We conduct a experiment to corroborate our findings. To that end, we train a fully
connected neural network of 3 layers with ReLU activations on the MNIST and CIFAR-
10 datasets. After preprocessing, the inputs are 1024-dimensional vectors with `∞-norm
bounded by one. The weight matrices are of size 1024× 500, 500× 150, and 150× 10.
To estimate the adversarial risk, we use the projected gradient descent (PGD) attack
[24] with `∞-norm bounded by 0.2 and perturbations computed through 10 iterations of
the PGD algorithm. This PGD method is the state of the art algorithm for adversarial
training.

In Figure 5.1(a), the network is first trained, on the MNIST dataset, without using
adversarial examples. Then, after 50% of the training time, we start introducing adver-
sarial examples to the training set. The same procedure is done in Figure 5.1(b) for the
CIFAR-10 dataset, but adversarial examples are introduced after 33% of the training
time. These experiments are carried out using the PGD method as described above,
except for 0.2 bound on the perturbation’s `∞-norm. Instead, we start with a 0.05 norm
bound and slowly increase it until reaching 0.2. We observe that the adversarial error
remains unchanged until adversarial training starts, this behavior correlates well with

73

5. | Adversarial Risk Bounds through Sparsity based Compression

0 25 50 75 100

0.0

0.5

1.0

1.5

2.0

start of
adversarial
training

Training Time (in %)

Train error
Test error
Train error (adv)
Test error (adv)
Barlett [82]
Neyshabur [86]
Tu [99] (adv)
Khim [98] (adv)
Ours (adv)

(a) MNIST

0 25 50 75 100

0.0

0.5

1.0

1.5

2.0

Training Time (in %)

(b) CIFAR-10

Figure 5.1.: Test and training error (i.e., 1 − accuracy), and (rescaled) generalization
bounds during standard and adversarial training. Note that the magni-
tude of these bounds may differ in several orders of magnitude. Then, for
aesthetic reasons we normalized these curves (the ones containing general-
ization bounds) to be between 0 and 2, while the error curves are between
0 and 1 as usual. We observe that adversarial training improves our bound
significantly, while standard training does not.

our result. Interestingly, classic (not adversarial) risk bounds [82], [86] decrease signifi-
cantly with adversarial training. This agrees with the intuition, from Theorem 5.3.12,
that the effective sparsity induced by adversarial training improves generalization. Ad-
ditionally, we compute the effective sparsity and effective joint sparsity of the weight
matrices. In Figure 5.2, we see how these quantities correlate well with the adversarial
risk as well. Interestingly, the effective joint sparsity of the weight matrices dominates
our generalization bound, a property that was overlooked so far in this context. Overall,
these findings show that inducing sparsity structures on the weight matrices does not
only provide robustness, but also improves generalization of neural networks.

74

Experiments | 5.4

M
N
IS
T

Layer 1

0 20 40 60 80 100

0

200

400

600

800

start of
adversarial
training

Training Time (in %)

s1
s2

Layer 2

0 20 40 60 80 100

0

100

200

300

400

Training Time (in %)

Layer 3

0 20 40 60 80 100

0

20

40

60

80

100

Training Time (in %)

C
IF
A
R
-1
0

0 20 40 60 80 100

0

1000

2000

3000

Training Time (in %)
0 20 40 60 80 100

0

200

400

600

800

Training Time (in %)
0 20 40 60 80 100

0

50

100

150

Training Time (in %)

Figure 5.2.: Experiment on the MNIST dataset. Effective sparsity s1 and effective joint
sparsity s2 of the weight matrices, at every layer, of a vanilla neural net-
work. These quantities tend to improve with adversarial training, with s2
dominating this tendency.

75

6
An Information Theoretic View on Learning

with Noisy Labels

One key of the recent success of deep learning is the availability of large datasets with
high quality labels, such as ImageNet. However, in many applications, obtaining labeled
data is costly and the experts may incur into classification error when labeling. In this
chapter1, we study the behavior of information theoretic quantities when learning under
label noise. We construct a novel notion of information plane and prove various relations
between the quantities involved. In a simplified scenario, where the data is assumed
to be linearly separable, we are able to fully characterize the trajectory that a linear
classifier takes in the information plane when moving towards the optimal solution.
Then, we conduct an empirical study on the trajectories taken by neural networks and
observe a behavior that is consistent with our simplified scenario. This allows us to
predict the trajectories of correctly trained classifiers in the information plane. Finally,
we observe that several undesired learning behaviors can be detected using these notions,
since the trajectories of such classifiers deviate significantly from the predicted ones.

1This chapter contains the work in [100] with additional results.

77

6. | An Information Theoretic View on Learning with Noisy Labels

6.1. Related Work

The problem of learning from noisy labeled data has been widely studied in the literature
[13], [14]. The theoretical study of Random Class Noise (RCN) dates back to 1988 with
the well-known work of Angluin & Laird [12]. In that work, the authors showed that a
Probably Approximately Correct (PAC) learnable model in the presence of class noise
requires more samples to be PAC identifiable. Following results, like the work of Aslam
& Decatur [101], upper bounded such number of required samples and showed that the
“0-1” loss is PAC-learnable if the VC-dimension is finite. Later, Gentile et al. [102]
improved these upper bounds.

Many existing works established robustness guarantees (to label noise) for various sur-
rogate loss functions, which are commonly used instead of the 0-1 loss. For instance, B.
van Rooyen et al. [103] showed that classification-calibrated losses are asymptotically
robust. Manwani & Sastry [104] showed, for binary classification, that the function that
minimizes the expected error in the presence of RCN is also the minimizer of the error
for noiseless labels. Gosh et al. [105] extended that work by providing sufficient con-
ditions, on any loss function, to be noise tolerant under uniform and class-conditional
noise. This result was recently generalized to the case of multi-class classification [15].
Moreover, Natarajan et al. [106] provided guarantees for Empirical Risk Minimiza-
tion (ERM) with convex surrogate losses in binary classification. The authors showed
that biased Support Vector Machines (SVMs) and weighted logistic regression are prov-
ably noise tolerant. Natarajan et al. [107] extended that work to more general utility
measures such as the AM measure2, a loss function which is used in problems with large
class imbalance.

For the case of noiseless labels, Menon et al. [108] proposed learning algorithms with
proven consistency on the AM measure. Narasimhan et al. [109] extended those results
to any utility measure that can be expressed as a continuous function of the true positive
rate (TPR) and the true negative rate (TNR), such as the F-score. Liu & Tao [110]
showed that any surrogate loss function can be used for classification with noisy labels
by using importance reweighting3. This result led the authors to derive a method for
estimating the noise rate as well, a problem that was not addressed previously aside
from the work of Scott et al. [112]. Wang et al. [113] generalized the reweighting
strategy from Liu & Tao [110] to multiple classes. Menon et al. [16], [114] showed
that the balanced error and AUC losses can be optimized even if label noise is present.
Patrini et al. [115] introduced the concept of linear odd-losses and established robustness
guarantees to Class-Conditional random label Noise (CCN) for these losses. Northcutt
et al. [116] used a rank prunning algorithm for estimating noise rates, with guaranteed
consistency under ideal scenarios. Zhang & Sabuncu [117] extended the cross-entropy
loss to deal with noisy labels. That approach was based on a theoretical construction,

2The AM measure is the arithmetic mean of the True Positive Rate and the True Negative Rate.
3Importance reweighting is a technique commonly used for domain adaptation [111].

78

Related Work | 6.1

but with no proven robustness guarantees. Scott [118] estimated noise rates for binary
classification using mixture proportion estimation.

On the other hand, studying the behavior of information theoretic quantities in the
presence of label noise has not received much attention in the literature. However, for
the noiseless regime, this problem was addressed by Shwartz-Ziv & Tishby [119] in an
attempt to explain the learning through the lens of the information bottleneck method
[120]. In that work, the layers of neural networks are considered random variables form-
ing a Markov chain. The authors constructed a 2D information plane by estimating the
mutual information values between hidden layers, inputs, and outputs of neural net-
works. Using this approach, it was observed that the information bottleneck method
provides an approximate explanation for the nature of learning with Stochastic Gra-
dient Descent (SGD). In addition, their experiments showed the role of compression
in learning. That initial paper motivated further work on this line of research [121],
[122]. The main practical limitation of that type of experiments is that it requires es-
timating mutual information between high dimensional continuous random variables.
This becomes prohibitive as soon as we move to moderately large problems, such as the
CIFAR-100 dataset, where the large neural networks are employed. Other works dealing
with information theoretic quantities tend to have these experimental limitations. For
instance, [123]–[125] used generic chaining techniques to show that generalization error
can be upper bounded by the mutual information between the training dataset and the
output of the learning algorithm. Nevertheless, estimating that mutual information to
verify those results experimentally becomes intractable.

6.1.1. Our Contributions

In this chapter, we define a novel 2D information plane that only requires to estimate
information theoretic quantities between the correct and estimated labels. Since these
random variables are discrete and one-dimensional, this framework can be used to study
learning in large recognition problems as well. We first extend the error bound of Menon
et al. [16] to the multi-class scenario. Then, we establish fundamental relations between
various types of error and information theoretic quantities. In simplified scenarios, we
analytically characterize the trajectory in the information plane of linear classifiers when
their corresponding weights move towards the optimal solution. Finally, we provide
an empirical study on the behavior of those information theoretic quantities during
learning, which is consistent with our previous theoretical results. These results show
the potential of using information theoretic quantities for detecting undesired learning
phenomena, since in such cases the trajectories deviate significantly from the theoretical
ones.

79

6. | An Information Theoretic View on Learning with Noisy Labels

Figure 6.1.: System model.

6.2. System Model

So far in this thesis, we have assumed that the random vector x ∈ X ⊆ Rn and its
associated label y ∈ Y follow a completely unknown distribution D, that is (x, y) ∼ D.
However, in this chapter we model the relation between x and y through some hidden
random variables ỹ and z. This relation implicitly defines D.

Before defining ỹ and z, let us assume that there exists a ground truth classifier, known
as “oracle”, that maps x to one of k ∈ N classes. Formally, the oracle classifier is a deter-
ministic mapping c : X → Y where Y = {1, . . . , k} is the set of possible classes. Then,
ỹ ∈ Y denotes the random variable ỹ = c(x) which corresponds to the ground truth
label associated to x. One common assumption, that is present in popular datasets such
as MNIST, CIFAR-10, CIFAR-100, and Imagenet, is that ỹ is uniformly distributed. We
assume this to be true throughout this chapter. Note that the designer of the dataset
has control over the marginal distribution of ỹ. Now, we model the situation where there
are experts labeling the inputs that are prone to errors. Then, y is defined as a noisy
version of ỹ by introducing a discrete and independent random noise z ∈ {0, . . . , k−1}.
Formally, ỹ and y are related via the modulo addition4 of z, that is y = ỹ ⊕ z ∈ Y .

For the sake of notation, let w be the vector containing all tunable parameters of a
classifier. The set of all possible vectors w is denoted by W . Then, a classifier is a
deterministic function cw : X → Y , parametrized by w, that aims to approximate c.
Further, ŷ = cw(x) is defined to be the random variable of the label predicted by the
classifier cw(·). Using this notation, we define three types of error: the dataset error5

p = P(y 6= ỹ), the test error L0(f) = P(ŷ 6= y), and the true error L̃0(f) = P(ŷ 6= ỹ). A
summary of this system model is provided in Figure 6.1.

4We use ⊕ to denote the modulo k addition.
5This error is also known as noise rate or error rate.

80

System Model | 6.2

0 1 2 3 4 5 6
0

1

2

3

4

5

6

H(ŷ)

H
(ŷ

|y
)

(a) Information Plane

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

L0(f)

H
(ŷ

|y
)

(b) Entropy-Error plane

Figure 6.2.: Learning trajectory of DenseNet on the CIFAR-100 dataset. The markers
in the black dashed lines represent the ideal values of H(y), H(ŷ|y) and
L0(f) when L̃0(f) = 0. (a): The dashed lines correspond to the maximum
entropy value. (b): The dashed lines are the upper bound given by Fano’s
inequality.

In the works of [126], it has been shown that I(y; ŷ) gives an upper and lower bound
on the minimal error6 between y and ŷ. In addition, the minimal error is minimized
when I(y; ŷ) reaches its maximum. Thanks to this relation, learning can be modeled as
finding w such that I(y; ŷ) is maximized. This can be written in terms of entropies as

max
w∈W

I(y; ŷ) = max
w∈W

H(ŷ)−H(ŷ|y) . (6.1)

As a result from the above formulation of the learning problem, we define the infor-
mation plane as the 2-dimensional space composed by H(ŷ) and H(ŷ|y). In addition,
we also take into account the error L0(f) by defining the entropy-error plane, which is
formed by L0(f) and H(ŷ|y). We investigate what can the trajectory, in these planes,
tell us about the status of the learning process of neural networks. We start address-
ing this question with a preliminary experiment, shown in Figure 6.2. In that figure,
we observe the learning trajectory of the DenseNet architecture with 100 layers as it
learns to classify data from the CIFAR-100 dataset using SGD, for p = 0. An intuitive
interpretation, when solving (6.1), is that maximizing H(ŷ) is more related with the
unsupervised component of learning since it does not depend on y. On the other hand,
keeping H(ŷ|y) low while H(ŷ) increases can be seen as the supervised component of
(6.1). From this point of view, it would be interesting to characterize the inflection
point from which H(ŷ|y) starts decreasing, since it allows us to quantify at which point
SGD starts paying more attention to assigning labels correctly than to learn about the
distribution of the input. One also may wonder if this increasing-decreasing trajectory
is an accidental result that occurs only on this particular experimental setup, or if it is a

6The minimal error is the error obtained by a maximum likelihood classifier that predicts y from ŷ.

81

6. | An Information Theoretic View on Learning with Noisy Labels

fundamental property of gradient based optimization. In order to analyze these trajec-
tories during training, we must first prove fundamental relations between the quantities
involved. This is carried out in the following section.

6.3. Bounds Relating Entropy and Error

In this section, we investigate the fundamental relations that exist between L̃0(f), L0(f),
p, H(ŷ) and H(y|ŷ). To this end, in the following lemma we introduce Fano’s inequality,
which is a well-known result from information theory.

Lemma 6.3.1 (Fano’s Inequality [127], Lemma 3.8). The value of H(y|ŷ) and H(ŷ|y)
is upper bounded by a function of the expected error as

max{H(y|ŷ), H(ŷ|y)} ≤ Ψ(L0(f)) ,

where the function Ψ : [0, 1]→: [0, log k] is defined as

Ψ(x) = x log(k − 1) + hb(x) , x ∈ [0, 1]

and hb(x) = −x log(x)− (1− x) log(1− x) is the binary entropy function.

This result provides an upper bound on the conditional entropy in terms of L0(f) and
is central in many works from information theory. We make use of this lemma heavily
in this chapter as well. We start by using Fano’s inequality to establish a fundamental
relation between H(z) and p in the following lemma.

Lemma 6.3.2. Let z ∈ Y be a random variable with P(z = 0) = 1− p, then

H(z) ≤ Ψ(p) .

Proof (Lemma 6.3.2). Let us define βl := P(z = l) and the auxiliary random variable

82

Bounds Relating Entropy and Error | 6.3

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

x

Ψ
(x

)

k = 2
k = 5
k = 10
k = 15

(a) Ψ function

0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

x

Φ
(x

)

k = 2
k = 5
k = 10
k = 15

(b) Φ function

Figure 6.3.: Example of the Ψ between the interval [0, 1− 1/k], where k is the number
of classes, and its inverse function Φ for that interval.

z̃ ∈ {1, . . . , k − 1} with P(z̃ = l) = βl/p for l = 1, . . . , k − 1. This leads to

H(z) = −(1− p) log(1− p)−
k−1∑

l=1
βl log βl

= −(1− p) log(1− p)− p
k−1∑

l=1

βl
p

log βl
p
p

= −(1− p) log(1− p)− p
k−1∑

l=1

βl
p

log p− p
k−1∑

l=1

βl
p

log βl
p

= −(1− p) log(1− p)−
k−1∑

l=1
βl log p+ pH(z̃)

= −(1− p) log(1− p)− p log p+ pH(z̃)
= hb(p) + pH(z̃)
≤ hb(p) + p log(k − 1)
= Ψ(p) ,

thus proving the lemma.

One property of the function Ψ, which was introduced in Lemma 6.3.2, is that it is
strictly increasing on the interval [0, 1/k]. Therefore, on that interval, this function has
an inverse which we denote as Φ : [0, log k]→ [0, 1− 1

k
], that is

Φ(Ψ(x)) = x for all x ∈ [0, 1/k] .

These functions are depicted in Figure 6.3 for different values of k. Moreover, using the
Φ function, for p < 1/k, we can rewrite Lemma 6.3.2 as Φ(H(z)) ≤ p, which gives an

83

6. | An Information Theoretic View on Learning with Noisy Labels

upper bound on H(z). These relations lead to the following result, which shows that,
under some mild conditions, the lower bound p ≤ L0(f) is in fact sharp. This result was
recently established in the following theorem of Ghosh et al. [15], which we rediscovered
in this chapter through a different proof technique.

Theorem 6.3.3 (Ghosh et al. [15]). For p < 1 − 1/k, let P(z = 0) = 1 − p and
P(z = 0) > P(z = l) for l = 1, . . . , k − 1, then

p ≤ L0(f) ,

and equality is attained if and only if L̃0(f) = 0.

Proof (Theorem 6.3.3). For the sake of notation let us define

δl := P(ŷ = ỹ ⊕ l) ,
βl := P(z = l) for l ∈ {0, . . . , k − 1} ,

βmax := max
l=1,...,k−1

βl .

Since p ∈ [0, 1 − 1/k], we have that Φ : [0, log k] → [0, 1 − 1
k
] is the inverse function of

Ψ for any p in the allowed interval. Therefore, for the independent noise z, we get

H(z) = H(z|ŷ, ỹ) = H(y|ŷ, ỹ) ≤ H(y|ŷ) .

Since Ψ is an increasing function in the interval [0, 1 − 1
k
] and Φ is its inverse in that

interval, we have that Φ is an increasing function as well. Therefore, applying Lemma
6.3.1 leads to H(z) ≤ Ψ(L0(f)) which implies

Φ(H(z)) ≤ L0(f) . (6.2)

Similarly, from Lemma 6.3.2 we know that H(z) ≤ Ψ(p), thus

Φ(H(z)) ≤ p .

Note that this bound is only sharp if βl = 1/(k − 1) for all l = 1, 2, . . . , k − 1. Then,
if the bound from (6.2) were to be sharp, L0(f) could reach values strictly lower than
p. We will show that this is not possible. To that end, let us assume that H(z) < Ψ(p)

84

Bounds Relating Entropy and Error | 6.3

and L0(f) < p. Then it follows,

1− L0(f) = P(ŷ = y)

=
k−1∑

l=0
P(ŷ = y|z = l)P(z = l)

=
k−1∑

l=0
P(ŷ = y ⊕ l)P(z = l)

=
k−1∑

l=0
δlβl

= (1− p)δ0 +
k−1∑

l=1
βlδl

≤ (1− p)δ0 +
k−1∑

l=1
βmaxδl

= (1− p)δ0 + βmax(1− δ0) (6.3)
≤ (1− p)δ0 + (1− p)(1− δ0)
= (1− p) .

If L0(f) < p, we obtain (1− p) < 1− L0(f) ≤ (1− p) which is a contradiction, hence,
it must hold that L0(f) ≥ p.

Finally, if L0(f) = p then (6.3) yields

1− p ≤ (1− p)δ0 + βmax(1− δ0) .

Since βmax < (1− p), this inequality holds if and only if δ0 = 1, that is L̃0(f) = 0.

This theorem shows that the minimum expected error L0(f) can only be attained if
cw(·) manages to denoise the labels, hence L̃0(f) = 0. In other words, the true error
L̃0(f) is optimal when the lowest value of L0(f) is achieved. However, Theorem 6.3.3
does not tell us what happens to L̃0(f) when L0(f) is not at its lowest possible value.
Furthermore, we extend that result by deriving bounds for L̃0(f), given L0(f) and p,
in the following theorem.

Theorem 6.3.4. Given L0(f) < 1− 1
k
and p < 1

2 , if P(z = 0) = 1−p, and P(z = l) < 1
2

for l = 1, . . . , k − 1, then L̃0(f) is bounded by

L0(f)− p
1− p ≤ L̃0(f) ≤ L0(f)− p

1− 2p .

Proof (Theorem 6.3.4). We start by expressing the expected accuracy P(ŷ = y) in terms

85

6. | An Information Theoretic View on Learning with Noisy Labels

of the true accuracy P(ŷ = ỹ), that is

1− L0(f) = P(ŷ = y)

=
k−1∑

l=0
P (ỹ ⊕ l = ŷ)
︸ ︷︷ ︸

δl

P (z = l)
︸ ︷︷ ︸

βl

= (1− p)(1− L̃0(f)) +
k−1∑

l=1
δlβl (6.4)

≤ (1− p)(1− L̃0(f)) + βmax

k−1∑

l=1
δl

= (1− p)(1− L̃0(f)) + βmaxL̃0(f)
= (1− p)− L̃0(f)((1− p)− βmax) .

Therefore, L̃0(f) is upper-bounded as

L̃0(f) ≤ (1− p)− (1− L0(f))
(1− p)− βmax

≤ (1− p)− (1− L0(f))
(1− p)− p = L0(f)− p

1− 2p .

Finally, applying ∑k−1
l=1 δlβl ≥ 0 in (6.4) leads to 1− L0(f) ≥ (1− p)(1− L̃0(f)), thus

(1− p)− (1− L0(f))
(1− p) ≤ L̃0(f) ⇒ L0(f)− p

1− p ≤ L̃0(f) ,

which completes the proof.

This theorem shows that, by minimizing L0(f), a classifier minimizes L̃0(f) as well. Nev-
ertheless, the amount of samples that a classifier requires to successfully minimize L0(f)
is not studied in this work. Such study corresponds to works from the literature such
as [101], [102]. Let us use the notation f̃ ∗ := argminf L̃0(f) and f ∗ := argminf L0(f).
Then, we can see that this theorem constitutes an improvement from the result by
Menon et al. [16], which established

L̃0(f) ≤ L0(f)− L0(f ∗)
1− 2L0(f ∗)

for binary classification. Note that, since we established in Theorem 6.3.3 that L0(f ∗) =
p, we can write Theorem 6.3.4 as

L0(f)− L0(f ∗)
1− L0(f ∗) ≤ L̃0(f) ≤ L0(f)− L0(f ∗)

1− 2L0(f ∗) .

Therefore, this result generalizes the result of Menon et al. [16] to the case of multi-class
classification and provides an additional lower bound.

Finally, applying Lemma 6.3.1 to this result yields the following corollary that directly
relates conditional entropies with p and L0(f).

86

Analysis of Learning Trajectories for Linear Classifiers | 6.4

Corollary 6.3.4.1. If p < 1
2 and L0(f)− p < (1− 1

k
)(1− 2p) then

max{H(ỹ|ŷ), H(ŷ|ỹ)} ≤ Ψ
(
L0(f)− p

1− 2p

)
.

Proof. Since Ψ is an increasing function in the interval [0, 1− 1
k
], the proof follows from

applying Theorem 6.3.4 on Lemma 6.3.1.

6.4. Analysis of Learning Trajectories for Linear
Classifiers

In Figure 6.2, we showed the trajectory of a classifier in the information plane, as well as
in the entropy-error plane. Such trajectory seems to appear regardless of the activation
function employed on the spirals and MNIST dataset, as we will show later in Section
6.5. Moreover, in this section we provide a justification for this type of trajectory
through linear classifiers. More precisely, in the linearly separable data paradigm with
binary labels, we are able to analytically characterize the trajectories of linear classifiers
as their weights approach optimal values.

6.4.1. Binary Classification of Linearly Separable Data

We start by proposing a simplified linear model for the relation between x and ỹ. Such
relation, along with the distribution z, implicitly defines D. We model the case where
the input data lies in a low-dimensional manifold within a high-dimensional space. This
situation is common in many classification tasks. However, we assume this manifold
to be linear as well, thus the input data belongs to some hyperplane. Formally, we
assume the input vector to be given by (x>,µ>)> ∈ Rn+n′ , where x ∈ Rn is a random
vector, while µ ∈ Rn′ is a constant vector. In this manner, the input data vectors lie
in a n-dimensional hyperplane contained in a (n + n′)-dimensional space. Note that,
since µ is always constant (regardless of the associated label), only x is relevant for
classification. Let us assume that the true associated label, denoted by ỹ, and given by
the relation

ỹ = sign
(〈(

w∗
u∗

)
,

(
x
µ

)〉)
= sign

〈w∗,x〉+ 〈u∗,µ〉

︸ ︷︷ ︸
=:b∗

 = sign (〈w∗,x〉+ b∗) ,

where w∗ ∈ Rn and µ∗ ∈ Rn′ , which implicitly defines b∗ ∈ R, are unknown but fixed
parameters. This formulation corresponds to the paradigm of linearly separable classes.

Let t ∈ [0, 1] denote the fraction of total training time. In other words, the value t = 0
refers to the beginning of training, while t = 1 to the end. Using this notation, we

87

6. | An Information Theoretic View on Learning with Noisy Labels

define the random variable ŷ(t) as the parametrized version of ŷ at a fraction t of the
total training time. Formally, this corresponds to

ŷ(t) = sign
(〈(

w(t)

u(t)

)
,

(
x
µ

)〉)
= sign

〈
w(t),x

〉
+
〈
u(t),µ

〉

︸ ︷︷ ︸
=:b(t)

 = sign

(〈
w(t),x

〉
+ b(t)

)
,

where w(t) ∈ Rn and u(t) ∈ Rn′ , which implicitly defines b(t) ∈ R, are the tunable
parameters of the model at a fraction t of the total training time. This setup corresponds
to the classical learning from linearly separable data. Note that, in this setup, our
classifier is capable of achieving zero true error (i.e., P[ỹ = ŷ(t)] = 1) by learning
w(t) = w∗ and b(t) = b∗. It is known for various optimizers that, regardless of the
initialization, (w(t), b(t)) converges to (w∗, b∗). We now need to specify the initialization
point, that is the value of w(t) and b(t) at t = 0. Let us assume a staring point w(0) = 0
and b(0) > 0, which results in P[ŷ(0) = +1] = 1 (i.e., H(ŷ(0)) = 0) regardless of the
distribution of x and the hidden parameters. Note that, in practical problems, random
initialization with values close to zero is often used. As we will see in Section 6.5, such
initialization often leads to a starting point close to H(ŷ(0)) = 0, the same as in our
linearly separable model. The question we address is what trajectory do optimizers
take to go from this initial point towards the optimal set of parameters. To visualize
such trajectories, since the parameter space is usually large, we must first aggregate the
information from that space into a smaller space. In this binary classification problem,
we may use the space of joint probability measures between y and ŷ since we only
require 3 values to fully define the joint probabilities between these variables. To that
end, let D(t)

Ỹ ,Ŷ
denote the distribution of (ỹ, ŷ(t)) and D∗

Ỹ ,Ŷ
the optimal distribution (i.e.,

when (w(t), b(t)) = (w∗, b∗)). Note that D(0)
Ỹ ,Ŷ

corresponds to the distribution where
P[ŷ(0) = +1] = 1, while D∗

Ỹ ,Ŷ
to P[ỹ = ŷ(t)] = 1. Now, we need to know how is D(t)

Ỹ ,Ŷ

changing, given that w(t) is moving towards w∗. This is addressed in the following
theorem.

Theorem 6.4.1. Given w(0) = 0, b(0) 6= 0, assume that w(t) = (1 − t)w(0) + tw∗ and
b(t) = (1 − t)b(0) + tb∗. Then, there exists a decreasing function β : [0, 1] → [0, 1], such
that β(t) tends to one as t→ 1 and for any t ∈ [0, 1] we have that

D(t)
Ỹ ,Ŷ

= (1− β(t))D(0)
Ỹ ,Ŷ

+ β(t)D∗
Ỹ ,Ŷ

. (6.5)

Proof (Theorem 6.4.1). Let us define the function β(t) as

β(t) :=
1− P

[
ŷ(t) = +1

]

1− P [ỹ = +1] .

Then, we start by analyzing the marginal distribution of ŷ(t). Since we assume ŷ(t)

to be a binary random variable, its distribution is fully determined by P[ŷ(t) = +1].

88

Analysis of Learning Trajectories for Linear Classifiers | 6.4

Furthermore, through the assumptions of this theorem, this probability simplifies to
P
[
ŷ(t) = +1

]
= P

[〈
w(t),x

〉
+ b(t) ≥ 0

]

= P
[
t (〈w∗,x〉+ b∗) + (1− t)b(0) ≥ 0

]

= P

〈w∗,x〉+ b∗ ≥ − (1− t)b(0)/t

︸ ︷︷ ︸
=:g(t)

 . (6.6)

Without loss of generality, let us assume b(0) > 0 instead of only being non-zero7. This
assumption implies that g(t) is a non-negative and increasing function, thus P[ŷ(t) =
+1] decreases with t. Note that this leads to β(t) being an increasing function in
t. Moreover, since g(t) tends to zero as t → 1, we have that P[ŷ(t) = +1] tends to
P[〈w∗,x〉+ b∗ ≥ 0] = P[y = +1]. Therefore, the function β(t) tends to one as t→ 1.

Now, since g(t) is non-negative, P[y = +1, ŷ(t) = +1] simplifies to

P
[
ỹ = +1, ŷ(t) = +1

]
= P [〈w∗,x〉+ b∗ ≥ 0, 〈w∗,x〉+ b∗ ≥ −g(t)]
= P [〈w∗,x〉+ b∗ ≥ 0]
= P [ỹ = +1] .

In the same manner, we show that P[y = +1, ŷ(t) = −1] remains being zero for any t,
that is

P
[
ỹ = +1, ŷ(t) = −1

]
= P [〈w∗,x〉+ b∗ ≥ 0, 〈w∗,x〉+ b∗ ≤ −g(t)]
= 0 .

Now, we make use of (6.6) to express P[y = −1, ŷ(t) = +1] as

P
[
ỹ = −1, ŷ(t) = +1

]
= P

[
ŷ(t) = +1

]
− P [ỹ = +1]

= (1− P [ỹ = +1]) (1− β(t)) .

Likewise, P[y = −1, ŷ(t) = −1] yields

P
[
ỹ = −1, ŷ(t) = −1

]
= P [〈w∗,x〉+ b∗ ≤ 0, 〈w∗,x〉+ b∗ ≤ −g(t)]

= 1− P [〈w∗,x〉+ b∗ ≥ −g(t)] = 1− P
[
ŷ(t) = +1

]

= (1− P [ỹ = +1]) β(t) .
Putting these results together, we get

P
[
ỹ = +1, ŷ(t) = +1

]

P
[
ỹ = −1, ŷ(t) = +1

]

P
[
ỹ = +1, ŷ(t) = −1

]

P
[
ỹ = −1, ŷ(t) = −1

]

= (1− β(t))

P [ỹ = +1]
1− P [ỹ = +1]

0
0

+ β(t)

P [ỹ = +1]
0
0

1− P [ỹ = +1]

 ,

which proves the theorem.
7An equivalent version of this proof for b(0) < 0 is trivial.

89

6. | An Information Theoretic View on Learning with Noisy Labels

This theorem shows that if an algorithm moves the parameters in a straight line towards
the optimal parameter choice, we expect the joint probability measure of (y, ŷ) to move
in a straight line as well.

6.4.2. Multi-Class Classification

While we may use the result in Theorem 6.4.1 to visualize the trajectories taken by
classifiers during training, this approach does not scale well for multi-class scenarios,
as one would need to visualize k2 − 1 values. For this reason, we propose using the
information and entropy-error planes to visualize the progress of training, which requires
characterizing the learning trajectories in terms of H(ŷ(t)|y), H(ŷ(t)) and L0(f). To that
end, we consider a multi-class setup with |Y| = k. In this multi-class scenario, the
distribution of z is not fully determined by p. For the sake of simplicity, instead of
considering arbitrary distributions for z, let us assume that z flips the label ỹ, with
probability p, to another label chosen uniformly at random from the remaining ones.
Formally, the distribution of z is given by

P(z = i) =

1− p, i = 0
p

k−1 , i ∈ {1, . . . , k − 1} . (6.7)

In this section, we aim to characterize the trajectory of classifiers in this scenario as they
move towards the correct solution. Note that the definition of D(t)

Ỹ ,Ŷ
and D∗

Ỹ ,Ŷ
from the

previous section are still valid for this multi-class scenario. The result from Theorem
6.4.1 established that, for the binary case, these distributions move withing the curve
shown in (6.5) when a classifier tunes its weights towards the correct solution. From
the proof of this theorem, generalizing this result for a multi-class linearly separable
scenario seems to be tedious, yet not necessarily complicated. Therefore, and for the
sake of clarity, we assume that D(t)

Ỹ ,Ŷ
moves as in (6.5) for the multi-class setup as well.

Using this assumption, along with the distribution of z in (6.7), we provide a simplified
expression for the derivative D∗

Ỹ ,Ŷ
with respect to β(t) in the following lemma.

Lemma 6.4.2. Let us assume a multi-class scenario where ỹ ∈ Y, with |Y| = k.
Additionally, let z follow the distribution in (6.7). If D(t)

Ỹ ,Ŷ
= (1−β(t))D(0)

Ỹ ,Ŷ
+β(t)D∗

Ỹ ,Ŷ
,

then it holds

∂H(ŷ(t)|y)
∂β(t) = 1

k

[
p log(1− β(t)p) + (k − 1− p) log (1− β(t) + β(t)p/(k − 1))

− (k − 1)(1− p) log(β(t)(1− p))− (k − 1)p log (β(t)p/(k − 1))
]
. (6.8)

Proof (Lemma 6.4.2). The proof of this theorem follows from calculating the condi-
tional distribution of ŷ(t) given y, and then differentiating with respect to β(t). This
leads to a lengthy calculation, thus it has been deferred to the Appendix A.3.

90

Experimental Study for Neural Networks | 6.5

This result is useful since it allows us to calculate the inflection point (i.e., when
H(ŷ(t)|y) reaches its maximum value) by setting this derivative to zero. For exam-
ple, this is fairly simple for p tending to zero, as shown in the following corollary of
Lemma 6.4.2.
Corollary 6.4.2.1. In the setting of Lemma 6.4.2, if p → 0 then H(ŷ(t)|y) has one
maximum at β(t) = 1

2 , H(ŷ(t)|y) = k−1
k

log 2.

This result allows us to characterize the shape of the 2D curves (H(ŷ(t)), H(ŷ(t)|y)) and
(L0(f), H(ŷ(t)|y)) for p = 0. To do so, we just need to set β(t) to 1/2, then calculate
the corresponding quantities using D(t)

Ỹ ,Ŷ
. However, for arbitrary values of p, we require

to find the value of β(t) where (6.8) vanishes using numerical computations. Using
this result, in Figure 6.4 we show the obtained trajectories for different values of k,
with their corresponding inflection points. We can observe how the point where H(ŷ|y)
starts decreasing corresponds to a value of H(ŷ) that increases with p. This supports
the intuition that, for scenarios with increased label noise, a classifier needs to learn
more about the input distribution before successfully assigning labels to those inputs.
A similar conclusion can be drawn using the entropy-error plane, where more label noise
implies inflection points closer to Fano’s bound.

6.5. Experimental Study for Neural Networks

In this section, we empirically study the behavior of information theoretic quantities
H(ŷ) and H(ŷ|y) during the training for different datasets and neural networks. The
first issue is to properly estimate these quantities. Since these quantities depend only
on y and ŷ, it is sufficient to obtain a good estimation of the joint distribution of
(ŷ, y) ∈ {0, . . . , k−1}2 in order to approximate the mutual information and conditional
entropies. A naive estimator would calculate the empirical distribution of (ŷ, y), using
m independent observations, and then directly compute conditional entropies. It is
shown in [128] that the approximation error incurred by this method is of order k2/m.
Hence, this approach yields a good approximation if m � k2. This holds particularly
for our experiments where the number of classes does not exceed 10 while the number
of test examples are much larger than 102. Therefore, we use this method to estimate
these information theoretic quantities. When the number of classes k is large, one can
consider more sophisticated methods such as [129] and [130].

For our experiments, we assume to have datasets composed of independent realizations
of (x, ỹ). In particular, we use the following three datasets:

• Spirals: The spirals dataset consists of two-dimensional points belonging to one
of three spirals. These points correspond to (x, ỹ) generated by

x =

(
√
a+ b) cos

(
2πa+ 2π

3 ỹ
)

(
√
a+ b) sin

(
2πa+ 2π

3 ỹ
)

 ,

91

6. | An Information Theoretic View on Learning with Noisy Labels

k = 2

0 log k

0

lo
g

k

H(ŷ)

H
(ŷ

|y
)

k = 3

0 log k

0

lo
g

k
H(ŷ)

k = 10

0 log k

0

lo
g

k

H(ŷ)

0 0.5
0

lo
g

k

L0(f)

H
(ŷ

|y
)

0 0.66
0

lo
g

k

L0(f)
0 0.9

0
lo

g
k

L0(f)

p = 0 p = 0.1 p = 0.2 p = 0.3 p = 0.4 Maximum

0 1β(t)

Figure 6.4.: Trajectory of (6.5) in the information and entropy-error planes for different
values of k and p. The point of maximum conditional entropy is calculated
using Lemma 6.4.2. The dashed lines correspond to the bound given by
Fano’s inequality, and the black markers to the point of minimum attainable
error (see Theorem 6.3.3).

where a ∈ [0, 1], b ∈ [0, 0.1] and ỹ ∈ {1, 2, 3} are independent uniformly distributed
random variables. This leads to the following spirals, color coded according to
their corresponding class.

92

Experimental Study for Neural Networks | 6.5
Sp

ira
ls

tanh

0 log k

0

lo
g

k

H(ŷ)

H
(ŷ

|y
)

sigmoid

0 log k

0

lo
g

k
H(ŷ)

ReLU

0 log k

0

lo
g

k

H(ŷ)

M
N
IS
T

0 log k

0

lo
g

k

H(ŷ)

H
(ŷ

|y
)

0 log k

0

lo
g

k

H(ŷ)
0 log k

0

lo
g

k

H(ŷ)

0 100Training Time (in %)

Figure 6.5.: Information plane trajectory during the learning process for p = 0.

−1 0 1
−1

−0.5

0

0.5

1

Moreover, this dataset is divided into a training set of 50 000 samples and a test
set of 2 000.

• MNIST: This is a well known dataset for handwritten digit recognition [53]. It
consists of 55 000 training images and 10 000 test images.

• CIFAR-10: This dataset consists of tiny RGB images belonging to 10 categories

93

6. | An Information Theoretic View on Learning with Noisy Labels

Dataset Activation Batch Size αmax αmin Test Accuracy
tanh 128 10−1 10−2 99.7%

Spirals sigmoid 128 10−1 10−5 99.6%
ReLU 700 10−1 10−5 97.8%
tanh 128 10−2 10−2 97.1%

MNIST sigmoid 128 10−2 10−4 96.3%
ReLU 128 10−2 10−4 99.1%

CIFAR-10 ReLU 64 10−1 10−1 80.2%

Table 6.1.: Simulation Parameters

[54]. It contains 50 000 images for training and 10 000 for testing.

A fully connected neural network with four hidden layers of five neurons each, referred to
as FCNN, is trained on the spirals dataset. For the MNIST dataset, the popular convo-
lutional network called LeNet-5 [55] is used. To train these networks, we let the learning
rate α ∈ R start at a given αmax ∈ R and then decay by 40% per epoch until reaching
some given minimum learning rate αmin < αmax, that is α = max{αmax0.6bepochc, αmin}.
For the CIFAR-10 dataset, we train a 40 layer DenseNet architecture as done in [57],
but we stop the training after 10 epochs instead of the original 300 used by the authors.
We train FCNN and LeNet-5 using various hidden layer activation functions, learning
rates, and mini-batch sizes. The different configurations used for these experiments are
summarized in Table 6.1.

Based on the above setup, these neural networks are trained to learn the noisy labels
from the data. The true labels are corrupted by an independent additive noise according
to (6.7). We are interested in studying the behavior of neural networks as they learn
classification tasks to perfection. More precisely, we are first interested in examining
only those neural networks that managed to achieve the best performance after training.
For FCNN and LeNet-5, we only take into account neural networks that achieved less
than 0.05 + p error on their corresponding test set and assume that they are correctly
trained. For CIFAR-10, where DenseNet is only trained for 10 epochs instead of 300,
we assume that neural networks with less than 0.2 + p test error are well trained. In
Figure 6.5, the average behavior over 100 independent realizations of correctly trained
neural networks, during their learning process, is depicted. In these figures, a similar
trend can be observed regarding the evolution of the information theoretic quantities
during training. Regardless of the non-linearity and the dataset used, we observe that
the learning process consists of two phases. The first phase occurs at the beginning of
learning, where H(ŷ) increases even at the expense of increasing H(ŷ|y). A possible
explanation of this phenomenon is that, at the beginning of the training process, it is
more important to facilitate the information flow between x and ŷ than learning about
the labels. In other words, learning about the input distribution is more important at
early stages of the learning process. Note that learning about the distribution of x may
be done in an unsupervised manner since the labels y are not needed for this task. This

94

Experimental Study for Neural Networks | 6.5

behavior continues until a certain value of H(ŷ) is reached, from that point onward
the second phase starts. In the spirals dataset the first learning phase ends around
H(ŷ) ≈ 0.75 log k for all used activation functions. The same behavior holds true for
the MNIST and CIFAR-10 (see Figure 6.5 and Figure 6.6) datasets, where the second
phase of learning starts at H(ŷ) ≈ 0.8 log k. From this result, we may conjecture the
existence of a fundamental relation between the prediction task and a typical value of
H(ŷ), where the second learning phase starts, which seems to be nearly independent of
the neural networks architecture, as in the ideal scenario from Figure 6.4. As said, the
second phase of learning starts when H(ŷ) is high enough. Then, minimizing H(ŷ|y)
plays a more significant role than maximizing H(ŷ). This phase can be intuitively
seen as the supervised phase of training, where neural networks learn to master the
prediction task.

The behavior of H(ŷ) and H(ŷ|y) during the learning process appears to be independent
of the particular activation function. Hence, in the information planes of Figure 6.6,
we focus on tanh for the spirals dataset, ReLU for the MNIST dataset, and assume
that similar results hold for other activation functions. In that figure, the trajectory
of information theoretic quantities is observed when the noise rate p is changed. We
first see that H(ŷ), H(ŷ|y), and L0(f) approach their corresponding bounds as the
training goes on. This supports the assumption that the models considered have in fact
learned correctly, since the expected error achieves the lower bound given by Fano’s
inequality. Note that regardless of p, the entropy H(ŷ) approaches its maximum value,
i.e., H(ŷ) = log k in all experiments as expected. The first phase of learning ends at
the value of H(ŷ) where H(ŷ|y) reaches its inflection point. This value of H(ŷ), where
the first phase ends, seems to increase with p in all simulations, as predicted in the
ideal setting of Figure 6.4. This supports the idea that the channel between x and
ŷ should be good enough, that is H(ŷ) should be above some threshold value before
taking full advantage of the labels in the dataset. As the labels get noisier, we need a
better channel between x and ŷ in order to learn correctly.

Recall Fano’s inequality (i.e., Lemma 6.3.1), which gives an upper bound on H(ŷ|y)
in terms of the expected error L0(f). Then, in the entropy-error planes of Figure 6.6,
we assume that the test error is a good estimate of L0(f) and use it to compute this
bound. This figure shows that the pair (L0(f), H(ŷ|y)) approaches the dashed curve
(x,Ψ(x)) for correctly trained neural networks given various values of p. As expected,
if neural networks are properly trained and the expected error L0(f) tends to p, the
value of H(ŷ|y) approaches Fano’s bound. When DenseNet is used for classification in
the CIFAR-10 dataset, after only 10 epochs the pair (L0(f), H(ŷ|y)) starts to approach
Fano’s curve even though the error is still far from the lower bound p. This is an
indication that the model is learning correctly. Note that the model eventually reaches
less than 6% test error after 300 epochs [57]. These experiments show that observing
the trajectory of entropy H(ŷ), conditional entropy H(ŷ|y), and expected error L0(f)
can serve as a method for verifying the correct learning of neural networks.

Now, we make use of Theorem 6.4.1 to predict the trajectory of DNNs in the informa-

95

6. | An Information Theoretic View on Learning with Noisy Labels

tion plane. To that end, we keep the learning rate α and the batch size b fixed during
the learning process, and study the effect of different hyperparameter configurations.
In Figures 6.7 and 6.8, we simulate the learning trajectories of classifiers under various
hyperparameter choices. We take the first point where 0.4 log k ≤ H(ŷ) ≤ 0.6 log k as
the initial point of Theorem 6.4.1 and use this result to predict the learning trajectory
of the DNN under test. We observe that good hyperparameter configurations8 tend to
approximately follow the predicted trajectory. On the other hand, the trajectories that
do not converge near the optimal point seem to deviate from the predicted trajectory
from early on in training. Moreover, we can observe the impact that different hyperpa-
rameters have on these trajectories. Small learning rates produce smooth trajectories,
but may not move towards the optimal point. On the other hand, extremely large learn-
ing rates prevent neural networks from learning, thus the trajectory in the information
plane barely moves from its initial point. However, moderately large learning rates may
produce non-smooth trajectories that roughly follow the predicted ones. Finally, the
effect of the batch size is similar. Larger batch sizes lead to smoother trajectories, which
follow the predicted behavior when an appropriate learning rate is chosen.

Our last experiment consists on investigating how underfitting and overfitting affects the
trajectory of SGD. To that end, in Figure 6.9, we include `1-norm regularization term
into the loss function controlled by a parameter λ. As expected, for sufficiently small λ
the minimum error is attained. Interestingly, as we induce underfitting, by increasing
this regularization coefficient, the obtained models move away from Fano’s bound. This
naturally leads to increased error values. On the other hand, in Figure 6.10 we increase
the number of parameters of FCNN and reduce the dataset size to 10 000 in order to
induce overfitting. While overfitting leads to larger error as well as underfitting, it can
be distinguished by its trajectory in the entropy-error plane. Underfitting seems to push
models away from Fano’s bound while overfitting happens when a neural network is at
this bound. We see in our experiments that learning the marginal of ŷ is often easy for
classifiers, since it happens fast after few training iterations. From this observation, it
seems that having a low H(ŷ) value is an indication of underfitting. How does this look
like in the entropy-error plane? Since

H(y|ŷ) = H(ŷ|y)− (H(y)−H(ŷ)) ≤ Ψ(L0(f))− (H(y)−H(ŷ)) ,

we have that Fano’s bound is only sharp if the classifier can learn the marginal distri-
bution of y so that H(y) = H(ŷ). As H(ŷ) deviates from H(y), the conditional entropy
H(y|ŷ) remains away from Fano’s bound. However, one can learn the marginal of y
and classify poorly, since H(y) = H(ŷ) does not guarantee that H(y|ŷ) is small. In
the entropy-error plane this is equivalent to moving along Fano’s bound. We expect
a good learner to start decreasing H(y|ŷ) once it has learned about the marginal of
y. When a classifier increases H(y|ŷ) despite having already learned the marginal of y,
thus moving away from the objective, it is an indication of overfitting. In underfitting, a
classifier moves towards the optimal point but its limited expressiveness prevents it from

8A good hyperparameter configuration is one that ultimately leads to low test error.

96

Experimental Study for Neural Networks | 6.5

H(ŷ) remains H(y|ŷ) significantly indicates
low decreases underfitting
low increases not possible
high decreases good fit
high increases overfitting

Table 6.2.: Summary of training problems that can be spotted using the information
plane.

reaching it, while in overfitting the classifier starts moving away from it. The later can
be seen using traditional training and test error, since the test error starts increasing.
Nevertheless, the advantage of the entropy error plane is that we can observe this effect
happening even before the error increases significantly, since H(y|ŷ) may change more
drastically than L0(f). In Table 6.2 we summarize how to use information theoretic
quantities as indicators for the state of learning. Note that the case where H(ŷ) is low
and H(y|ŷ) high is not possible since

H(y|ŷ) = H(ŷ|y)− (H(y)−H(ŷ)) ≤ H(ŷ|y) ≤ H(ŷ) .

These experiments show that the information plane provides a richer view beyond train
and test error that allow us to observe effects that were previously hidden. Further
understanding about these trajectories is interesting since it may allow practitioners to
monitor models during training, spot undesired behaviors, and possibly tune hyperpa-
rameters accordingly.

97

6. | An Information Theoretic View on Learning with Noisy Labels

Sp
ira

ls
Information Plane

0 log k

0

lo
g

k

H(ŷ)

H
(ŷ

|y
)

Entropy-Error Plane

0 0.66
0

lo
g

k

L0(f)

M
N
IS
T

0 log k

0

lo
g

k

H(ŷ)

H
(ŷ

|y
)

0 0.9
0

lo
g

k

L0(f)

C
IF
A
R
-1
0

0 log k

0

lo
g

k

H(ŷ)

H
(ŷ

|y
)

0 0.9
0

lo
g

k

L0(f)

p = 0 p = 0.1 p = 0.2 p = 0.4

Figure 6.6.: Information theoretic quantities during the learning process. The black
dashed lines depict Fano’s bound (i.e., Lemma 6.3.1). Various marker
shapes are used to distinguish between experiments with different values
of p. Color coding is done as in Figure 6.5.98

Experimental Study for Neural Networks | 6.5
FC

N
N

(α
=

10
−

1)

α

0 log k

0

lo
g

k

H(ŷ)

H
(ŷ

|y
)

α× 10

0 log k

0
lo

g
k

H(ŷ)

α× 1000

0 log k

0

lo
g

k

H(ŷ)

Le
N
et
-5

(α
=

10
−

5)

0 log k

0

lo
g

k

H(ŷ)

H
(ŷ

|y
)

0 log k

0

lo
g

k

H(ŷ)
0 log k

0

lo
g

k

H(ŷ)

R
es
N
et
-1
3

(α
=

10
−

4)

0 log k

0

lo
g

k

H(ŷ)

H
(ŷ

|y
)

0 log k

0

lo
g

k

H(ŷ)
0 log k

0

lo
g

k

H(ŷ)

Figure 6.7.: Trajectory in the information plane, with different learning rates α, for
FCNN, LeNet-5 and ResNet-13 in the Spirals, MNIST and CIFAR-10
datasets respectively. The dashed line shows the trajectory predicted using
Theorem 6.4.1. Color coding is done as in Figure 6.5.

99

6. | An Information Theoretic View on Learning with Noisy Labels

FC
N
N

(b
=

12
8)

b

0 log k

0

lo
g

k

H(ŷ)

H
(ŷ

|y
)

b× 2

0 log k

0
lo

g
k

H(ŷ)

b× 4

0 log k

0

lo
g

k

H(ŷ)

Le
N
et
-5

(b
=

64
)

0 log k

0

lo
g

k

H(ŷ)

H
(ŷ

|y
)

0 log k

0

lo
g

k

H(ŷ)
0 log k

0

lo
g

k

H(ŷ)

R
es
N
et
-1
3

(b
=

64
)

0 log k

0

lo
g

k

H(ŷ)

H
(ŷ

|y
)

0 log k

0

lo
g

k

H(ŷ)
0 log k

0

lo
g

k

H(ŷ)

Figure 6.8.: Trajectory in the information plane, with different batch sizes b, for FCNN,
LeNet-5 and ResNet-13 in the Spirals, MNIST and CIFAR-10 datasets re-
spectively. The dashed line shows the trajectory predicted using Theorem
6.4.1. Color coding is done as in Figure 6.5.

100

Experimental Study for Neural Networks | 6.5

Information Plane

0 log k

0

lo
g

k

H(ŷ)

H
(ŷ

|y
)

Entropy-Error Plane

0 0.66
0

lo
g

k

L0(f)

λ = 0.0005 λ = 0.0007 λ = 0.0009 λ = 0.0012
λ = 0.0006 λ = 0.0008 λ = 0.001 λ = 0.0013

Figure 6.9.: Trajectory in the information plane for underfitted versions FCNN in the
MNIST dataset. The parameter λ controls the amount of underfitting and
p = 0.1. The dashed line shows Fano’s bound. Color coding is done as in
Figure 6.5.

0 log k

0

lo
g

k

H(ŷ)

H
(ŷ

|y
)

0 0.66
0

lo
g

k

L0(f)

p = 0.1 p = 0.2 p = 0.3 p = 0.4

Figure 6.10.: Trajectory in the information plane for overfitted versions FCNN in the
MNIST dataset. Different marker shapes correspond to different values of
p. The dashed line shows Fano’s bound. Color coding is done as in Figure
6.5.

101

7
Conclusions

The expanding availability of computational resources and hardware advances allows us
to train larger and more sophisticated neural networks. However, theoretical advances
for understanding these models are not keeping up with this pace of growth. Addition-
ally, the problem of adversarial vulnerability of these networks is far from being solved,
especially in real-world scenarios with high-dimensional data. In such scenarios, adver-
sarial training is still computationally costly, which motivates the search for alternate
solutions based on the theoretical understanding of adversarial robustness. Moreover,
obtaining large amounts of data to train these models is costly and may come with low
quality labels. This makes the study of learning under label noise a relevant task as
well.

7.1. Summary of Contributions

First, in Chapter 3, we proposed a general framework based on convex approximations
for generating adversarial examples with different desired constraints. Using this ap-
proach, we derived novel adversarial attacks for the context of classification and regres-
sion. For classification, our proposed attacks outperform consistently existing methods
in the tested scenarios. For the case of regression, we showed that there exist many
problems where DNNs are vulnerable to adversarial attacks. This fact was previously

103

7. | Conclusions

overlooked in the literature, since existing works focused mainly on autoencoders, a
regression problem that tends to be robust against adversarial perturbations.

In Chapter 4, we studied the relation between the adversarial robustness of a classifier
and the simultaneous sparsity and low-rankness of its weight matrices. Empirically, we
showed how adversarial training seems to induce these sparse and low-rank structures.
We demonstrated that promoting low-rankness, on sparse classifiers, also leads to in-
creased robustness. These findings are supported with a theorem on linear classifiers,
which showed how low-rankness improves the robustness of effectively sparse classifiers
without compromising standard accuracy.

Later, in Chapter 5, we have established adversarial risk bounds for DNNs under `∞
attacks. Our result has improved existing generalization bounds in terms of depen-
dencies with the number of classes, the input dimension, and the norm of the inputs.
This generalization bound has shown that effective sparsity does not only improve ro-
bustness, but results in better generalization of DNNs. Moreover, through empirical
simulations, we found our notion of effective joint sparsity to be specially relevant for
providing generalization guarantees under adversarial perturbations. This connection
has not been discovered so far in existing works.

Finally, in Chapter 6, we studied the problem of learning with label noise using infor-
mation theoretic quantities. To that end, we proposed to study the problem through a
novel notion of information plane that requires information theoretic quantities which
can be efficiently estimated. We derived several fundamental relations between these
quantities and different types of error. Then, for the case of linear classifiers and linearly
separable data, we characterized the trajectory of these classifiers in the information
plane when the weights move towards the optimal point. Empirical simulations showed
the resemblance of this behavior with neural networks, in more realistic scenarios, and
showed the potential of using information theoretic quantities for detecting undesired
learning phenomena.

7.2. Outlook

In this work, we proposed several techniques for generating adversarial noise. When
adversarial examples exist, these methods seem to find them efficiently, but they are not
guaranteed to do so. Constructing scenarios where we can provide theoretical guarantees
for finding adversarial examples, using these algorithms, would increase our understating
about the nature of the problem. While we showed that simultaneous low-rankness
and sparsity is relevant for adversarial robustness, the effect of such combination of
low-complexity structures on generalization was not studied. Using the compression
technique from Chapter 5 to establish such results seems like a promising research
direction, since imposing these low-complexity structures into the weight matrices of
DNNs allows for compressing them efficiently. Another interesting direction is to use

104

Outlook | 7.2

the theoretical result from Chapter 5 to build regularization or optimization schemes, as
in Chapter 4, that provide an alternative to adversarial training. Finally, the proposed
information plane showed great potential for detecting learning problems. Using this
information plane to design tracking methods for online hyperparameter tunning would
explore further this idea.

105

A
Appendix

A.1. Additional Experiments for Chapter 4

Tables A.1 and A.2 are self-explanatory. Figure A.1 shows the effective rank, effective
sparsity, and mutual information corresponding to the same setup as in Figure 4.4, but
on different layers.

Method Test accuracy (non-adversarial)
Natural training 0.9508

FGSM adversarial training 0.9697
PGD adversarial training 0.9689

λ1,1 = 0.01 0.9527
λ∗,1 = 0.01 0.9681

λ1,1 = 0.01, λ∗,1 = 0.01 0.9446
λ1,1 = 0.01, λ∗,1 = 0.03 0.9327

Table A.1.: Test accuracies of FCNN for the MNIST dataset.

107

A. | Appendix

I
(x

;x
i)

lo
gs

(W
i)

lo
gr

(W
i)

0 5 10

3

3.5

4

4.5

0 5 10

2.6

2.8

3

0 5 10
0

5

10

Epochs ·103

(a) i = 5

0 5 10

3

3.5

4

4.5

0 5 10

2.6

2.8

3

0 5 10
0

5

10

Epochs ·103

(b) i = 6

Figure A.1.: Effective rank, effective sparsity, and mutual information corresponding to
layers 5 and 6 of FCNN (as in Figure 4.4).

A.2. Reshaping of Convolutional Filters in Chapter
4

Assume a hidden representation composed of h1 non-overlapping 3-dimensional patches
represented by the tensors X1, . . . ,Xh1 of order 3. A convolution operation is performed
using h2 convolutional filters, corresponding to the 3D tensorsW 1, . . . ,W h2 of the same
size as the patches, which results in the following (vectorized) output of the convolution

vec(W 1)>vec(X1)
vec(W 1)>vec(X2)

...
vec(W h2)>vec(Xh1)

=

vec(W 1)>
vec(W 2)>

...
vec(W h1)>

︸ ︷︷ ︸
=:W̃

⊗Ih2

︸ ︷︷ ︸
=:W

vec(X1)
vec(X2)
. . .

vec(Xh2)

 ∈ Rh1h2 .

Therefore, this convolution operation can be written as a standard fully connected
layer with weight matrix W = W̃ ⊗ Ih1 . Note that W and W̃ have the same effective

108

Proof of Lemma 6.4.2 | A.3

Method Test accuracy (non-adversarial)
Natural train. 0.9041

FGSM adv. train. 0.8639
PGD adv. train. 0.864

λ1,1 = 0.01, λ1,2 = 0.01, λ∗,2 = 0 0.8917
λ1,1 = 0.01, λ1,2 = 0.01, λ∗,2 = 0.05 0.8623
λ1,1 = 0.01, λ1,2 = 0.01, λ∗,2 = 0.1 0.8614
λ1,1 = 0.01, λ1,2 = 0.01, λ∗,2 = 0.5 0.8399

Table A.2.: Test accuracies of CNN for the F-MNIST dataset.

rank, and W̃ is a reshaped version of the 4D weight tensor composed of W1, . . . ,Wh2 .
Therefore, the matrix W̃ is used in (4.7) and (4.8) to regularize convolutional layers.

A.3. Proof of Lemma 6.4.2

Proof. For the sake of notation let us denote Pi,j = P[ŷ(t) = i|y = j] for i, j = 1, . . . , k
and use the shorthand notation β := β(t) and ŷ := ŷ(t). Then, for uniformly distributed
y we can express H(ŷ|y) as

H(ŷ(t)|y) = −1
k

k∑

j=1

k∑

i=1
P[ŷ = i|y = j]P[y = j] logP[ŷ = i|y = j]

= −1
k

k∑

j=1

k∑

i=1
Pi,j logPi,j .

Now, we can take its derivative with respect to β yielding

H(ŷ(t)|y)
∂β

= ∂

∂β

−1

k

k∑

j=1

k∑

i=1
Pi,j logPi,j

= −1
k

k∑

i=1

k∑

j=1

[
∂Pi,j
∂β

(1 + logPi,j)
]

= −1
k

1∑

i=1

∑

j=j

[
∂Pi,j
∂β

(1 + logPi,j)
]
− 1
k

1∑

i=1

∑

j 6=i

[
∂Pi,j
∂β

(1 + logPi,j)
]

− 1
k

k∑

i=2

∑

j=i

[
∂Pi,j
∂β

(1 + logPi,j)
]
− 1
k

k∑

i=2

∑

i 6=j

[
∂Pi,j
∂β

(1 + logPi,j)
]
.

Therefore, it sufices to obtain an expression for Pi,j (and its derivative) in order to
characterize H(ŷ(t)|y).

109

A. | Appendix

The starting point D(0)
Ỹ ,Ŷ

is assumed to be such that H(ŷ(0)) = 0. Without loss of
generality let us assume that P[ŷ(0) = 1] = 1. Then, since ỹ is assumed to be uniformly
distributed, this leads to

P[ŷ = i, ỹ = j] = (1− β)1
k
1(i=1) + β

1
k
1(i=j) .

Knowing this joint distribution allows us to easily compute the marginal

P[ŷ = i] =
∑

j

P[ŷ = i, ỹ = j] = (1− β)1(i=1) + β
1
k
.

On the other hand, since z is independent, we can rewrite the conditional probabilities
P[y = 1|ŷ = l] as

P[y = 1|ŷ = l]
...

P[y = k|ŷ = l]

 =

P[ỹ ⊕ z = 1|ŷ = l]
...

P[ỹ ⊕ z = k|ŷ = l]

 =

P[ỹ = 1|ŷ = l]
...

P[ỹ = k|ŷ = l]

~

P[z = 0]
...

P[z = k − 1] ,

where ~ denotes the circular convolution operator. Then, for z distributed according
to (6.7) we get

P[y = 1|ŷ = i]
...

P[y = k|ŷ = i]

 = ((1− p− p

k − 1)I + p

k − 111>)
︸ ︷︷ ︸

circular convolution matrix of P[z = ·]

P[ỹ = 1|ŷ = i]
...

P[ỹ = k|ŷ = i]

= (1− p− p

k − 1)

P[ỹ = 1|ŷ = i]
...

P[ỹ = k|ŷ = i]

+ p

k − 1

1
...
1

 .

Now, we are ready to express Pi,j as a funtion of β, that is

Pi,j = P[y = j|ŷ = i]P[ŷ = i]
P[y = j]

= (1− p− p

k − 1) · P[ỹ = j|ŷ = i]P[ŷ = i]
1/k + p

k − 1 ·
P[ŷ = i]

1/k

= (1− p− p

k − 1) · P[ỹ = j, ŷ = i]
1/k + p

k − 1 ·
P[ŷ = i]

1/k

= (1− p− p

k − 1)
[
(1− β)1(i=1) + β1(i=j)

]
+ kp

k − 1

[
(1− β)1(i=1) + β

k

]

=

1− p− p
k−1 + kp

k−1(1− β) + p
k−1β, i = 1, j = i

(1− p)β, i 6= 1, j = i

(1− p− p
k−1)(1− β) + kp

k−1(1− β) + p
k−1β, i = 1, i 6= j

p
k−1β, i 6= 1, i 6= j

.

110

Proof of Lemma 6.4.2 | A.3

Therefore, we have that

∂Pi,j
∂β

=

−p, i = 1, j = i

1− p, i 6= 1, j = i
p

k−1 − 1, i = 1, j 6= i
p

k−1 , i 6= 1, j 6= i

.

Finally, joining these expresions together yields

H(ŷ(t)|y)
∂β

= −1
k

1∑

i=1

∑

j=1
[−p(1 + log(1− β + β(1− p)))]

− 1
k

1∑

i=1

∑

j 6=i

[
(p

k − 1 − 1)(1 + log(1− β + β
p

k − 1))
]

− 1
k

k∑

i=2

∑

j=i
[(1− p)(1 + log(β(1− p)))]− 1

k

k∑

i=2

∑

j 6=i

[
p

k − 1(1 + log(β p

k − 1))
]

= 1
k
p log(1− βp)− 1

k
(k − 1)(p

k − 1 − 1)(1 + log(1− β + β
p

k − 1))

− 1
k

(k − 1)(1− p)(1 + log(β(1− p)))− 1
k

(k − 1)p(1 + log(β p

k − 1))
1
k

(
p− (k − 1)(p

k − 1 − 1)− (k − 1)(1− p)− (k − 1)p
)

︸ ︷︷ ︸
=0

= 1
k

[
p log(1− βp) + (k − 1− p) log(1− β + β

p

k − 1)

− (k − 1)(1− p) log(β(1− p))− (k − 1)p log(β p

k − 1)
]
.

Remark: For p→ 0, we now that the maximum the curve is at β = 1
2 , since

lim
p→0

H(ŷ(t)|y)
∂β

!= 0 ⇒ 1
k

[(k − 1) log(1− β)− (k − 1) log β] = 0

⇒ log 1− β
t

= 0 ⇒ β = 1
2 .

111

List of Acronyms

i.i.d. Independent and identically distributed

BIM Basic Iterative Method

CCN Class-Conditional random label Noise

CNN Convolutional Neural Network

DNN Deep Neural Network

ERM Empirical Risk Minimization

FCNN Fully Connected Neural Network

FGSM Fast Gradient Sign Method

GNM Gradient-based Norm-constrained Method

KDE Kernel-based Density Estimator

PAC Probably Approximately Correct

PGD Projected Gradient Descent

PSNR Peak Signal to Noise Ratio

RCN Random Class Noise

R-FGSM Randomized Fast Gradient Sign Method

SGD Stochastic Gradient Descent

SVD Singular Value Decomposition

SVM Support Vector Machine

VC Vapnik-Chervonenkis

113

List of Symbols and Notation

General Notation

a, b, c, . . . scalars
a,b, c, . . . column vectors
A,B,C, . . . matrices
A,B, C, . . . sets
|·| absolute value of a scalar or cardinality of a set
(·)> matrix transpose
vec (·) vectorization of a matrix
〈·, ·〉 Euclidean inner product between two vectors
‖·‖p,q mixed (p, q)-norm of a matrix
‖·‖p→q operator (p, q)-norm of a matrix
‖·‖p `p-norm of a vector, for matrices this is shorthand of ‖·‖p→p
‖·‖F Frobenius norm of a matrix
1(·) indicator function
P[·] probability of an event
E[·] expectation of a random process
Var[·] variance of a random process

Predefined vectors, matrices and sets

N set of natural numbers
R set of real numbers
I identity Matrix
0 all zeros vector
1 all ones vector
ei i-th standard basis vector (the i-th column of I)

115

List of Symbols and Notation

Domain Specific Notation

X input space, i.e., the set all possible inputs
Y label space, i.e., the set all possible labels
D D : X × Y → [0, 1] is the input data distribution
(x, y) ∼ D random input x ∈ X , with associated label y ∈ Y , drawn from D
S training set composed of independent realizations of (x, y) ∼ D
m number of samples in the training set, that is m := |S|
n input dimension, that is X ⊆ Rn

k number of classes, that is Y = {1, 2, . . . , k}
d number of layers of a multi-layer neural network
`(x, y) classification margin of the input x with associated label y
c(·) c : X → Y is the classifier function
f, g, h score functions X → R|Y|

L(·, ·) L : X × Y → R is the loss function used for training
T (·, ·) T : X × X → R is the target loss function of an adversary
Lγ(·) expected risk with margin γ ≥ 0
L̂γ(·) empirical risk with margin γ ≥ 0
H(·) Shannon entropy of a random variable
I(·; ·) mutual information between two random variables

116

Bibliography

[1] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. r. Mohamed, N. Jaitly, A. Senior, V.
Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep neural networks
for acoustic modeling in speech recognition: The shared views of four research
groups,” IEEE Signal Processing Magazine, 2012.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Neural Information Processing Systems
(NIPS), 2012.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[4] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[5] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time
object detection with region proposal networks,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2017.

[6] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R.
Fergus, “Intriguing properties of neural networks,” in International Conference
on Learning Representations (ICLR), 2014.

[7] A. Fawzi, S.-M. Moosavi-Dezfooli, and P. Frossard, “Robustness of classifiers:
From adversarial to random noise,” in Neural Information Processing Systems
(NIPS), 2016.

[8] M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar, “The security of machine
learning,” Machine Learning, 2010.

[9] N. Akhtar and A. Mian, “Threat of adversarial attacks on deep learning in com-
puter vision: A survey,” IEEE Access, 2018.

[10] B. Wang, J. Gao, and Y. Qi, “A theoretical framework for robustness of (deep)
classifiers against adversarial examples,” in International Conference on Learning
Representations (ICLR), 2017.

[11] A. Fawzi, O. Fawzi, and P. Frossard, “Fundamental limits on adversarial robust-
ness,” in ICML Workshop on Deep Learning, 2015.

[12] D. Angluin and P. Laird, “Learning from noisy examples,” Machine Learning,
1988.

117

Bibliography

[13] B. Frénay and M. Verleysen, “Classification in the presence of label noise: A
survey,” IEEE transactions on neural networks and learning systems, 2014.

[14] B. Frénay, A. Kabán, et al., “A comprehensive introduction to label noise.,” in
ESANN, 2014.

[15] A. Ghosh, H. Kumar, and P. Sastry, “Robust loss functions under label noise for
deep neural networks,” in Conference on Artificial Intelligence (AAAI), 2017.

[16] A. K. Menon, B. van Rooyen, and N. Natarajan, “Learning from binary labels
with instance-dependent noise,” Machine Learning, 2018.

[17] J. A. Tropp, “Topics in sparse approximation,” PhD thesis, 2004.
[18] E. R. Balda, A. Behboodi, and R. Mathar, “Perturbation analysis of learning

algorithms: Generation of adversarial examples from classification to regression,”
IEEE Transactions on Communications, 2019.

[19] E. R. Balda, A. Behboodi, and R. Mathar, “On generation of adversarial exam-
ples using convex programming,” in Asilomar Conference on Signals, Systems,
and Computers, Pacific Grove, California, USA, 2018.

[20] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” in International Conference on Learning Representations (ICLR),
2015.

[21] S. Sarkar, A. Bansal, U. Mahbub, and R. Chellappa, “Upset and angri: Breaking
high performance image classifiers,” arXiv preprint arXiv:1707.01159, 2017.

[22] S. M. Moosavi Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A simple and
accurate method to fool deep neural networks,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[23] N. Rao, B. Recht, and R. Nowak, “Universal measurement bounds for structured
sparse signal recovery,” in International Conference on Artificial Intelligence and
Statistics (AISTATS), 2012.

[24] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep
learning models resistant to adversarial attacks,” in International Conference on
Learning Representations (ICLR), 2018.

[25] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the physical
world,” arXiv preprint arXiv:1607.02533, 2016.

[26] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples,” in International
Conference on Machine Learning (ICML), 2018.

[27] A. Athalye and N. Carlini, “On the robustness of the CVPR 2018 white-box
adversarial example defenses,” arXiv preprint arXiv:1804.03286, 2018.

[28] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep neural
networks,” IEEE Transactions on Evolutionary Computation, 2019.

118

Bibliography

[29] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami,
“The limitations of deep learning in adversarial settings,” in IEEE European
Symposium on Security and Privacy (EuroS&P), 2016.

[30] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel,
“Ensemble adversarial training: Attacks and defenses,” in International Confer-
ence on Learning Representations (ICLR), 2018.

[31] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal ad-
versarial perturbations,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[32] J. H. Metzen, M. C. Kumar, T. Brox, and V. Fischer, “Universal adversar-
ial perturbations against semantic image segmentation,” in IEEE International
Conference on Computer Vision (ICCV), 2017.

[33] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille, “Adversarial ex-
amples for semantic segmentation and object detection,” in IEEE International
Conference on Computer Vision (CVPR), 2017.

[34] M. Cisse, Y. Adi, N. Neverova, and J. Keshet, “Houdini: Fooling deep structured
prediction models,” arXiv preprint arXiv:1707.05373, 2017.

[35] N. Papernot, P. McDaniel, A. Swami, and R. Harang, “Crafting adversarial in-
put sequences for recurrent neural networks,” in IEEE Military Communications
Conference (MILCOM), IEEE, 2016.

[36] Y.-C. Lin, Z.-W. Hong, Y.-H. Liao, M.-L. Shih, M.-Y. Liu, and M. Sun, “Tactics
of adversarial attack on deep reinforcement learning agents,” in International
Joint Conference on Artificial Intelligence (IJCAI), AAAI Press, 2017.

[37] J. Kos, I. Fischer, and D. Song, “Adversarial examples for generative models,”
in IEEE Security and Privacy Workshops (SPW), 2018.

[38] P. Tabacof, J. Tavares, and E. Valle, “Adversarial images for variational autoen-
coders,” arXiv preprint arXiv:1612.00155, 2016.

[39] T. Tanay and L. Griffin, “A boundary tilting perspective on the phenomenon of
adversarial examples,” arXiv preprint arXiv:1608.07690, 2016.

[40] A. Fawzi, S. M. Moosavi-Dezfooli, and P. Frossard, “The robustness of deep
networks: A geometrical perspective,” IEEE Signal Processing Magazine, 2017.

[41] A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses against ad-
versarial examples,” in International Conference on Learning Representations
(ICLR), 2018.

[42] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry, “Robustness
may be at odds with accuracy,” in International Conference on Learning Repre-
sentations (ICLR), 2019.

[43] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a
defense to adversarial perturbations against deep neural networks,” in IEEE
Symposium on Security and Privacy (SP), IEEE, 2016.

119

Bibliography

[44] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural net-
works,” in IEEE Symposium on Security and Privacy (SP), IEEE, 2017.

[45] M. Hein and M. Andriushchenko, “Formal guarantees on the robustness of a
classifier against adversarial manipulation,” in Neural Information Processing
Systems (NIPS), 2017.

[46] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge Univ. Press, 2013.
[47] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing,

Applied and Numerical Harmonic Analysis. Birkhäuser, 2013.
[48] J. Rohn, “Computing the norm ‖A‖∞,1 is NP-hard,” Linear and Multilinear

Algebra, 2000.
[49] D. Hartman and M. Hladík, Tight Bounds on the Radius of Nonsingularity.

Springer, 2015.
[50] M. X. Goemans and D. P. Williamson, “Improved approximation algorithms

for maximum cut and satisfiability problems using semidefinite programming,”
Journal of the ACM (JACM), 1995.

[51] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Uni-
fied, real-time object detection,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

[52] S. Baluja and I. Fischer, “Adversarial transformation networks: Learning to gen-
erate adversarial examples,” arXiv preprint arXiv:1703.09387, 2017.

[53] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning ap-
plied to document recognition,” Proceedings of the IEEE, 1998.

[54] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny
images,” Citeseer, Tech. Rep., 2009.

[55] Y. LeCun, P. Haffner, L. Bottou, and Y. Bengio, “Object recognition with
gradient-based learning,” Shape, Contour and Grouping in Computer Vision,
1999.

[56] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2013.

[57] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely connected
convolutional networks,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[58] F. Baldassarre, D. G. Morín, and L. Rodés-Guirao, “Deep koalarization:
Image colorization using cnns and inception-resnet-v2,” arXiv preprint
arXiv:1712.03400, 2017.

[59] M. Everingham and J. Winn, “The pascal visual object classes challenge 2012
(voc2012) development kit,” Pattern Analysis, Statistical Modelling and Compu-
tational Learning, Tech. Rep, 2011.

120

Bibliography

[60] S. Sabour, Y. Cao, F. Faghri, and D. J. Fleet, “Adversarial manipulation of
deep representations,” in International Conference on Learning Representations
(ICLR), 2016.

[61] F. Tramèr, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel, “The space
of transferable adversarial examples,” arXiv preprint arXiv:1704.03453, 2017.

[62] A. Fawzi, O. Fawzi, and P. Frossard, “Analysis of classifiers’ robustness to ad-
versarial perturbations,” Machine Learning, 2018.

[63] A. Rozsa, M. Gunther, and T. E. Boult, “Towards robust deep neural networks
with BANG,” in IEEE Winter Conference on Applications of Computer Vision
(WACV), 2018.

[64] A. Rozsa, M. Günther, and T. E. Boult, “Are accuracy and robustness corre-
lated,” in IEEE International Conference on Machine Learning and Applications
(ICMLA), 2016.

[65] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, P. Frossard, and S. Soatto, “Ro-
bustness of classifiers to universal perturbations: A geometric perspective,” in
International Conference on Learning Representations (ICLR), 2018.

[66] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial machine learning at
scale,” in International Conference on Learning Representations (ICLR), 2017.

[67] S. Gopalakrishnan, Z. Marzi, U. Madhow, and R. Pedarsani, “Combating adver-
sarial attacks using sparse representations,” in ICLR Workshop, 2018.

[68] Z. Marzi, S. Gopalakrishnan, U. Madhow, and R. Pedarsani, “Sparsity-based
defense against adversarial attacks on linear classifiers,” in IEEE International
Symposium on Information Theory (ISIT), 2018.

[69] Y. Guo, C. Zhang, C. Zhang, and Y. Chen, “Sparse DNNs with improved adver-
sarial robustness,” in Neural Information Processing Systems (NeurIPS), 2018.

[70] L. Wang, G. W. Ding, R. Huang, Y. Cao, and Y. C. Lui, “Adversarial robustness
of pruned neural networks,” in Submitted to ICLR Workshop, 2018.

[71] A. Alemi, I. Fischer, J. Dillon, and K. Murphy, “Deep variational information
bottleneck,” in International Conference on Learning Representations (ICLR),
2017.

[72] A. Sanyal, V. Kanade, and P. H. Torr, “Learning low-rank representations,”
arXiv preprint arXiv:1804.07090, 2018.

[73] S. Gopi, P. Netrapalli, P. Jain, and A. Nori, “One-bit compressed sensing: Prov-
able support and vector recovery,” in International Conference on International
Conference on Machine Learning (ICML), 2013.

[74] N. Tishby and N. Zaslavsky, “Deep learning and the information bottleneck
principle,” in IEEE Information Theory Workshop (ITW), 2015.

121

Bibliography

[75] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: A novel image dataset for
benchmarking machine learning algorithms,” arXiv preprint arXiv:1708.07747,
2017.

[76] A. Kolchinsky and B. Tracey, “Estimating mixture entropy with pairwise dis-
tances,” Entropy, 2017.

[77] A. Kolchinsky, B. D. Tracey, and D. H. Wolpert, “Nonlinear information bottle-
neck,” arXiv preprint arXiv:1705.02436, 2017.

[78] E. R. Balda, A. Behboodi, N. Koep, and R. Mathar, “Adversarial risk bounds
for neural networks through sparsity based compression,” arXiv preprint
arXiv:1906.00698, 2019.

[79] H. Xu, C. Caramanis, and S. Mannor, “Robust regression and lasso,” IEEE
Transactions on Information Theory, 2008.

[80] H. Xu, C. Caramanis, and S. Mannor, “Robustness and regularization of support
vector machines,” Journal of Machine Learning Research, 2009.

[81] A. Sinha, H. Namkoong, and J. C. Duchi, “Certifying some distributional ro-
bustness with principled adversarial training,” in International Conference on
Learning Representations (ICLR), 2018.

[82] P. L. Bartlett, D. J. Foster, and M. Telgarsky, “Spectrally-normalized margin
bounds for neural networks,” in Neural Information Processing Systems (NIPS),
2017.

[83] N. Golowich, A. Rakhlin, and O. Shamir, “Size-independent sample complexity
of neural networks,” in Conference on Learning Theory (COLT), 2018.

[84] B. Neyshabur, Z. Li, S. Bhojanapalli, Y. LeCun, and N. Srebro, “Towards under-
standing the role of over-parametrization in generalization of neural networks,”
in International Conference on Learning Representations (ICLR), 2018.

[85] X. Li, J. Lu, Z. Wang, J. Haupt, and T. Zhao, “On tighter generalization
bound for deep neural networks: Cnns, resnets, and beyond,” arXiv preprint
arXiv:1806.05159, 2018.

[86] B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro, “A pac-bayesian
approach to spectrally-normalized margin bounds for neural networks,” in Inter-
national Conference on Learning Representations (ICLR), 2017.

[87] B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro, “Exploring gen-
eralization in deep learning,” in Neural Information Processing Systems (NIPS),
2017.

[88] V. Nagarajan and J. Z. Kolter, “Deterministic pac-bayesian generalization
bounds for deep networks via generalizing noise-resilience,” in International
Conference on Learning Representations (ICLR), 2019.

[89] S. Arora, R. Ge, B. Neyshabur, and Y. Zhang, “Stronger generalization bounds
for deep nets via a compression approach,” in International Conference on Ma-
chine Learning (ICML), 2018.

122

Bibliography

[90] I. Attias, A. Kontorovich, and Y. Mansour, “Improved generalization bounds for
robust learning,” in International Conference on Algorithmic Learning Theory
(ALT), 2018.

[91] D. I. Diochnos, S. Mahloujifar, and M. Mahmoody, “Adversarial risk and ro-
bustness: General definitions and implications for the uniform distribution,” in
Neural Information Processing Systems (NeurIPS), 2018.

[92] S. Mahloujifar and M. Mahmoody, “Can adversarially robust learning leverage
computational hardness?” In International Conference on Algorithmic Learning
Theory (ALT), 2019.

[93] L. Schmidt, S. Santurkar, D. Tsipras, K. Talwar, and A. Madry, “Adversari-
ally robust generalization requires more data,” in Neural Information Processing
Systems (NeurIPS), 2018.

[94] D. Cullina, A. N. Bhagoji, and P. Mittal, “Pac-learning in the presence of ad-
versaries,” in Neural Information Processing Systems (NeurIPS), 2018.

[95] O. Montasser, S. Hanneke, and N. Srebro, “VC classes are adversarially robustly
learnable, but only improperly,” arXiv preprint arXiv:1902.04217, 2019.

[96] F. Farnia, J. M. Zhang, and D. Tse, “Generalizable adversarial training via spec-
tral normalization,” in International Conference on Learning Representations
(ICLR), 2019.

[97] D. Yin, R. Kannan, and P. Bartlett, “Rademacher complexity for adversari-
ally robust generalization,” in International Conference on Machine Learning
(ICML), 2019.

[98] J. Khim and P.-L. Loh, “Adversarial risk bounds via function transformation,”
arXiv preprint arXiv:1810.09519, 2019.

[99] Z. Tu, J. Zhang, and D. Tao, “Theoretical analysis of adversarial learning: A
minimax approach,” arXiv preprint arXiv:1811.05232, 2018.

[100] E. R. Balda, A. Behboodi, and R. Mathar, “An information theoretic view on
learning of artificial neural networks,” in International Conference on Signal
Processing and Communication Systems (ICSPCS), 2018.

[101] J. A. Aslam and S. E. Decatur, “On the sample complexity of noise-tolerant
learning,” Information Processing Letters, 1996.

[102] C. Gentile and D. P. Helmbold, “Improved lower bounds for learning from noisy
examples: An information-theoretic approach,” Information and Computation,
2001.

[103] B. van Rooyen, A. Menon, and R. C. Williamson, “Learning with symmetric label
noise: The importance of being unhinged,” in Neural Information Processing
Systems (NIPS), 2015.

[104] N. Manwani and P. Sastry, “Noise tolerance under risk minimization,” IEEE
transactions on cybernetics, 2013.

123

Bibliography

[105] A. Ghosh, N. Manwani, and P. Sastry, “Making risk minimization tolerant to
label noise,” Neurocomputing, 2015.

[106] N. Natarajan, I. S. Dhillon, P. K. Ravikumar, and A. Tewari, “Learning with
noisy labels,” in Neural Information Processing Systems (NIPS), 2013.

[107] N. Natarajan, I. S. Dhillon, P. Ravikumar, and A. Tewari, “Cost-sensitive learn-
ing with noisy labels.,” Journal of Machine Learning Research, 2017.

[108] A. Menon, H. Narasimhan, S. Agarwal, and S. Chawla, “On the statistical con-
sistency of algorithms for binary classification under class imbalance,” in Inter-
national Conference on Machine Learning (ICML), 2013.

[109] H. Narasimhan, R. Vaish, and S. Agarwal, “On the statistical consistency of
plug-in classifiers for non-decomposable performance measures,” in Neural In-
formation Processing Systems (NIPS), 2014.

[110] T. Liu and D. Tao, “Classification with noisy labels by importance reweighting,”
IEEE Transactions on pattern analysis and machine intelligence, 2015.

[111] L. Bruzzone and M. Marconcini, “Domain adaptation problems: A dasvm clas-
sification technique and a circular validation strategy,” IEEE transactions on
pattern analysis and machine intelligence, 2009.

[112] C. Scott, G. Blanchard, and G. Handy, “Classification with asymmetric label
noise: Consistency and maximal denoising,” in Conference On Learning Theory
(COLT), 2013.

[113] R. Wang, T. Liu, and D. Tao, “Multiclass learning with partially corrupted
labels,” IEEE transactions on neural networks and learning systems, 2017.

[114] A. Menon, B. Van Rooyen, C. S. Ong, and B. Williamson, “Learning from cor-
rupted binary labels via class-probability estimation,” in International Confer-
ence on Machine Learning (ICML), 2015.

[115] G. Patrini, F. Nielsen, R. Nock, and M. Carioni, “Loss factorization, weakly
supervised learning and label noise robustness,” in International Conference on
Machine Learning (ICML), 2016.

[116] C. G. Northcutt, T. Wu, and I. L. Chuang, “Learning with confident exam-
ples: Rank pruning for robust classification with noisy labels,” arXiv preprint
arXiv:1705.01936, 2017.

[117] Z. Zhang and M. Sabuncu, “Generalized cross entropy loss for training deep
neural networks with noisy labels,” in Neural Information Processing Systems
(NeurIPS), 2018.

[118] C. Scott, “A rate of convergence for mixture proportion estimation, with ap-
plication to learning from noisy labels,” in Artificial Intelligence and Statistics
(AISTATS), 2015.

[119] R. Shwartz-Ziv and N. Tishby, “Opening the black box of deep neural networks
via information,” arXiv preprint arXiv:1703.00810, 2017.

124

Bibliography

[120] N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck method,”
arXiv preprint physics/0004057, 1999.

[121] A. M. Saxe, Y. Bansal, J. Dapello, M. Advani, A. Kolchinsky, B. D. Tracey,
and D. D. Cox, “On the information bottleneck theory of deep learning,” in
International Conference on Learning Representations (ICLR), 2018.

[122] M. Gabrié, A. Manoel, C. Luneau, N. Macris, F. Krzakala, L. Zdeborová, et al.,
“Entropy and mutual information in models of deep neural networks,” 2018.

[123] D. Russo and J. Zou, “How much does your data exploration overfit? Controlling
bias via information usage,” arXiv preprint arXiv:1511.05219, 2015.

[124] A. Xu and M. Raginsky, “Information-theoretic analysis of generalization capa-
bility of learning algorithms,” in Neural Information Processing Systems (NIPS),
2017.

[125] A. Asadi, E. Abbe, and S. Verdú, “Chaining mutual information and tightening
generalization bounds,” in Neural Information Processing Systems (NeurIPS),
2018.

[126] M. Feder and N. Merhav, “Relations between entropy and error probability,”
IEEE Transactions on Information Theory, 1994.

[127] I. Csiszár and J. Körner, Information theory: coding theorems for discrete mem-
oryless systems, 2nd ed. Cambridge ; New York: Cambridge University Press,
2011.

[128] G. A. Miller, “Note on the bias of information estimates,” Information theory in
psychology: Problems and methods, 1955.

[129] T. Schürmann, “Bias analysis in entropy estimation,” Journal of Physics A:
Mathematical and General, 2004.

[130] E. Archer, I. M. Park, and J. W. Pillow, “Bayesian entropy estimation for count-
able discrete distributions,” The Journal of Machine Learning Research, 2014.

125

Curriculum Vitæ

Emilio Rafael Balda Cañizares

Sep. 15, 1991 Born in Guayaquil, Ecuador

Apr. 1998 - Dec. 2003 Elementary school
“Unidad Educativa Torremar”, Guayaquil, Ecuador

Apr. 2004 - Jan. 2010 Academic high school
“Unidad Educativa Torremar”, Guayaquil, Ecuador

Sep. 2010 - Jun. 2014 Bachelor
Telecommunication Systems Engineering
University of Navarra, San Sebastian, Spain

Oct. 2014 - Jan. 2017 Master of Science
Communications and Signal Processing
Ilmenau University of Technology, Ilmenau, Germany

Feb. 2017 - Oct. 2019 Research and Teaching Assistant
Institute for Theoretical Information Technology
RWTH Aachen University, Aachen, Germany

Nov. 2019 - Present Artificial Intelligence (AI) Developer
aiXbrain GmbH, Aachen, Germany

	Acknowledgments
	Introduction
	Technical Background
	Notation and Norms
	Statistical Learning
	System Model
	Concentration Inequalities
	Elementary Definitions from Information Theory

	Generation of Adversarial Examples for Classification and Regression
	Related Work
	Our Contributions

	Fooling Classifiers with First-Order Perturbation Analysis
	Adversarial Perturbation Design Problem
	Perturbation Analysis
	Feasible Adversarial Perturbation Designs

	From Classification to Regression
	A Quadratic Programming Problem
	A Linear Programming Problem

	Single Subset Attacks
	Single Subset Attack for the Quadratic Problem
	Single Subset Attack for the Linear Problem

	Iterative Versions of the Linear Problem
	Experiments
	Classification
	Regression

	Outlook

	On the Effect of Low-Rank Weights on Adversarial Robustness
	Related Work
	Our Contributions

	Preliminaries
	Enhancing the Robustness of Sparse Linear Classifiers through Compression
	Inducing Compression through Regularization
	Experiments
	Discussion

	Adversarial Risk Bounds through Sparsity based Compression
	Related Work
	Our Contributions
	Notation

	Problem Setup
	Main Results
	Linear Classifier
	Neural Networks

	Experiments

	An Information Theoretic View on Learning with Noisy Labels
	Related Work
	Our Contributions

	System Model
	Bounds Relating Entropy and Error
	Analysis of Learning Trajectories for Linear Classifiers
	Binary Classification of Linearly Separable Data
	Multi-Class Classification

	Experimental Study for Neural Networks

	Conclusions
	Summary of Contributions
	Outlook

	Appendix
	Additional Experiments for Chapter 4
	Reshaping of Convolutional Filters in Chapter 4
	Proof of Lemma 6.4.2

	List of Acronyms
	List of Symbols and Notation
	Bibliography

